
Characterizing and Predicting TCP Throughput on the Wide Area Network

Dong Lu Yi Qiao Peter A. Dinda Fabián E. Bustamante
Department of Computer Science, Northwestern University, USA

{donglu,yqiao,pdinda,fabianb}@cs.northwestern.edu

Abstract

DualPats exploits the strong correlation between TCP
throughput and flow size, and the statistical stability of In-
ternet path characteristics to accurately predict the TCP
throughput of large transfers using active probing. We pro-
pose additional mechanisms to explain the correlation, and
then analyze why traditional TCP benchmarking fails to
predict the throughput of large transfers well. We charac-
terize stability and develop a dynamic sampling rate ad-
justment algorithm so that we probe a path based on its
stability. Our analysis, design, and evaluation is based on
a large-scale measurement study.

1 Introduction

Application developers often pose an age-old question:
“what is the TCP throughput of this path?” The question
is more subtle than it appears. This paper motivates, de-
scribes, and evaluates DualPats, an algorithm and system
for answering it. We define TCP throughput as D

T where
D is the flow size and T is the flow duration, starting at
connection establishment and ending at teardown. For a file
transfer [3, 39], D is the file size.

The available bandwidth of a path—the maximum rate
of a new flow that will not reduce the rate of existing
flows [15, 16]—has been thoroughly investigated. Ke-
shav’s packet pair [20], Crovella’s cprobe [8], IGI [15], and
spruce [33] attempt to measure the available bandwidth ac-
curately, quickly, and non-intrusively. Other tools, such as
nettimer [21], pathchar and pchar [13], pathload [16], NCS
and pipechar [19], pathrate [12] and delphi [31] measure ei-
ther the bottleneck link capacity or the available bandwidth.

The available bandwidth is different from the TCP
throughput that an application can achieve, and that differ-
ence can be significant. For example, Jain’s pathload pa-
per [16] showed the bulk transfer capacity [25] of a path is
higher than the measured available bandwidth, while Lai’s

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, ANI-0301108, EIA-0130869, and EIA-0224449.
Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author and do not necessarily reflect the views
of the National Science Foundation.

Nettimer paper [21] showed many cases where the TCP
throughput is much lower than their measurement. Jin, et
al confirmed that available bandwidth is not an indicator
of what an application can actually obtain [17]. Tools for
estimating available bandwidth have a further issue: their
slow convergence, on the order of at at least 10s of seconds,
makes them too slow for many applications.

The most widely used real time TCP throughput pre-
diction framework is the Network Weather Service [37]
(NWS). NWS applies benchmarking techniques and time
series models to measure TCP throughput and provide pre-
dictions to applications. NWS is widely used in grid com-
puting and other application contexts.

Unfortunately, recent work [36, 35] has shown that
NWS, and by implication, current TCP benchmarking tech-
niques in general, have difficulty predicting the throughput
of large file transfers on the high speed Internet. Sudhar-
shan, et al [36] showed that NWS was predicting less than
1/10 of the actual TCP throughput achieved by GridFTP. In
response, they proposed using a log of large file transfers to
predict future file transfers. A key problem with this idea
is that the log is updated only at application-chosen times,
and thus changes in TCP throughput are only noticed after
the application uses the path.

Taking dynamic changes into consideration, Sudharshan,
et al [35] and Swany, et al [34] separately proposed re-
gression and CDF-matching techniques to combine the log-
based predictor with small NWS probes, using the probes
to estimate the current load on the path and adjust the log-
based predictor accordingly. These techniques enhanced the
accuracy of log based predictors. However, they remain
limited to those host pairs that have logs of past transfers
between them, and the logs must still be kept fresh. Zhang,
et al [42] showed it is misleading to use history older than
one hour. Furthermore, due to the strong correlation be-
tween TCP flow size and throughput [41], a log for one TCP
flow size is not directly useful for predicting throughput for
another.

The passive measurement approach [7, 19, 40] avoids the
overhead of active probes by observing existing network
traffic. Unfortunately, similar to the log-based prediction
techniques, the passive approach is limited to periods of

1

time when there is traffic on the network between the hosts
of interest. Also, these systems measure available band-
width, not TCP throughput.

There is an extensive literature on analytic TCP through-
put models [26, 28, 4]. However, these models are limited
in practice due to the difficulty in obtaining accurate model
parameters such as TCP loss rate and RTT. Goyal et al [14]
concluded that it is not easy to obtain accurate estimates of
network loss rates as observed by TCP flows using probing
methods, and that polling SNMP MIBs on the routers can
do much better. However, because these statistics are ag-
gregated and it is well known that TCP has a bias against
connections with high RTT [30], this approach is limited
to paths where the bottleneck router provides common loss
rates, such as with RED. Furthermore, this approach has to
determine the bottleneck router on the end-to-end path (a
difficult problem) and have SNMP access to it (rarely avail-
able today).

DualPats follows from these questions, which we ad-
dress via a large-scale measurement study:

• How can we explain the strong correlation between
TCP flow size and throughput, and what are its
implications for predicting TCP throughput?

• How can we characterize the statistical stability of the
Internet and TCP throughput, and what are its
implications for predicting TCP throughput?

• How can we predict the TCP throughput with
different TCP flow sizes without being intrusive?

The main contributions of this paper are:

• Additional causes for the observed strong correlation
between TCP flow size and throughput [42],

• A characterization of TCP throughput stability and
statistics,

• A novel yet simple TCP benchmark mechanism,
• A dynamic sampling rate adjustment algorithm to

lower active probing overhead, and
• DualPats and its evaluation.

2 Experimental Setup

Our experimental testbed includes PlanetLab and sev-
eral additional machines located at Northwestern University
and Argonne National Laboratory (ANL). PlanetLab [2] is
an open platform for developing, deploying, and accessing
planetary-scale services. It currently consists of more than
400 computers located at about 200 sites around the world.

