
Prospects for Functional Address Translation
Conor Hetland⇤

Kyle Hale‡

⇤Northwestern University

Georgios Tziantzioulis†
Nikos Hardavellas⇤

†Princeton University

Brian Suchy⇤
Peter Dinda⇤

‡Illinois Institute of Technology

Abstract—Address translation fundamentally embodies a

translation function that maps from virtual to physical addresses.

In current systems, the translation function is encoded by

the kernel in an in-memory radix tree structure (the page

table hierarchy) which is then interpreted by the hardware

(the pagewalker, pagewalk-caches, and TLBs). We consider

implementing the translation function itself as reconfigurable

hardware—does this make any sense? To study this question, we

collected numerous in-situ Linux page tables for a wide range

of workloads, including those from HPC, to serve as example

translation functions. We then prototyped several potential mech-

anisms to implement the translation function, including inverted

page tables with function-specific perfect hashing, translation

functions directly implemented using Espresso-minimized PLAs,

translation functions genetically-evolved in a language suitable

for FPGA-like synthesis, and translation functions based on

recovered/manufactured region (segment/mmap) lookup using

multiplexor trees. Each mechanism was then evaluated using the

Linux page tables, primarily for space and lookup speed. We

report our findings and try to address the question.

Index Terms—address translation, paging, segmentation, oper-

ating systems, high performance computing

I. INTRODUCTION

Address translation was once considered a solved problem,
and there was a general agreement in the community that
paging was the solution. Now, however, the address translation
problem is being revisited extensively, prompted by numerous
changes. First, machines are dramatically scaling in terms
of physical memory and core count. Second, workloads are
shifting from the historic norms on which traditional paging
designs were based. Third, power and energy have become
first-order concerns, and the hardware that supports traditional
paging is not cheap in these regards. Finally, innovation in op-
erating systems, runtimes, and compilers is making it possible
to revisit address translation from the software perspective.

Different from related work (Section IX), our own interest
in this problem is at the intersection of high performance and
parallel computing, operating systems, and hardware/software
codesign. We previously developed the hybrid run-time (HRT)
model, in which we fuse the parallel application, language run-
time, and kernel into a single entity [31]. It is salient that in
this model there is only a single address space. In evaluating
this model, we developed a kernel framework, Nautilus [30],
that implements the address space using identity-mapped
paging with the maximum possible page size. This allows

This project is made possible by support from the United States National Sci-
ence Foundation through grants CCF-1533560, CNS-1763743, CNS-1763612,
and by equipment support from Intel Corporation.

for considerable speedups over traditionally paged execution
because very few translation lookaside buffer (TLB) misses
can possibly occur. In effect, this is the closest thing to turning
paging off altogether (which is not currently possible on our
target platform, x64).

Of course, discarding address translation entirely poses its
own issues. It is not feasible in general purpose computing,
and only partially feasible in parallel computing (our above
noted work and [32] makes that argument). However, turning
paging off lies at one end of a spectrum, with current paging
/ address translation mechanisms (summarized in Section II)
at the other end. Alternative address translation approaches
lie in between. Our motivating question is: What is the
appropriate alternative address translation mechanism for high
performance and parallel computing?

Here we consider one alternative, functional address trans-
lation (FAT). The key idea in FAT, on which Section II
elaborates, is to treat the mapping between virtual and physical
addresses as a function, and to then encode this function
directly. This is substantially different from current systems, in
which the function operates at the granularity of pages, and is
encoded in a page table hierarchy, a radix-tree search structure
that is aggressively cached by TLBs and other hardware. As
far as we are aware, functional address translation has not
previously been explored, with DIY address translation [1]
and region-based translation [7], [29] being closest.

Given hardware innovation that is placing reconfigurable
logic ever closer to the CPU core, there is reason to believe
that functional address translation could be integrated into
a processor in different ways. A very high speed functional
address translation unit could augment the TLB or pagewalker
in current systems that use physically tagged caches. Future
systems using virtually tagged caches [8], may tolerate a
slower functional address translation unit.

What are the prospects for functional address translation?
To address this question, we developed several different FAT
approaches that differ in how the function is encoded. We
evaluated these approaches in the following ways:

1 How long does it take to construct the functional
representation? (Generation time.)

2 How much space (hardware resources) does the the
functional representation require? (Space complexity.)

3 How long does a lookup take? (Lookup time.)
Our approach to these questions is empirical. We collected a
wide range of page table snapshots on current systems running

core

Cache	
Hierarchy

TLB

VAddr

PAddr
VAddr

functional
mappings

All	
mappings

Address	space

Pa
ge
	ta
bl
e	

re
pr
es
en
ta
tio

n

Pagewalker

page	tablesDRAM	

(hit)

Fig. 1. Traditional address translation.

general purpose and HPC/parallel applications. We attempt to
encode each of these snapshots as a function, and directly
measure the results.

An additional measure of less importance to us is the
cost of an incremental update, although we do consider it.
Incremental update is of course something that the traditional
address translation approach excels at and FAT approaches
likely will not. Recall that we are specifically interested in
high performance and parallel workloads. These tend to have
quite stable mappings over time, hence incremental updates are
less needed. If memory pressure from other processes forces
the kernel to change mappings, that memory pressure is likely
to wreak havoc on performance anyway. In other words, a
parallel application needs to have enough memory, and when
this is the case, incremental updates are rare.

Our contributions are as follows:
• We introduce the concept of functional address translation

(FAT) and define four models in which it could be
integrated into current and future systems.

• We describe four FAT approaches (Perfect Hashing,
Espresso-minimized PLAs, Functional Language/Genetic
Programming, and Multiplexor Trees).

• We empirically evaluate these approaches by attempting
to use them to represent a wide range of page tables
captured from existing systems running general and
HPC/parallel workloads. Our evaluation focuses on
construction cost, space requirements, and lookup speed.

• We identify which FAT approach(es) are most suitable for
each of the integration models.