We conducted four sets of experiments: Distribution Set,
Correlation Set, Verification Set, and Online Evaluation Set.
Each experiment set involves PlanetLab nodes from North
America, Europe, Asia, and Australia. We set the TCP
buffer size in a range from 1 to 3 MegaBytes in all the ex-
periments with GridFTP, while we used default TCP buffer

in other experiments. In the 2.4 Linux kernel, which we
use, the socket buffer size is automatically tuned to ap-
proximately twice the estimated bandwidth delay product.
More details of the experimental setup can be found else-
where [23].

For each of Distribution Set and Correlation Set, we
chose 40 nodes on PlanetLab spread across North America,
Europe, Asia, and Australia. We randomly grouped those
nodes into 20 pairs, each containing a client node and a
server node and the Internet path between the two. A server
listens and accepts incoming TCP connection requests from
its client counterpart and transfers data of a particular size
to the client through the established TCP connection. The
client repeatedly connects to its server, requests some data,
records the transfer time, and then closes the connection. To
evaluate more Internet paths, we randomly changed pairings
3 times, resulting in 60 different paths for Distribution Set
and another 60 for Correlation Set.

Distribution Set serves as a basis for evaluating TCP
throughput stability and distributions. Since here we want
to see how TCP throughput with a specific flow size varies
with time and its distribution within each stable epoch, we
transfer data of a particular size between pairs of clients and
servers continuously for at least 3,000 times, then move on
to perform the same operation on another data transfer with
a different size. The trace data used in Distribution Set is
mainly used in the discussion of TCP throughput stability
and distributions in Section 4.

Correlation Set serves to study the strong correlation be-
tween TCP flow size and throughput, and to verify our TCP
throughput benchmark mechanism, as discussed in Sec-
tion 3. We define a run in Correlation Set and Verification
Set as a procedure conducting a sequence of TCP transfers
with increasing flow sizes between two hosts. For exam-
ple, in Correlation Set, the client first requests 100 KB data,
followed by a 200 KB request, then 400 KB, etc, up to 10
MB; this sequence forms a run. This lets us evaluate our
TCP benchmark mechanism by predicting the transfer time
of larger TCP transfers based on the transfer time of two
smaller TCP flows and then comparing the predicted time
with the actual transfer time of the larger transfers in the
run. To guarantee fair evaluation, runs were repeated ap-
proximately 4,500 times between each pair of nodes, yield-
ing the same number of TCP throughput predictions scat-
tered at different times during our experiments. In total we
have ∼ 270, 000 runs on ∼ 60 paths.

Verification Set was done to further verify the correct-
ness of our proposed TCP benchmark mechanism, and to
strengthen analysis based on Distribution Set and Correla-
tion Set with larger TCP flow sizes. Verification Set was
conducted on twenty PlanetLab nodes, one node on North-
western University campus and one node at ANL. We used
GridFTP and scp in this set because both applications re-

2

quire authentication before transferring effective data. Our
script transfered a series of files ranging from 5 KBytes to 1
GBytes in sequence and recorded each transfer time as the
flow duration.

Online Evaluation Set serves to evaluate our DualPats
real time TCP throughput prediction framework. We ran-
domly choose fifty PlanetLab nodes, and do random pairing
twice, resulting in 50 distinctive paths. We use DualPats to
monitor the 50 paths for a duration of about 10 days. Dur-
ing the experiment we randomly send a file of size 8MB or
40MB or 160MB using scp as a test case to compare with
the prediction result. Online Evaluation Set contains 14000
predictions.

3 Exploiting size / throughput correlation

A surprising finding in recent TCP connection charac-
terization is that TCP flow size and throughput are strongly
correlated. This section explains the phenomenon, provides
new additional explanations for it, explains why it can lead
to inaccurate TCP throughput predictions, and outlines a
new prediction approach.

3.1 Phenomenon

Zhang, et al [41] analyzed the correlations between the
TCP flow characteristics of interest, including flow dura-
tion and throughput, flow duration and size, and flow size
and throughput. They pointed out that these correlations
are fairly consistent across all their traces, and show a
slight negative correlation between duration and through-
put, a slight positive correlation between size and duration,
and a strong correlation between throughput and flow size.
They argue that the strong correlation between flow size and
throughput is the most interesting one and explained it in the
following ways.

Slow start: TCP slow start could cause some correla-
tion between flow size and flow rate [41]. The distribu-
tion of TCP flow sizes follows a power law, which, in part,
tells us that the majority of flows are short. Balakrishnan,
et al [5] showed that 85% of the web-related TCP packets
were transfered during slow start. This implies that most
web-related flows ended in slow start, before TCP had fully
opened its congestion window, leading to throughput much
lower than would be possible with a fully open window.
However, after eliminating the first one second of all the
flows, they found that the strong correlation between flow
size and throughput remained strong.

User effect: The users are estimating the underlying
bandwidth, and thus transferring big files only when the es-
timated bandwidth is correspondingly large [41].

These are two valid reasons, but they may be insufficient.
We claim that most users do not estimate the available band-

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Correlation Coefficient

C
um

ul
at

iv
e

P
er

ce
nt

ag
es

CDF of Correlation Coefficients between Flow Size and Flow Rate

The Simple Program
GridFTP+SCP

Figure 1. CDF of correlation coefficients R be-
tween flow sizes and throughput in experi-
ments Correlation Set and Verification Set.

width before transferring data. Furthermore, that the corre-
lation persists even when initial slow start is removed sug-
gests that there must be some other mechanisms at work.

Let’s consider the correlation between flow size and
throughput in our experiments. Figure 1 gives the cumu-
lative distribution functions (CDFs) of the correlation coef-
ficient (Pearson’s R), where each individual R value is cal-
culated from one run of Correlation Set or Verification Set.
The correlation between flow size and transfer time is large
for the majority of transfers using our simple test program,
and even larger for GridFTP and scp transfers.

3.2 Further explanations

Now we consider additional explanations for the surpris-
ing correlation between flow size and transfer time.