II. ADDRESS TRANSLATION FUNCTIONS

Figure 1 illustrates how address translation via paging op-
erates on most current processors. Our focus is on Intel/AMD
x86 processors, so when we give specifics, it is with regard to
these processors, in particular when operating in 64-bit mode
(i.e., the common “x64” or “x86 64”).

Every memory reference, including an instruction fetch, has
its virtual address (VAddr) translated to a physical address
(PAddr) that is ultimately the address the memory system
uses. Virtualization adds complexity to this address translation

process, but is essentially orthogonal to the idea this paper
explores.1 On x64 and other processors, the VAddr is also
typically used to immediately begin the data lookup process
in the highest level(s) of the cache hierarchy, but before any
data is returned, the PAddr resulting from translation is used
to determine whether the data found actually belongs to the
current address space. Typically, the L1 cache is virtually
indexed, but physically tagged. This optimization sets the stage
for different ways to potentially integrate functional address
translation, which we will describe shortly.

In a paging system, address translation happens at page
granularity, so instead of translating VAddr!PAddr, only
the bits of the VAddr that contain the virtual page number
(VPN) are translated to (and replaced by) bits that contain the
physical page number (PPN): VPN!PPN. Strictly speaking,
the translation is VPN!PTE, where the PTE (page table
entry) contains both the PPN and the access permissions and
other metadata about the VPN and PPN. In this paper, we
focus on VPN!PPN.

VPN!PPN is a function whose domain is all currently
occupied virtual pages in the current virtual address space,
and whose range is all occupied physical pages in the physical
address space. This function is determined by the operating
system kernel, and its contents may change over time. In
current systems the representation of the function is as radix
trees that are stored in physical memory. For x64 in particular,
this arrangement is a 4-level hierarchy with each level corre-
sponding to 9 bits of the virtual address. The hierarchy allows
short-circuiting during traversal to create composite pages (a
page can consist of a single base page (4KB in size), 512 base
pages (a “large page”), 5122 base pages (a “huge page”), and
(eventually) 5123 base pages. Intel and AMD do not currently
use the entire 64 bit virtual address space, resulting in an
apparent mismatch (9 + 9 + 9 + 9 + 12 6= 64), but there is a
model for expanding it by adding more levels over time [37].

There are two central actors in address translation: the
translation lookaside buffer (TLB) and the pagewalker.2 The
TLB caches translations that have been read by traversing
the in-memory page tables, and its extremely high hit rate
is essential to providing modern address translation with
little to no extra performance overhead compared to using
physical addressing. When the TLB misses, it invokes the
pagewalker, which traverses the in-memory page tables using
physical addresses until it finds the relevant PTE and places
the mapping into the TLB.

TLBs require substantial chip area, energy, and power in
order to achieve their necessary extremely low latency [8],
[24], [25], [43]. Furthermore, a range of important workloads
have been found to have high TLB miss rates, which has
spawned a range of research on alternative address translation
approaches, which we elaborate on in Section IX. While

1Virtualized address translation (shadow and nested paging) could also
leverage the idea. See our prior work [2], [35] for more information. The
first of these papers introduces inverted page tables for this purposes, and
mentions, but does not evaluate the use of perfect hashing in this context.

2We include here other elements such as the partial pagewalk caches.

core

Cache	
Hierarchy

TLB

VAddr

PAddr
VAddr

page	
tablesDRAM	

(hit)

functional
mappings

traditional
mappings

Address	space

Co
m
pa
ct
	fu

nc
tio

n
re
pr
es
en
ta
tio

ns
FAT	region?

FAT

Optional	
FAT	State

Pagewalker

core Cache	
Hierarchy

TLB

VAddr

Data
R/W

PAddr

page	
tablesDRAM	

(hit)

functional
mappings

traditional
mappings

Address	space

Co
m
pa
ct
	fu

nc
tio

n
re
pr
es
en
ta
tio

ns

FAT	region?

FAT

Optional	
FAT	State

Pagewalker

(a) Core-Pagewalker (c) Edge-Pagewalker

functional
mappings

traditional
mappings

core

Cache	
Hierarchy

VAddr

FAT
PAddr TLB

VAddr

Address	space

Co
m
pa
ct
	fu

nc
tio

n
re
pr
es
en
ta
tio

ns

PAddr

Pagewalker

page
tablesDRAM	

(hit)

core Cache	
Hierarchy

TLB

VAddr

page	
tablesDRAM	

(hit)

functional
mappings

traditional
mappings

Address	space

Co
m
pa
ct
	fu

nc
tio

n
re
pr
es
en
ta
tio

ns

FAT	region? FAT

Pagewalker

FAT	region?

Data
R/W

PAddr

Data
R/W
PAddr

(b) Core-TLB (d) Edge-TLB
Fig. 2. Possibly models for incorporating functional address translation (FAT).

pagewalkers have more relaxed latency requirements, their
speed is critical for properly handling such workloads that
do not have good enough spatial and temporal locality and
thus have high TLB miss rates. Our work is in particular
driven by the address translation demands of parallel and high-
performance applications (which display these characteristics).

Since VPN!PPN is a function, a natural question is
whether a representation of the function other than via radix
trees would lead to faster, smaller, or less power-hungry
address translation. The bulk of this paper address this question
by considering other representations, particularly those that
would be suitable for reconfigurable hardware of some form
in the processor. Imagine that we can replace some or all of
the address translation ultimately encoded via the page tables
with a function that we load into the hardware, the functional
address translator (FAT). What form should the FAT take?

This question depends on where the FAT is introduced.
We think of the FAT as augmenting the traditional address
translation path (which could be shrunk as more and more
translation is offloaded to the FAT). The traditional path’s TLB
and pagewalker remain for use with legacy OS kernels and for
FAT-aware kernels to use for translations that do not conform
well with the particular scheme implemented by the FAT. As
with various related works, we assign dynamically selectable
chunks of the virtual address space to be translated by the FAT
(the FAT regions), while any address that is not in a FAT region

is translated by the traditional path. The FAT regions might
correspond to special mmap regions on Unix-like kernels.