Non-negligible startup overheads: Most applications
have an initial message exchange. For example, GridFTP
and scp require certificate or public key authentication be-
fore starting to send or receive data.

Figure 2 shows the TCP throughput as a function of TCP
flow size, for transfers using GridFTP between Northwest-
ern university and ANL. The dotted line is the asymptotic
TCP throughput. We tried linear, logarithmic, order 2 poly-
nomial, power, and exponential curve fitting, but none of
them fit well.

We next considered the relationship between TCP flow
duration (transfer time) and flow size (file size). Figure 3
shows that this relationship can be well modeled with a sim-
ple linear model with R2 close to 1. The majority of the
data-points missed by the linear model are located at the
very beginning of the curve, which we refer to as the noise
area in the figure. The noise area is due to startup costs and
the residual slow start effect, described below. The linear

3

TCP flow size

0

2000

4000

6000

8000

10000

12000

0 20000 40000 60000 80000 100000

File size (KB)

T
C

P
 t

h
ro

u
g

h
p

u
t

(K
B

/S
ec

)

Figure 2. TCP throughput versus flow size
(file size) with GridFTP. Transfers are be-
tween Northwestern University and Argonne
National Lab. Single TCP flow with TCP buffer
set. We made similar observations on all the
other paths we studied.

y = 9E-05x + 0.7246

R2 = 0.9992

0

0.5

1

1.5

2

2.5

3

3.5

0 5000 10000 15000 20000 25000 30000 35000

File size (KB)

Ti
m

e
(s

ec
)

α
β

γ
γ

γNoise area

Figure 3. Transfer time versus TCP flow size
with GridFTP. Transfers are between North-
western University and Argonne National
Lab. Single TCP flow with TCP buffer set.
We made similar observations on all the other
paths we studied.

model may not hold in the noise area.
A closer look at Figure 3 shows that the total TCP flow

duration or file transfer time can be divided into two parts:
the startup overhead and the effective data transfer time. We
represent this as

T = A × x + B (1)

where T is the TCP flow duration, including both startup
overhead and data transfer time, x is the TCP flow size
or file size, and B is the startup overhead, which includes
authentication time and the residual slow start effect as
described below. 1

A is the steady state asymptotic TCP
throughput in Figure 2.

Given Equation 1, we can easily deduce the expression
for the TCP throughput in Figure 2 as

TP =
x

T
=

x

A × x + B
(2)

where TP is the TCP throughput, and x, A, B are the same
as in Equation 1.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Overhead (second)

C
um

ul
at

iv
e

P
er

ce
nt

ag
es

CDF of Overhead for the Simple TCP Program and (GridFTP+SCP)

The Simple Program
GridFTP+SCP

Figure 4. CDF of B, the startup overhead.
Even for the simple client/server there is
startup overhead likely caused by the resid-
ual slow start effect. The startup overheads
of scp and GridFTP are much larger.

Residual slow start effect: Mathis, et al [26] pointed
out that it takes TCP some time before its throughput
reaches equilibrium. Assuming selective acknowledgments
(SACK), TCP will send roughly 1

p × log2
1

C
√

p packets in
the unstable phase, where p is the loss rate and C is a con-
stant ≈ √

3/2. This number can be significant given a low
loss rate p. This happens because with SACK, slow start
will overshoot and drive up the loss rate or run out of re-
ceiver window. Zhang, et al [42] showed that the mean loss
rate in their traces is between 0.006 and 0.0087. Assuming
the loss rate is 0.006, and each packet is 1.5 KB, roughly
800KB data has to be sent before TCP throughput reaches
equilibrium.

We examined hundreds of Linux machines on the North-
western University campus and on PlanetLab and found that
all of them were using SACK. Therefore, it is likely that
most TCP connections experience this slow start overshoot
effect, and because TCP in slow start doesn’t use bandwidth
well, this residual slow start effect can be treated as another
kind of startup overhead, incorporated in B as above. This
can also explain why in Figure 1 the Rs for the scp and
GridFTP traces are much stronger than that of the simple
program.

To verify that this is the case in general for the simple
applications without other startup overheads, we used the
data collected in Correlation Set. We did least square linear
curve fitting and calculated B for each set of data. Figure 4
shows the CDF for these Bs. The effect of residual slow
start is obvious in the CDF, where we see over 50% sim-
ple TCP transfers has a B value equal or larger than 0.1.
For comparison purpose, we also plot the CDF of B for
applications that require authentication in the same Figure,

4

namely GridFTP and SCP. As the CDF indicates, a typical
B for such applications is much larger than that of the sim-
ple application.

3.3 Why simple TCP benchmarking fails

Now we can explain why current TCP benchmarking ap-
proaches, such as implemented in NWS, have difficulty pre-
dicting the performance of large transfers such as GridFTP
tests [35]:

• The default probe used by NWS is too small. It will
likely end up in the noise area as shown in Figure 3.

• The TCP throughput that the probe measures is only
useful to TCP flows of similar size because of the
strong correlation between throughput and flow size.
Given Equation 2, it is clear that cotangent(α) is the
TCP throughput for the flow size 2000KB,
cotangent(β) is the TCP throughput for the flow size
30000KB and cotangent(γ) is the steady state TCP
throughput. As file size increases α decreases, and
when the file size is approaching infinity, the
throughput will approach cotangent(γ).

• The TCP buffer is not set for NWS probes while the
GridFTP tests were done with adjusted buffer sizes.

• The usage of parallel TCP flows in GridFTP
increases its aggregated throughput.

To verify that the linear model is valid for most Internet
paths, Figure 5 shows the R2 of the linear curve fitting for
the data in Correlation Set and Verification Set. It is clear
the model holds for both our simple client and server, and
applications such as scp and GridFTP that require authenti-
cation.

3.4 A new TCP throughput benchmark mecha-
nism

Based on the above observations, we developed a new
simple TCP benchmark mechanism. Instead of using
probes with the same size, we use two probes with differ-
ent sizes, chosen to be beyond the noise area. We then fit a
line between the two measurements, as shown in Figure 3.
Using Equations 1 and 2, we can then calculate the TCP
throughput for other flow sizes (file sizes).