Figure 2 illustrates four possible models by which to intro-
duce the FAT. We analyze our FAT representations with respect
to these models. In all the models, the kernel is responsible for
loading the FAT with the appropriate function for the current
address space, as well as modifying or reloading the function
as it changes the mapping for any FAT region. The left column
of the figure represents models that do not fundamentally
change the relationship of translation with the cache hierarchy.
In Core-Pagewalker (Figure 2(a)), the FAT is an alternative
to the pagewalker and is invoked on a TLB miss in a FAT
region. In this model, the FAT may have optional state stored
in physical memory and it must operate at pagewalker latencies
or faster. In Core-TLB (Figure 2(b)), the most aggressive of
our models, the FAT instead forms an alternative to the TLB.
Virtual addresses in a FAT region are routed to the FAT instead
of to the TLB. Here, all state must reside in the FAT, and the
FAT must operate at TLB latencies or faster.

The right column of Figure 2 presents models in which
we change the relationship of address translation and caching.
Here, we assume a virtually indexed and virtually tagged cache
hierarchy.3 As a consequence the TLB (and page walker)
can be moved to the “lower edge” of the cache hierarchy. A
translation only occurs when a line is brought into the cache
hierarchy from DRAM, instead of on every memory reference.
As a consequence, the TLB (and pagewalker) have much less
stringent latency requirements and also have a much lower
throughput because each translation is amortized over the
lifetime of the cache line in the cache hierarchy. In the Edge-
Pagewalker model (Figure 2(c)), the FAT is an alternative to
the pagewalker that is invoked for any FAT region. In the Edge-
TLB model (Figure 2(d)), the FAT becomes an alternative to
the TLB.

Non-processor models: Address translation occurs out-
side of the processor in modern machines. For example, the
IOMMU allows address translation to be applied to I/O device
DMA. Current IOMMUs use paging with similar or identical
page tables as described above. Paging in IOMMUs could be
augmented or even replaced with FAT.

Another example is Intel’s HARP platform, which inte-
grates a processor and FPGA within the same socket [16],
or package [52]. HARP provides fast memory system-based
communication, with coherence, between the processor and
FPGA. The programming environment provides shim layers
of logic for the FPGA side that augment this basic coherent
memory model. One layer provides the ability for the FPGA
side to use virtual addresses, thus allowing the developer’s
FPGA hardware (the application functional unit (AFU)) to
operate within the same address space as the process that it
is augmenting. The current implementation of this shim layer
is as a TLB with a pagewalker, similar to that of Figure 1.
Given that the FPGA is completely malleable hardware, this
shim could readily incorporate an FAT.

3The issues raised for shared pages and other corner cases are ignored here.

III. PAGE TABLE SNAPSHOTS

To assess various approaches to address translation, we
collected snapshots of Linux page tables from a range of
environments. Our trace data is summarized in Figure 3. The
snapshots were collected using a user-level tool described
elsewhere [22]. That paper also describes the first two datasets
in more detail.

The Murphy dataset was collected on a Dell R410 server
equipped with 128 GB of memory. It runs Red Hat 6.7 (stock
Red Hat-provided 2.6.32 kernel) and Oracle 11g Enterprise
11.2, as well as Apache and other tools needed to build Oracle-
based web applications. During the time of the study it was
being used to teach a databases course in which 50 students
were simultaneously developing applications based on running
analysis queries on FEC political contribution data. Over a
period of 19 days, at 15 minute intervals, we collected the
page table of every process on the machine

The Hanlon dataset was collected on a Dell T620 server
equipped with 128 GB of memory, and NVIDIA K20 and
Intel Phi co-processors. It runs Red Hat 6.7 (stock Red Hat-
provided 2.6.32 kernel) and the toolchains needed to support
the coprocessors. During the study, it was extensively used
in an introductory computer systems course by about 150
students. Over a period of 19 days, at 15 minute intervals,
we collected the page table of every process on the machine

Our remaining datasets were collected on a Dell T620 server
with 32 GB of RAM, that ran Red Hat 6.5 (stock Red Hat-
provided 2.6.32 kernel). These datasets contain page tables
from high performance computing and parallel computing
benchmark applications and suites.

The Mantevo dataset captures the Mantevo benchmark
suite [6], [33], which is a collection of “miniapps” that are
used by Sandia National Labs, other DOE sites, and the U.S.
Exascale Computing Project. A miniapp is an application that
has been shrunk to its essential elements in order to make
it easier to bring up on a new platform for evaluation, as
well as to support hardware/software codesign. We snapshotted
each miniapp in mid-run, when its page table had grown to
have the most active PTEs. The specific miniapps we mea-
sured were: CloverLeaf (hydrodynamics in 2D), CloverLeaf3D
(hydrodynamics in 3D), CoMD (molecular dynamics), HPCG
(conjugate gradient), MiniAero (computational fluid dynam-
ics), MiniAMR (adaptive mesh refinement), MiniFE (finite
element methods), MiniGhost (3D stencil), MiniMD (molecu-
lar dynamics), MiniSMAC2D (turbulent fluid flow), MiniXyce
(analog circuit simulation), Pathfinder (graph search), and
TeaLeaf (heat conduction).

The NAS dataset captures the NAS 3.3.1 benchmarks in
their OpenMP implementation [41]. The largest problem class
that would fit in physical memory was used in each case
(i.e., class D, except DC which used class B). Page table
snapshots were taken at four points during execution at a
10 seconds interval. The specific benchmarks used were: BT
(block tridiagonal solver), CG (conjugate gradient), DC (data
cube), EP (embarrassingly parallel), FT (Fourier transform),

IS (integer sort), LU (lower-upper Gauss-Seidel solver), MG
(multi-grid method), SP (scalar pentadiagonal solver), and UA
(unstructured adaptive mesh).