To verify that the new technique works, we used the trace
data in Correlation Set. We chose a small probe with size
400KB and a bigger probe with size 800KB, and predicted
the throughput of the other TCP transfers in the trace. Fig-
ure 6 shows the CDF of relative prediction error for our re-
sults by flow size. > 80% of the prediction errors are below
20%.

The CDFs suggest that the relative prediction error may
follow the normal distribution, so we used quantile-quantile
plots to test this. In almost all cases, we can fit a straight

0 0.2 0.4 0.6 0.8 1
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

R2

C
um

ul
at

iv
e

P
er

ce
nt

ag
es

 (
in

 lo
g

sc
al

e)

CDF of R2 for a Simple Program and (SCP+GridFTP)

The Simple Program
SCP+GridFTP

Figure 5. CDF of R2 for linear model of Fig-
ure 3. Each R2 is from a independent test.
Both simple client/server and applications
that require authentication show a strong lin-
ear property. Note that the Y axis is in log
scale to show detail. Over 99% of the runs
had R2 > 0.95.

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Relative Prediction Error (%)

C
um

ul
at

iv
e

P
er

ce
nt

ag
es

CDF of Prediction Error of Wide−area TCP Experiment S2

1M
2M
3M
4M
10M

Figure 6. CDF of relative prediction error for
TCP throughput with different flow sizes.

line to these plots with R2 ≈ 1, which tells us that our rela-
tive error is almost always normal. Normality of prediction
errors here is both surprising and extremely useful. In par-
ticular, we can simply estimate the variance of the relative
prediction error as we measure and predict, and then use
this information straightforwardly to create confidence in-
tervals for our predictions. Being able to compute accurate
confidence intervals is vital to using predictions in applica-
tions [11]. Time series based predictors can be applied to
enhance the prediction accuracy, as covered in Section 5.

In practice, we don’t have to send two probes. Instead,
we can send the larger one of the two probes, record its
starting time, the time when as much data as the size of the

5

small probe was sent and full probe’s finishing time. We
call such a probe a dualPacket.

As explained in Section 3.2 and 3.4, we need two probes
with different sizes to determine the steady state TCP
throughput. Inevitably, fluctuations of flow transfer time
happen on the dynamic Internet, and have shown them-
selves in the standard deviation we have just seen. These
fluctuations are the main cause of the estimation error of
steady state TCP throughput. Since flows with larger sizes
actually have less variance in relative terms, estimating
steady state throughput using larger flows will certainly
be more accurate. On the other hand, probes with larger
flows are more expensive. This leads us to the selection of
two probe sizes of 400 KBytes and 800 KBytes as default
probes, which we feel is a reasonable trade-off between es-
timation accuracy and probing cost.

4 Statistical stability of the Internet

Statistical stability or consistency is one of the most im-
portant characteristics of the Internet and is the basis that
makes it possible to predict TCP throughput on the wide
area network. A good understanding of stability will also
help us to make decisions about prediction strategies, such
as the frequency of active probing and optimal time series
predictors.

4.1 Routing stability

Paxson [29] proposed two metrics for route stability,
prevalence and persistency. Prevalence, which is of particu-
lar interest to us here, is the probability of observing a given
route over time. If a route is prevalent, than the observation
of it allows us to predict that it will be used again. Persis-
tency is the frequency of route changes. The two metrics
are not closely correlated. Paxson’s conclusions are that
Internet paths are heavily dominated by a single route, but
that the time periods over which routes persist show wide
variation, ranging from seconds to days. However, 2/3 of
the Internet paths Paxson studied had routes that persisted
for days to weeks. Chinoy found that route changes tend
to concentrate at the edges of the network, not in its “back-
bone” [9]. Routing stability is the basis of other stabilities or
consistency. If the route is changing frequently and quickly,
then no other stabilities will hold.

4.2 Locality of TCP throughput

Balakrishnan, et al analyzed statistical models for the ob-
served end-to-end network performance based on extensive
packet-level traces collected from the primary web site for
the Atlanta Summer Olympic Games in 1996. They con-
cluded that nearby Internet hosts often have almost identical

distributions of observed throughput. Although the size of
the clusters for which the performance is identical varies as
a function of their location on the Internet, cluster sizes in
the range of 2 to 4 hops work well for many regions. They
also found that end-to-end throughput to hosts often varied
by less than a factor of two over timescales on the order of
many tens of minutes, and that the throughput was piece-
wise stationary over timescales of similar magnitude [6].
Myers, et al examined performance from a wide range of
clients to a wide range of servers and found that band-
width to the servers and server rankings from the point of
view of a client were remarkably stable over time [27]. Se-
shan, et al applied these findings in the development of the
Shared Passive Network Performance Discovery (SPAND)
system [32], which collected server performance informa-
tion from the point of view of a pool of clients and used that
history to predict the performance of new requests.

Zhang, et al [42] experimented by sending 1 MB files
every minute between pairs of hosts, and proposed an ef-
fective way to evaluate the temporal locality of end-to-end
TCP throughput of those flows. He looks at the length of
the period where the ratio between the maximum and mini-
mum observed TCP throughput is less than a constant factor
ρ. This is referred to as an Operational Constancy Region
(OCR). Instead of using OCR, we define a Statistically Sta-
ble Region (SSR) as the length of the period where the ratio
between the maximum and minimum estimated steady state
TCP throughput is less than a constant factor ρ. The differ-
ence between OCR and SSR is important because OCR is
only characterizing the throughput for flows with a specific
size, while SSR characterizes the steady state throughput
for all flows with different sizes. We used traces from Cor-
relation Set to characterize the SSR with steady-state TCP
throughput. That is, instead of looking at the TCP through-
put of a specific flow size, we estimated steady-state TCP
throughput of the path using Equation 1.

Figure 7 gives the CDF of length of all SSRs modeled
by steady-state TCP throughput from Correlation Set. Each
curve in the plot corresponds to a particular value of the
constant factor ρ. Under all different values of ρ, some de-
gree of temporal locality is exhibited. As we expected, the
larger ρ is, the longer the SSRs tend to be.

For comparison purposes, we also calculated the CDF of
OCR with data from Distribution Set. The comparison be-
tween ours and Zhang’s results [42] suggests that the tem-
poral locality in our test environment is much weaker. For
instance, Zhang found that ≈ 60% of OCRs are longer than
1 hour when ρ = 2 and > 80% of all OCRs exceed 3 hours
when ρ = 10. In our results, the two corresponding num-
bers drop to 2% and 10% respectively. TCP throughput in
our testbed appears to be less stable. We suspect that this
difference may largely due to the fact that PlanetLab nodes
often become CPU or bandwidth saturated, causing great

6

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (seconds)

C
um

ul
at

iv
e

P
er

ce
nt

ag
es

CDF of Statistical Stable Region Length at Different Factors

1.2
1.5
2
3
5
10

Figure 7. CDF of statistically stable region
(SSR) for steady-state TCP throughput with
different ρ.

fluctuations of TCP throughput. It is challenging to predict
TCP throughput under a highly dynamic environment.

4.3 End-to-end TCP throughput distribution

An important question an application often poses is how
the TCP throughput varies, and, beyond that, whether an
analytical distribution model can be applied to characterize
its distribution. Balakrishnan, et al [6] studied aggregated
TCP throughput distribution across all different flow sizes
between each pair of Internet hosts. Their statistical anal-
ysis suggests that end-to-end TCP throughput can be well
modeled as a log-normal distribution. Zhang, et al verified
this finding in [41].

Since we have already seen earlier that there exists strong
correlation between TCP throughput and flow size, we are
therefore more interested in studying the TCP throughput
distribution of a particular flow size than in getting an aggre-
gated throughput distribution across all different flow sizes.
The data from Distribution Set lets us do this analysis.

Recall that in Distribution Set, for each client/server pair,
we repeated the transfer of each file 3,000 times. We his-
togramed the throughput data for each flow size/path tu-
ple. Almost in every case, the throughput histogram demon-
strates a multimodal distribution. This suggests that it is
probably not feasible to model long time TCP throughput
using simple distributions.

Because the collection of data for each client/server pair
lasted several hours or even longer, we suspect that the mul-
timodal feature may be partially due to the change in net-
work conditions during the measurement period. To ver-
ify this hypothesis, we try to study throughput distribu-
tion using subsets of each dataset. A subset contains much
less data and covers shorter measurement length. In other

words, we hoped to find “subregions” in each dataset in
which the network conditions are relatively stable and the
throughput data can be better modeled unimodally.

It is very hard to predefine an optimal length or data size
for such “subregions” in the throughput data; in fact, the ap-
propriate length may vary from time to time. Therefore, we
believe it is necessary to adaptively change the subregion
length over time as we acquire data (or walk the dataset of-
fline). The purpose is to segment the whole dataset into
multiple subregions (or identify segment boundaries on-
line). For each segment, we fit the data with several ana-
lytical distributions, and evaluate the goodness of fit using
R2.

Our offline distribution fitting algorithm for TCP
throughput has the following steps:

1 Select a trace of TCP throughput (sequence of
measurements for a particular flow size on a
particular Internet path).

2 Initialize the subregion length, and set the start and
end point of the subregion to 1 and 100, respectively.

3 Fit the subregion data with an analytical distribution,
and calculate the value of R2.

4 Increase the subregion length by 100, that is, keep the
start point as from the previous step, but increase the
end point by 100. For this new subregion, fit the data
with the analytical distribution model again, get a
new value of R2. The adjustment granularity can also
be changed.

5 Compare the new R2 with the previous one. If the
new one is larger, repeat step 4, otherwise, we have
found that previous subregion has the optimal length.

6 Log the start point, end point, and value of R2 from
previous subregion. Reset the subregion length to be
100, and set the start point of the subregion to be one
larger than the end point of the previous subregion.

7 Go to step 3 and repeat above procedure, until all data
points in the datasets are examined.

We segmented and model-fitted each path/flow size trace
in Distribution Set using this algorithm. We then consid-
ered the R2 distribution for each of flow size and analytical
distribution. The CDFs of the values of R2 for each flow
size and analytical distribution are shown in Figure 8. It is
clear that for the five distributions we compared, the normal
distribution best fits the TCP throughput data. However,
throughput is nonstationary, so a given normal distribution
holds for only a period of time before it changes to another
one. This nonstationary behavior is remarkably similar to
the “epochal behavior” pattern of load on hosts that we ob-
served in earlier work [10].

7

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R2

C
um

ul
at

iv
e

P
er

ce
nt

ag
es

CDF of R2 for Different Distributions

normal
uniform
pareto
lognormal
exponential

Figure 8. CDF of R2 for five common distri-
butions for TCP throughput characterization
on segmented traces. The size of the file is
10 MBytes. Other flow sizes show similar re-
sults.

5 TCP throughput in real time

Based on our study and previous research, we have de-
veloped and evaluated DualPats, a prototype real time TCP
throughput prediction service for distributed applications.
DualPats actively sends out dualPackets to benchmark a
path. It automatically adjusts its rate to capture the SSR
on the path and therefore to minimize intrusiveness without
losing sampling accuracy. The benchmarking technique is
described in Section 3.

DualPats is different from all the previous available
bandwidth estimation tools such as PathLoad [16]. First,
instead of estimating current available bandwidth, DualPats
predicts TCP throughput in the next short period of time.
Secondly, DualPats monitors the paths and thus can return
a prediction immediately. It takes DualPats less than 1 ms
to give a prediction on a Pentium III machine, while it takes
PathLoad tens of seconds to do one estimation for a path.
DualPats don’t send probes upon a prediction request, in-
stead it monitors the path and sends out dualPackets accord-
ing to the dynamic sampling rate adjustment algorithm as
described below.