The PARSEC dataset captures the PARSEC 3.0 bench-
marks [14] in their P-Threads implementation. The largest
problem class (native) was used in each case. Page table
snapshots were taken at 4-14 points during execution at a
10 seconds interval. The specific benchmarks used were:
blackscholes, bodytrack, canneal, facesim, ferret, fluidanimate,
streamcluster, swaptions, and vips.

The Legion dataset captures a version of the HPCG bench-
mark [23], [34] ported for the Legion run-time system [9],
[57]. A central concept in Legion is the logical region,
an abstraction of multi-dimensional data that decouples the
logical structure of the data from its physical layout. This
allows the runtime to manage access and layout even with
heterogeneous hardware. In this environment, allocations and
page-mappings might therefore be substantially different from
those seen with run-times without this focus. As we described
in the introduction, HPCG on Legion is one instance where
substantial speedup is possible in our Nautilus kernel because
the identity-mapped address translation that is used results in
very few TLB misses. We take page table snapshots during
the run of HPCG at one second intervals.

Finally, the Synthetic dataset contains page tables con-
structed that represent an identity mapping (PPN = VPN),
offset mapping ((PPN = VPN + k), and segment mapping
(a sequence of offset mappings). Identity and offset mappings
are two modes of operation of the Nautilus kernel, while
segment mapping is what would be achieved if the mmap
regions (virtually contiguous regions) in a Unix-style kernel
were mapped to physically contiguous regions.

IV. PERFECT HASHING

The perfect hashing approach to functional address trans-
lation involves building a function that makes the search of
an inverted page table fast in all cases. Recall that in the
traditional page table model, which we will now call the
forward page table model, there is a page table entry for
each VPN, and that entry contains the PPN. In contrast, in
the inverted page table model, the page table contains a page
table entry for each PPN, and that entry contains the VPN.
A key advantage to inverted page tables is that number of
page table entries scales with the amount of physical memory.
This is quite unlike traditional forward page tables, where the
number of page table entries scales with the size of the virtual
address space.4

4Inverted page tables have a long history and we omit a number of details
here. In our analysis, we consider a single inverted page table versus a single
forward page table. It is important to note that the inverted page table entry
typically also contains an address space (process) identifier. This allows a
single inverted page table to be shared by all processes on the machine. In
contrast, with traditional forward page tables, a separate page table (hierarchy)
is needed for each process. This means that as the number of virtual address
spaces grows, the space cost grows as well, instead of remaining fixed to the
amount of physical memory as with inverted page tables. It also makes page
sharing across virtual address spaces much easier.

Dataset Page Table Count Description
Murphy 771, 009 Databases teaching server; all processes at 15 min intervals over 19 days
Hanlon 489, 569 Computer systems teaching server; all processes at 15 min intervals over 19 days
Mantevo 13 Mid-run snapshots of each of 13 miniapps
NAS 40 4 snapshots during execution of each of 10 benchmarks
PARSEC 70 4-14 snapshots during execution of each of 7 benchmarks
Legion 221 HPCG port to Legion run-time, 1 second intervals over run
Synthetic 3 Constructed identity, offset, and multiple segment page tables

Fig. 3. Summary of page table snapshots used in our evaluations.

Fig. 4. Functional address translation via perfect hashing.

An important disadvantage of inverted page tables is search.
Just as with traditional forward page tables, we must search
by VPN. This search is facilitated by a hardware hash function
that, given the VPN, finds a good starting point in the inverted
page table for the search. In other words, an inverted page
table works much like a chaining hash table. When there is no
collision, the lookup of the page table entry takes a single step.
On the other hand, if there is a collision, a linear search could
still ensue, which in the worst case could involve traversing
the entire inverted page table.

In the perfect hashing approach, we replace the general pur-
pose hash function with one that is specific to the VPN!PPN
mapping we are encoding in the inverted page table. This
bespoke hash function is determined by using a perfect hash
function construction algorithm (see below), and then loaded
into the hardware. The generated perfect hash function has no
collisions, and thus the search of the inverted page table is
guaranteed to always involve a single step. For each lookup,
the VPN is hashed, and the result is the index within the
inverted page table at which the corresponding entry must be.
Figure 4 illustrates this design.

A. Generating perfect hashes

Perfect hashing [28] is a diverse set of algorithmic tech-
niques for producing constant time hash functions with no
collisions. These techniques require that the entire set of keys

(in our case, VPNs) must be known.5 Combined with a table,
the generated perfect hash function guarantees ⇥(1) lookup
in the worst case. One form of perfect hashing, minimum
perfect hashing, also guarantees that the space complexity
of the generated hash function is minimized, an important
consideration for hardware implementations. Theoretically, the
space complexity of perfect hashes is linear to the number of
keys.

We consider two techniques. The first is the algorithm of
Czech, Havas, and Majewski [19], as implemented as the
default algorithm (denoted “CHM”) of the C Minimum Perfect
Hashing (CMPH) library [10], [20]. CMPH is designed to
make building minimum perfect hash functions over large
keyspaces, for example in a database indexing context, very
fast. CHM implements minimum perfect hashing with result-
ing hash functions having a state size of 8.36 bits per key
(or VPN in our case). CMPH’s generated functions follow a
common template that references tables whose contents are
determined by the generation algorithm. A hardware imple-
mentation then could combine a fixed hardware component
and the ability for it to access the custom tables. Generating
minimum perfect hashes (populating the tables) operates in
time linear to the number of keys (VPNs). In practice the
CMPH implementation generates minimum hash functions for
typical processes in milliseconds to 10s of seconds. Using the
hash function involves two lookups in the generated tables,
which are large and likely must remain in memory. This
compares to up to four lookups in forward paging.

The second technique we considered is the algorithm of the
GNU Perfect Hash Function (GPERF) library [54]. In contrast
to CMPH’s algorithms, GPERF’s algorithm seeks to build a
very fast perfect (although not necessarily minimum) hash
functions for smaller keyspaces. Unlike CMPH’s algorithms,
there is no fixed template for the hash function in GPERF—
the generated hash function combines a custom expression
and a table. The tables produced by GPERF are much smaller
(⇠256 entries) than those produced by CMPH. As a conse-
quence, a hardware implementation would require the ability
to download the resulting expression in addition to the table.
However, the tiny tables could be kept in faster memory (e.g.,
registers) than those produced by CMPH. Generating perfect
hash functions using GPERF is much slower than with CMPH
for typical processes.

5A variant of this idea, dynamic perfect hashing [21] allows for evolution
in the set of keys while maintaining the invariant of no collisions, which we
leave for future work.

(a) Murphy (b) Hanlon

(c) Mantevo (d) NAS

(e) PARSEC (f) Legion
Fig. 5. Minimum perfect hash function generation time using CMPH versus
number of page table entries in snapshot.

B. Study

We attempted to construct perfect hash functions for every
page table described in Figure 3. This was done sequentially,
using only a single logical CPU / hardware thread with no
competing workloads. In each case we measured:

• Generation time: the time (sys + user) to generate the
perfect hash function

• Space complexity: The size of the hash function,
combining its table space and a proxy (code size) for its
likely cost in hardware.

We also analyzed the following by examining the generated
functions and table sizes:

• Lookup time: The likely cost of a lookup given a
hardware implementation of the perfect hash function.

We had no trouble using CMPH on every page table.
GPERF is much slower, so we computed hash functions for
samples of the Murphy, Hanlon, Mantevo, PARSEC, Legion,
and Synthetic page tables. We were unable to generate GPERF
perfect hash functions for any of the NAS page tables even
after letting the tool run for several days per page table.

Fig. 6. Minimum perfect hash function space complexity versus the number
of page table entries in snapshot. Only the Murphy dataset is shown. All
others have the identical straight-line behavior.

(a) Murphy (sample) (b) Hanlon (sample)

(c) PARSEC (sample) (d) Legion (sample)
Fig. 7. Non-minimum perfect hash function space complexity versus the
number of page table entries in snapshot using GPERF. Mantevo and NAS
did not complete.

C. Observations
Figures 5 illustrates the measured generation time using

CMPH. CMPH works in time proportional to the number of
page table entries, as promised theoretically, although there
is considerable variation. We do not show results for GPERF
here—it is many orders of magnitude slower, and, in fact, the
generation time for GPERF, for large virtual address spaces, is
prohibitive. Note that we are not casting aspersions on GPERF
here—we are in fact asking it to do something (handle a vast
keyspace) that it is not designed for.

Figure 6 shows the space complexity measurements for the
Murphy dataset using CMPH. Note that this cost is not just
theoretically proportional to the number of keys (VPNs), but
is also empirically exactly the case for this application. We
exclude the other graphs as they look virtually identical in
this regard.

Figure 7 shows the space costs for GPERF as a function of
the number of PTEs. Mantevo and NAS are omitted since the
generation time is impossibly long. The behavior is roughly
linear, although not as straightforward as with CMPH. Note

that when it is possible to generate a perfect hash function in
GPERF, it is quite compact, and, importantly, the cost tends
to be in the code, not the tables.

In considering the lookup costs in a potential hardware im-
plementation, we synthesized a portion of the CMPH output,
namely the Jenkins hash [39], [40] that is used internally, for
the Intel HARP platform. We hand-coded this hash function in
Verilog. The result was compact, requiring < 1% of available
FPGA resources, and could operate in a single cycle of the
FPGA core clock. While this is promising, the larger issue with
lookup for CMPH/CHM-generated functions is table lookup.
In each interesting case, the tables involved are large enough
that they would clearly need to be kept in DRAM. Given the
operation of the lookup function, we anticipate that this would
then require two memory operations during the lookup. At this
point, the number of memory operations starts to approach that
of the traditional model’s pagewalker. This would relegate the
CMPH/CHM-based approach to the edge (right hand side of
Figure 2.

In contrast, GPERF lookup functions are logic-heavy and
memory-light. The tables we produced could readily fit within
register-like storage within reconfigurable logic. We did not
synthesize the functions, but observations of them suggest
that they would likely fit within something like the HARP’s
FPGA with plenty of room to spare. However, given how
incredibly slow GPERF is in generating the function (again,
we are using it well outside of its designer’s intent), it would
be impractical to use a GPERF-based perfect hashing approach
expect perhaps in domains where applications run with a stable
address space for very long durations, for example in some
parts of capability supercomputing.

What seems to be missing to make functional address trans-
lation using perfect hashing a practical approach is a perfect
hashing function generation algorithm that operates quickly
(recall linear time is possible), but produces a hardware rich,
as opposed to memory-rich, hash function.

V. ESPRESSO-MINIMIZED PLAS

In this approach, we consider the address translation func-
tion as a combinational logic function that will be directly
instantiated in reconfigurable hardware. This conceptualiza-
tion is appealing because the resulting logic should perform
incredibly quickly (within a single cycle). It should also map
to the most basic forms of reconfigurable logic, programmable
logic arrays (PLAs), which support only combinational logic,
as well as to more advanced forms such as FPGAs. However,
it does put the onus on traditional logic synthesis, classic logic
minimization, and synthesis techniques. The main issues with
this approach are the time necessary to synthesize the address
translation function, and the space to represent it.

A. Generating Espresso-minimized PLAs
Figure 8 illustrates our process. The first step is to transform

the VPN!PPN mapping into the inputs and outputs of a logic
function. This is simply a truth table representation of a logic
expression in which the input columns are the bits of the VPN,

All	Mappings

Espresso	Minimization

Programmable	Logic	Array

Truth	Table	
Representation
(VPN,	PPN)

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Quartus Synthesis

PPNVPN

Fig. 8. Functional address translation via Espresso-minimized PLAs.

and the output columns are the bits of the xPPN. Next, we
perform logic minimization on the truth table using the well-
known, widely-used Espresso [53] tool. Espresso will apply a
logic minimization algorithm to reduce the input and output to
a smaller set of terms which maintains coverage of the output
(the output remains valid for all inputs provided). Note that the
number of rows in the truth table corresponds to the number
of active PTEs, not the size of the virtual address space.