5.1 System architecture

DualPats consists of two components, a network sensor
and a TCP throughput predictor. The network sensor sends
out dualPackets at a self-adjusting rate as described in Sec-
tion 5.2. It records the sizes and transfer times of each probe
in each dualPacket. When monitoring N different TCP con-
nections, N series of probe records are maintained.

The TCP throughput predictor interfaces with both the
network sensor and applications. Whenever an application
needs a prediction, it sends a query to the TCP throughput
predictor, and the predictor executes the following:

1 Parse the query from the application and get
parameters including the destination and file size.

2 Fetch the dualPacket data series for the destination
from underlying network sensor. If no series exists, a
probing process for the destination is started.

3 Apply a prediction model, such as moving average or
EWMA, to predict the current transfer times for each
of the two probes in the dualPacket.

4 Fit a linear curve as described in Equation 1 and
calculate the TCP throughput for the given file size
using Equation 2. (Optionally, compute a confidence
interval using normality assumptions).

5 Return the estimated TCP throughput for the transfer
time to the application.

We tested several prediction models for step 3, includ-
ing interval-aware moving average (IAMA), exponential
weighted moving average (EWMA) and simply using the
last value. An IAMA is similar to a moving average ex-
cept that the IAMA computes its average over only previous
probe values with the same sampling interval. IAMA with
window size 20 works best on average in our experiments.
We believe that this is so because during each SSR, the end-
to-end TCP throughput is best modeled with a normal distri-
bution. For a normal distribution with no serial correlation,
the mean is the best predictor possible, and IAMA estimates
this.

5.2 Dynamic sampling rate adjustment algorithm

There are two ways to decrease the overhead caused by
the dualPacket probes: decrease the sampling rate or de-
crease the size of the dualPacket.

As we discussed in Section 4, each Internet path shows
statistical stability in TCP throughput. However, each path
is different in the length of its SSR. Therefore, instead of us-
ing the periodic sampling algorithm used by previous TCP
throughput monitoring frameworks such as NWS [37], we
designed a simple algorithm to dynamically adjust the sam-
pling rate to the path’s SSR. For stable paths with longer
SSR, we send fewer probes, while for unstable paths with
shorter SSR, we adapt to its dynamics by sampling the path
more frequently. The algorithm is:

1 Set an upper bound U and a lower bound L for the
sampling interval. They were set as 20 and 1200
seconds in our tests.

2 Set another two relative changing bounds, B1, B2, in
units of percentage. After sending each dualPacket,
estimate the current steady-state TCP throughput. If
it has changed less than B1, increases the sampling

8

interval by a step of S seconds; if it changes between
B1 and B2, keep the current interval; otherwise
decrease the interval. In Online Evaluation Set, B1,
B2 were set to be 5% and 15%.

3 The interval must be between L and U .

We also want to minimize the size of dualPacket on the
condition that none of them will fall into the noise area as
shown in Figure 3. However, the noise area is different for
each Internet path, as discussed in Section 3. It is a function
of loss rate and underlying bandwidth. Our algorithm for
determining it is:

1 Set a default initial size for the dualPackets. In
Online Evaluation Set, we used 400KB and 800KB.
Also set an upper bound size US for the dualPacket.

2 If M continuous prediction errors are bigger than a
threshold TH , and with the same sign, we increase
the probe size by 100KB each.

3 The size of dualPacket must be ≤ US .

5.3 Evaluation

Our primary metric is the relative error:

err =
PredV alue − RealV alue

RealV alue
(3)

DualPats ran ≈ 14000 predictions on 50 monitored end-to-
end paths during about 10 days. Test cases are randomly
chosen 8MB, 40MB, or 160MB files. Details of the evalu-
ation experiments can be found in the Section 2 discussion
of Online Evaluation Set.

Our detailed results for each path are available else-
where [23]. To summarize them for this paper, we use the
following metrics. Mean error is calculated by averaging all
of the relative errors. For an unbiased predictor, this value
should be close to zero given enough test cases. We can
see that in our evaluation it is quite small in most cases,
and we see an roughly equal proportion of positive and neg-
ative mean errors. The mean abs(err) is the average of
the absolute value of the relative error. We consider it the
most important metric in evaluating the predictions. Mean
stderr is the standard deviation of relative error while mean
abs(stderr) is the standard deviation of the absolute value
of relative error.

DualPats is accurate: Figure 9 shows the CDF of the
mean error and mean abs(err) of our results. Figure 10
shows the CDF of the standard deviation for relative er-
rors. Over 70% of the predictions have mean error within
[-0.1, 0.1], and all of them are within [-0.21, 0.22]. About
90% of the predictions have mean stderr smaller than 0.2.
About 30% of the predictions have mean abs(err) within
0.1, while over 90% of the predictions has mean abs(err)
below 0.2, and about 95% of them are below 0.25. Over

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Relative error

P
[m

ea
n

er
r

<
X

]

mean error

mean abs(error)

Figure 9. CDF of relative errors.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

Standard deviation of relative error

P
[m

ea
n

ab
s

er
ro

r
<

X
]

mean stderr

mean abs(stderr)

Figure 10. CDF of standard deviation of rela-
tive errors.

90% of the predictions have mean abs(stderr) smaller than
0.35.

We studied the correlation among the prediction errors
and several known path properties. The results are shown
in Figure 11. We define (|R| > 0.3) as being weakly cor-
related, (0.3 ≤ |R| ≤ 0.8) being medium correlated, and
(|R| > 0.8) being strongly correlated. Clearly, the mean er-
ror is not related to any others, which further suggests that
the predictions given by DualPats are unbiased. However,
if the path is very dynamic it is hard to predict. Figure 11
shows that R between the mean absolute error and the sam-
pling interval length (and, indirectly, the SSR) is negatively
and very weakly correlated. This implies that our algorithm
captured the path dynamics and effectively adjusted to its
changes. The mean interval and mean standard deviation of
error show the strongest correlation in Figure 11. This is be-
cause both longer mean interval and smaller mean standard
deviation of error imply a stable path. Also, we can see that
number of hops is weakly correlated with mean RTT.