Given a PLA as the reconfigurable logic target, the output
of Espresso can be used to directly configure the logic array
as no placement or routing needs to be done. In the case of
a target like an FPGA, it is necessary to further transform
the Espresso output into Verilog or similar language and
then do full synthesis, including placement and routing. The
specific tool we use is Quartus 17 which targets the Intel/Altera
family of FPGAs. The resulting logic function is entirely self-
contained.

B. Study
We applied our process to a sampling of smaller page table

snapshots. Our target was an FPGA, specifically an Altera
Cyclone IV, which is less than 10% of the size of the HARP
platform we mentioned earlier. We measured the process in
the following ways:
• Generation time: The combined time to optimize the truth

table using Espresso and then synthesize the mapping for
the FPGA. The time to actually transform from the
snapshot to the truth table input is negligible.

• Space complexity: The size of FPGA block in terms of
the FPGA’s native logic elements.

We did not measure lookup time because in all cases, the
design was synthesized into combinational logic which could
complete during the native cycle time of the FPGA (5 ns).

C. Observations
Unsurprisingly, the timescales for Espresso and logic syn-

thesis are such that this approach to translation can only be
done well ahead of the runtime of the program. Optimization
of the truth table of one process takes on the order of tens
of minutes of Espresso time, while the FPGA synthesis to a
small FPGA can take closer to an hour. Probably the most

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

To
ta

l L
og

ic
 E

le
m

en
ts

 (C
yc

lo
ne

 IV
 G

X
)

Page Table Entries

Logic Elements versus Page Table Size

Fig. 9. Size of the Espresso-minimized address translation function on the
FPGA as a function of the number of PTEs.

Types: 64 bit word (single type)

Terminals: 0,1,2,9,12, VPN (and components PML4,
PDP, PD, PT), and numerous masks

Operators:
not, and, or, xor, aoi, logical shifts and
rotates, neg, inc, dec, add, sub, mpy, div,
rem, and wordwise and bitwise muxes

Fig. 10. Expression language for creating or evolving pure VPN!PPN
functions.

suitable use here would be environments where a process and
has a stable page table for a much longer period, perhaps as in
some HPC environments such as capability supercomputers.

On a more positive note, Figure 9 shows that the space
complexity of the resulting FPGA block is linear in the
number of PTEs in a traditional forward page table that
the block can replace. The linear relationship is true also
of the intermediate Espresso-minimized truth table or PLA.
We also considered an alternative model in which there was
no Espresso step, but rather the truth table was generated in
Verilog and given directly to Quartus. This did not change the
results significantly.

While we had initially hoped that a small PLA or FPGA
would be sufficient to represent various address translation
functions, the linear relationship we actually see suggests that
the physical size of the PLA or FPGA needed to support
useful mappings is much larger. This rules it out as a TLB
replacement, but it could potentially serve as a pagewalker
replacement. Another intriguing possibility would be to have
the page allocator in the kernel be cognizant of the complexity
of the address translation function it is producing, shaping it
to be more easily suitable.

VI. FUNCTIONAL LANGUAGE / GENETIC PROGRAMMING

In this approach, an expression language is designed for
the sole purpose of describing pure functions that map from
VPNs to PPNs (as well as other components of the PTE). The
terminals of the language are a small set of constant values as
well as the VPN and its component parts. The operators of the
language are designed to be straightforwardly implementable
within hardware. The language allows no recursion or iteration
of any kind (it is not Turing-complete). As a consequence, any
expression in the language (a function for translating VPN
to PPN) can be trivially statically analyzed to determine its
work and depth complexity, and trivially translated to hardware

Page Table
Reconstruction

Expression Search via
Genetic Programming

Pure Function in
Expression Language

VPN -> PPN

PPN

Generation
Time

Lookup
Time

Space
Complexity

VPN

Measurements

Learned
Function

Developer

Bespoke
Function

Memory Map
(Vaddr,Len)->Paddr

Expression Language
Suitable for HW

&
Search Parameters

Fig. 11. Functional address translation by functional language and genetic
programming.

to determine area complexity, which is closely tied to work
complexity in any case. Figure 10 illustrates the language we
designed.

The language could be used directly by the developer or via
an indirect, but deterministic construction technique within the
OS kernel. For example, simple address space models, such as
identity-mapped address spaces (used in Nautilus by default),
mapping virtual pages to physical pages at an offset (used to
support Multiverse [32] in Nautilus), or classic overlays [55,
pp. 222], can be readily expressed with very tiny expressions
in the language. We refer to such a function as a bespoke
function.

Another alternative would be to learn the function for
any arbitrary VPN!PPN mapping. Because our expression
language involves only a single type, it is straightforward
to apply genetic programming [3], [46] to try to find such
functions. Genetic programming uses evolutionary pressure
toward fitness, combined with mutation and crossover of
candidate expressions, to evolve collections of expressions
that, over many generations, increasingly become better at
approximating the intended mapping. We define fitness as a
combination of fit (how close the approximation is) and the
size of the expression (work complexity/area). An expression
must completely fit the mapping to be selected at the end.
Our genetic search process is implemented using the GPC++
framework [27]. The result of this process is a learned
function.

Figure 11 illustrates the two stage process for both bespoke
and learned functions. As with other techniques, we consider
the generation time (how long does it take to build an
appropriate function?) and the lookup space and time (how
expensive is that function?)

A. Study

We developed bespoke functions for the Synthetic dataset.
These were straightforward to implement in our language.

We then attempted to apply genetic programming to evolve
learned functions for each of the datasets. Unfortunately, none

of these were able to complete within a reasonable period (we
ran each for a limit of one day before stopping and advancing
to the next). In no case, not even for the Synthetic dataset,
were we able to learn the function.

B. Observations
Our results are mixed. On the one hand, it is quite clear

that our language is sufficient for expressing numerous reg-
ular mappings, and that the corresponding functions are tiny
and are likely to be fast. Given this, bespoke functions for
even the most constrained integration model, Core-TLB, are
likely to be practical. At this level, we can think of our
results as supporting those of DIY address translation [1].
Pure translation functions, which we designed our expression
language for, could push the DIY concept much closer to the
processor by allowing the functions to be readily transformed
into reconfigurable hardware.

On the other hand, we have had very little success in
evolving learned functions, even for mappings that are simple
and regular by construction. This is even after many hours of
executing the evolutionary process. At this point, we do not
believe this is due to a bug in our implementation, limitation in
our expression language, or correctness in our fitness function.
Instead, we think it is either due to a bad choice of the
evolutionary process’s parameters (genetic programming is
notoriously sensitive to these), or that genetic programming
just is not a good fit for this problem. One important distinction
of learning an address translation function, compared to other
forms of machine learning problems, is that the training data
must be captured exactly, while no predictive power is needed
at all. That is, we actually need the learning process to “over
fit” the data we give it.

VII. MULTIPLEXOR TREES

Consider a memory region to be the tuple (VPN, PPN,
N), which indicates that VPN to VPN+N map to consecutive
physical addresses starting at PPN. If run-length encoding
an address translation in this manner leads to fewer regions
than PTEs, it may serve as a gateway to creating more
compact and faster address translation functions. Furthermore,
the ability to compactly represent mappings in this manner
could be amplified by having the page allocation system use
physical contiguity as a page allocation criterion, resulting
in fewer (larger) regions. An example of such a system is
HPMMAP [45], which already uses contiguity to provide
better allocations for NUMA hardware and uses larger pages.
This approach reduces the expressiveness required from the
synthesized mapping, since many virtual addresses will map
to the same physical base page.

Figure 12 shows the potential for this approach. The figure
compares the sizes of the three representations across the
datasets. Note that the horizontal axis is in log scale. In each
figure, the “PTEs” curve is a CDF of the number of active
PTEs. The “Original Regions” curve is a CDF of the number
of active regions needed to represent the same information in
run-length encoded form. Finally, the “Contigified Regions”

Contigified
Regions

Original
Regions

PTEs

Contigified
Regions

Original
Regions

PTEs

(a) Murphy (b) Hanlon
Contigified
Regions Original

Regions

PTEs

Contigified
Regions

Original
Regions

PTEs

(c) Mantevo (d) NAS
Contigified
Regions

Original
Regions

PTEs

Contigified
Regions

Original
Regions PTEs

(e) PARSEC (f) Legion
Fig. 12. CDFs of address space sizes as measured by PTEs (rightmost curves)
and by virtually (middle) and by both virtually and physically contiguous
regions (leftmost). VPN!PPN mappings are more compactly represented by
regions that PTEs, and if the page allocator can maintain physical contiguity,
the effect is particularly strong.

curve shows the CDF of the number of active regions that
would be needed assuming physical contiguity was achieved,
that is, that each contiguous chunk of the virtual address space
mapped to a contiguous chunk of the physical address space.

Run-length encoding is particularly effective for our HPC
benchmarks (Mantevo, NAS, PARSEC, Legion). For example,
in Mantevo and NAS, millions of PTEs become thousands of
regions; however, even general purpose workloads (Murphy
and Hanlon) show 2-5x fewer regions than PTEs across the
board. Note also that the “Contigified Regions” curve is
shifted dramatically to the left. If the page allocator maintained
physical contiguity, 500-1000 regions would be more than
sufficient to capture almost all of our workloads (and would
capture all the HPC workloads.)

A. Building multiplexor trees

A multiplexor tree is a parallel binary search tree structure
in which the VPN is recursively compared against regions by
starting address and length. It is similar to the search of the
red-black tree representation of the process memory map in the
Linux kernel, but the entire tree is in the form of combinational
logic suitable for synthesis in a FPGA or similar reconfigurable
logic. The leaf nodes are the actual regions. Each interior node
of the tree is a multiplexor that outputs to its parent one of
the regions produced by its two children depending on whether

All	Mappings

Transform	Mapping
into	Regions

Logarithmic	Lookup

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Synthesize	Regions

PPNVPN

Fig. 13. Address translation by bespoke multiplexor tree.

All	Mappings

Transform	Mapping
into	Regions

Logarithmic	Bounds	Check

Generation	
Time

Lookup	Time

Space	
Complexity

Measurements

Load	Bounding	Registers

PPNVPN

Fig. 14. Address translation by registered multiplexor tree.

the search VPN is < or � a region-splitting VPN constructed
from the subtree rooted at the node. The VPN is supplied
simultaneously to all the interior nodes of the tree. Once the
root multiplexor determines the relevant region, the offset into
the region is computed with simple addition similar to segment
base+offset calculations.

We consider two approaches to producing a multiplexor
tree. In a bespoke multiplexor tree, illustrated in Figure 13, all
VPN!PPN mappings are known at synthesis time. Because
of this, all regions are constants from the perspective of
synthesis. We have developed a tool that first transforms
VPN!PPN mappings into region mappings. The tool next
generates the specific search tree needed for those regions, and
then produces a Verilog version of the tree as combinational
logic. Finally, the Verilog is synthesized into an FPGA (using
Quartus 17) in our implementation.

Figure 14 shows the process for producing a registered mul-
tiplexor tree. Here, the regions are not known a priori. Instead,
given a bound on the number of supported regions, a separate
tool produces a multiplexor tree in Verilog whose regions and
region-splitting VPNs are not constants, but registered values.
That is, it produces a multiplexor tree that is parameterized
by runtime information. The tool also produces the I/O logic
needed to dynamically configure the registers, and a software
interface that maps regions to the appropriate registers, and
determines and loads the splitting VPNs. The multiplexor tree
is synthesized only once. Any address translation function can
then be loaded into it via the software interface at the cost of
loading a number of registers proportional to the number of
regions.