Recall from Section 1 that Sudharshan, et al [36, 35]
showed that NWS was predicting less than 1/10 of the ac-
tual TCP throughput achieved by GridFTP with large file
transfers. Our evaluations show that DualPats does an ef-
fective job of predicting TCP throughput for large transfers.

9

Router Hops Mean RTT Mean Interval

Mean abs(err) 0.24 -0.024 -0.36
Mean abs(stderr) 0.19 -0.018 -0.28
Mean err 0.10 -0.081 -0.20
Mean stderr 0.30 -0.031 -0.44
Router Hops 1.00 0.34 -0.27
Mean RTT 0.34 1.00 -0.25
Mean Interval -0.27 -0.25 1.00

Figure 11. Correlation coefficient R among
prediction error and path properties.

Also recall that log-based prediction techniques [34, 35]
work only for the host pairs that have recent data exchange
history, and the data to be sent is of similar sizes as in the
log. Our conclusion is that DualPats achieves comparable
or even better performance without such constraints.

Our evaluation is conservative: Jin, et al showed
that end-system capability can have significant effects on
the network bandwidth estimation algorithms [18]. They
showed that resolution of the timer, the time to perform a
system call, the interrupt delay and the system I/O band-
width all can affect network bandwidth estimation. They
compared packet pair dispersion against packet train based
algorithm and concluded that packet train based algorithms
are less sensitive to the resolution of the system timer and
less affected by I/O interrupt delays. This implies that high
system load has negative effects on bandwidth estimation
algorithms.

We ran the experiments of Online Evaluation Set on
PlanetLab, which is typically heavy loaded. Using data
available from the CoDeeN project web site [1], we found
that CPU load averages were very high on the machines we
used. 50% of the machines had Unix load averages that
exceeded 5.0. Recall that in Section 4 we compared our
measured OCR with that shown by Zhang, et al [42], and
found that TCP throughput on PlanetLab is more dynamic
than Zhang found. This suggests that our prediction would
probably do better in a more typical, lightly loaded environ-
ment, and that DualPats is robust in the face of high load
conditions. We speculate that the robustness of DualPats is
related to the TCP benchmarking approach being used: we
are measuring the application-to-application transfer time,
and thus our prediction must necessarily incorporate the
end-system behavior as well.

DualPats overhead is low: The overhead of Dual-
Pats mainly comes from the dualPackets sent. In our cur-
rent implementation, we use the default 800KB probe sent
at the rate controlled by our dynamic sampling rate ad-
justment algorithm resulting in an overhead on the net-
work of 800KB / (mean Interval). In a highly dynamic
testbed like PlanetLab, close to 30% of the mean inter-

vals achieved by DualPats are longer than 500 seconds
(800KB/500Sec=1.6KB/Sec), close to 50% are longer than
180 seconds (800KB/180Sec=4.4KB/Sec), and about 90%
are longer than 30 seconds (800KB/30Sec=26.7KB/Sec).
The interval is bounded by our protocol to limit the max-
imum overhead on the network.

As DualPats is designed mainly for today’s high speed
networks, we believe the overhead of DualPats is reason-
ably small. For less dynamic paths, the overhead of Dual-
Pats will be further reduced because the dynamic sampling
rate adjustment algorithm will automatically increase the
sampling interval. In contrast, Strauss, et al [33] reported
that Pathload generates between 2.5 and 10 MB of probe
traffic per measurement, which is much larger than that of
DualPats. The amount of data sent by DualPats is compara-
ble or smaller than current available bandwidth estimators.

6 Conclusions and future work

We have characterized the behavior of TCP throughput
in the wide area environment, providing additional expla-
nations for the correlation of throughput and flow size and
demonstrating how this correlation causes erroneous pre-
dictions to be made when using simple TCP benchmark-
ing to characterize a path. In response, we proposed and
evaluated a new benchmarking approach, dualPacket, from
which TCP throughput for different flow sizes can be de-
rived. We described and evaluated the performance of a new
TCP throughput monitoring and prediction framework, Du-
alPats, and implemented this approach. We have recently
extended our work to support throughput prediction for par-
allel TCP [24].

Like all benchmarking-based systems, our approach has
scalability limits. We have addressed this to some extent
with our dynamic sample rate adjustment algorithm. How-
ever, we are also considering combining our techniques
with passive monitoring as in Wren [40], and hierarchical
decomposition as in Remos [22] and NWS Clique [38]. Our
evaluation of DualPats was in a conservative, heavily loaded
environment, but its performance and robustness in the next
generation high speed Internet are yet to be explored. An
implementation of DualPats will be made available from
http://plab.cs.northwestern.edu/Clairvoyance.

References

[1] http://codeen.cs.princeton.edu.
[2] http://www.planet-lab.org.
[3] W. Allcock, J. Bester, J. Bresnahan, A. Cervenak, L. Lim-

ing, and S. Tuecke. GridFTP: Protocol extensions to ftp for
the grid. Technical report, Argonne National Laboratory,
August 2001.

[4] E. Altman, K. Avrachenkov, and C. Barakat. A stochas-
tic model of TCP/IP with stationary random. In ACM SIG-
COMM, pages 231–242, 2000.

10

[5] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, M. Stemm,
and R. H. Katz. TCP behavior of a busy internet server:
Analysis and improvements. In INFOCOM (1), pages 252–
262, 1998.

[6] H. Balakrishnan, S. Seshan, M. Stemm, and R. H. Katz. An-
alyzing Stability in Wide-Area Network Performance. In
ACM SIGMETRICS, June 1997.

[7] J. Bolliger, T. Gross, and U. Hengartner. Bandwidth mod-
eling for network-aware applications. In INFOCOM (3),
pages 1300–1309, 1999.

[8] R. Carter and M. Crovella. Measuring bottleneck link
speed in packet-switched networks. Performance Evalua-
tion, (28):297–318, 1996.

[9] B. Chinoy. Dynamics of internet routing information. In
SIGCOMM, pages 45–52, 1993.

[10] P. A. Dinda. The statistical properties of host load. Scientific
Programming, 7(3,4), 1999. A version of this paper is also
available as CMU Technical Report CMU-CS-TR-98-175.
A much earlier version appears in LCR ’98 and as CMU-
CS-TR-98-143.

[11] P. A. Dinda. Online prediction of the running time of tasks.
Cluster Computing, 5(3), 2002. Earlier version in HPDC
2001, summary in SIGMETRICS 2001.

[12] C. Dovrolis, P. Ramanathan, and D. Moore. What do packet
dispersion techniques measure? In INFOCOM, pages 905–
914, 2001.

[13] A. B. Downey. Using pathchar to estimate internet link char-
acteristics. In Measurement and Modeling of Computer Sys-
tems, pages 222–223, 1999.

[14] M. Goyal, R. Guerin, and R. Rajan. Predicting tcp through-
put from non-invasive network sampling. In IEEE INFO-
COM, 2002.

[15] N. Hu and P. Steenkiste. Evaluation and characterization of
available bandwidth probing techniques. IEEE JSAC Spe-
cial Issue in Internet and WWW Measurement, Mapping,
and Modeling, 21(6), August 2003.

[16] M. Jain and C. Dovrolis. End-to-end available bandwidth:
Measurement methodolody, dynamics, and relation with tcp
throughput. In ACM SIGCOMM, 2002.

[17] G. Jin and B. Tierney. Netest: A tool to measure maximum
burst size, available bandwidth and achievable through-
put. In International Conference on Information Technol-
ogy, 2003.

[18] G. Jin and B. L. Tierney. System capability effects on algo-
rithms for network bandwidth measurement. In ACM SIG-
COMM conference on Internet measurement, 2003.

[19] G. Jin, G. Yang, B. Crowley, and D. Agarwal. Network char-
acterization service (ncs). In 10th IEEE Symposium on High
Performance Distributed Computing, Aug. 2001., 2001.

[20] S. Keshav. A control-theoretic approach to flow control.
Proceedings of the conference on Communications architec-
ture and protocols, pages 3–15, 1993.

[21] K. Lai and M. Baker. Nettimer: A tool for measuring bot-
tleneck link bandwidth. In USENIX Symposium on Internet
Technologies and Systems, pages 123–134, 2001.

[22] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A resource monitoring sys-
tem for network-aware applications. In Proceedings of the
7th IEEE International Symposium on High Performance
Distributed Computing (HPDC), pages 189–196. IEEE, July
1998.

[23] D. Lu, Y. Qiao, P. Dinda, and F. Bustamante. Characteriz-
ing and predicting tcp throughput on the wide area network.
Technical Report NWU-CS-04-34, Northwestern Univer-
sity, Computer Science Department, April 2004.

[24] D. Lu, Y. Qiao, P. Dinda, and F. Bustamante. Modeling and
taming parallel tcp on the wide area network. In Proceed-
ings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 05), April 2005.

[25] M. Mathis and M. Allman. A framework for defining em-
pirical bulk transfer capacity metrics, rfc3148, July 2001.

[26] M. Mathis, J. Semke, and J. Mahdavi. The macroscopic be-
havior of the tcp congestionavoidance algorithm. Computer
Communication Review, 27(3), 1997.

[27] A. Myers, P. A. Dinda, and H. Zhang. Performance charac-
teristics of mirror servers on the internet. In INFOCOM (1),
pages 304–312, 1999.

[28] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
tcp throughput: A simple model and its empirical validation.
In ACM SIGCOMM, 1998.

[29] V. Paxson. End-to-end routing behavior in the Inter-
net. IEEE/ACM Transactions on Networking, 5(5):601–615,
1997.

[30] L. Qiu, Y. Zhang, and S. Keshav. On individual and aggre-
gate TCP performance. In ICNP, pages 203–212, 1999.

[31] V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, B. Hen-
dricks, and R. Baraniuk. Multifractal cross-traffic estima-
tion, 2000.

[32] S. Seshan, M. Stemm, and R. H. Katz. SPAND: Shared pas-
sive network performance discovery. In USENIX Sympo-
sium on Internet Technologies and Systems, 1997.

[33] J. Strauss, D. Katabi, and F. Kaashoek. A measurement
study of available bandwidth estimation tools. In Internet
Measurement Conference, 2003.

[34] M. Swany and R. Wolski. Multivariate resource perfor-
mance forecasting in the network weather service. In
ACM/IEEE conference on Supercomputing, 2002.

[35] S. Vazhkudai and J. Schopf. Predicting sporadic grid data
transfers. In 12th IEEE International Symposium on High
Performance Distributed Computing (HPDC-12), 2002.

[36] S. Vazhkudai, J. Schopf, and I. Foster. Predicting the perfor-
mance of wide area data transfers. In The 16th Int’l Paral-
lel and Distributed Processing Symposium (IPDPS 2002).,
2002.

[37] R. Wolski. Dynamically forecasting network performance
using the network weather service. Cluster Computing,
1(1):119–132, 1998.

[38] R. Wolski, N. Spring, and J. Hayes. The network weather
service: A distributed resource performance forecasting ser-
vice for metacomputing. Journal of Future Generation
Computing Systems, 15(5-6):757–768, 1999.

[39] T. Ylonen. SSH — secure login connections over the inter-
net. In Proceedings of the 6th USENIX Security Symposium,
pages 37–42, 1996.

[40] M. Zangrilli and B. B. Lowekamp. Comparing passive
network monitoring of grid application traffic with active
probes. In Fourth International Workshop on Grid Com-
puting, 2003.

[41] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the
Characteristics and Origins of Internet flow rates. In ACM
SIGCOMM, 2002.

[42] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the
Constancy of Internet path properties. In ACM SIGCOMM
Internet Measurement Workshop, 2001.

11