 0

 50000

 100000

 150000

 200000

 250000

 0 100 200 300 400 500 600

To
ta

l L
og

ic
 E

le
m

en
ts

 (C
yc

lo
ne

 IV
 G

X
)

Number of Contiguous Regions

Logic Elements versus Contiguous Regions

Fig. 15. Space complexity as a function of the number of regions for a
bespoke multiplexor tree.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0 200 400 600 800 1000 1200

N
um

be
r o

f C
el

ls
 (T

ho
us

an
ds

)

Number of Regions

Fig. 16. Space complexity as a function of the number of regions for a
registered multiplexor tree.

B. Study
We developed bespoke multiplexor trees for a sample of our

page table snapshots, and we produced registered multiplexor
trees for a range of sizes. Our target was the same FPGA as
described in Section V. We measured both processes in the
following ways:
• Generation time: The time to generate the Verilog from

input regions (bespoke) or the number of regions
(registered), plus the time to synthesize the FPGA block.

• Space complexity: The size of the resulting FPGA block
in terms of the FPGA’s native logic elements.

We did not measure the lookup time of this mapping for the
same reasons as given in Section V. We are confident this can
be done within a cycle of the FPGA for common cases.

C. Observations
The generation time for both bespoke and registered mul-

tiplexor trees is dominated by synthesis within Quartus. For
512 regions, this can take over an hour. Producing the Verilog
design itself takes negligible time.

In terms of space complexity, we would expect that any
multiplexor tree to take O(n) for n regions. Figures 15 and 16
show the empirical space complexity as a function of the
number of regions for 512 to 1024 regions. The measured
space costs clearly follow the expected linear behavior.

The worse case of the parallel lookup through the tree
is O(logn). Given how compactly real address translation
functions can be represented as regions (Figure 12), n ⇡
103 . . . 104 can cover a wide range of cases, particularly

Generation Space Lookup
Perfect Hash/IPT (§ IV)

CMPH fast large slow
GPERF very slow small fast

Espresso/PLA (§ V) slow small very fast
Functional Lang (§ VI)

Bespoke depends small very fast
Learned (GP) very slow small very fast

Multiplexor Tree (§ VII)
Bespoke slow very small very fast
Registered fast very small very fast

Fig. 17. Summary of observations and results.

for HPC workloads. With “contigified” regions, n ⇡ 102 is
sufficient for all the workloads. As a practical matter, at these
scales, a multiplexor tree would consume only a small portion
of an FPGA or other combination logic, and be able to provide
single cycle lookups.

VIII. PROSPECTS

Figure 17 summarizes our study results and observations.
At least given the approaches we considered, the prospects
for functional address translation are mixed. The prospects
and the possible best choices among our models depend on
the quadrants of Figure 2.

Because perfect hashing still involves an access to an in-
memory inverted page table, it is only suitable for situa-
tions that involve a replacement for the pagewalker, Core-
Pagewalker and Edge-Pagewalker in our terminology. Even
here, it is important to consider the actual costs of the “con-
stant time” generated hash function. Given the comparatively
large tables that CMPH-generated hash functions require,
these would translate into 1-2 additional memory reads per
lookup. At this point, the number of memory references
needed is similar to that of a page walk on an ordinary
forward page table. The primary motivation to use CMPH-
based perfect hashing in a pagewalker would therefore be
space—the inverted page table is much more compact than
a forward page table. GPERF-based perfect hashing is likely
to result in smaller space requirements and faster lookup since
its tables for the generated functions are smaller. However, the
generation cost of these functions is likely to be prohibitive
except when they can be reused.

The future prospects for perfect hashing-based approaches
depend very much on the development of algorithms that pro-
duce hash functions that combine the generation efficiency of
CMPH (CHM) and the representational efficiency of GPERF.

Direct representation of the address translation function via
Espresso-minimized PLAs is just one example of an approach
where the truth table representation of the function is opti-
mized and embedded in the hardware. Such approaches have
the potential of offering the best possible lookup latencies (and
small space costs) since the lookup is simply the evaluation
of a logic circuit—this lookup could replace a TLB. Our
experience with Espresso/PLA bears this out. Possibly, a
future processor design could include a PLA block that could
be programmed directly from a the logic-minimized design
produced by a tool like Espresso.

The Espresso/PLA approach produced circuits whose space
requirements, however, were linear in the number of PTEs.
These large (but fast) circuits suggest that any PLA block
would need to be quite large, which would make it unsuitable
for the Core-TLB model, relegating it instead to the Edge-
TLB model. Another challenge is the high cost of synthesis.
In our experience, it is not the logic minimization cost that is
the issue, but mapping to an FPGA. Thus it is possible that
having a PLA-block model would reduce generation time to
a practical point.

We had high expectations for the functional language ap-
proach, especially given results from prior work such as DIY
address translation [1]. We did find that if it is possible
for the developer to design a bespoke translation function,
it is straightforward to encode it in our language, and the
synthesized result is likely to be small and fast. However,
automatically finding an appropriate function, via genetic pro-
gramming at least, is simply impractical do within a reasonable
period of time. Our genetic programming generation efforts
took by far the longest time and CPU cycles of any of our
approaches, yet were unable to find any correct functions, even
for synthetic functions that a developer could readily write. We
do not know what to make of this, or how general the result
might be, and so avoid making recommendations.

The multiplexor tree approach performed very well in both
of its instantiations. Treating the address space as composed
of regions/segments is a powerful abstraction, just as Basu
et al [7], [29] found. A register-based configurable translator
with enough registers is particularly well suited to the address
translations needed by the HPC and parallel applications.
Given the number of regions typically needed, this approach
could be used even in the Core-TLB model. There is potential
to improve on this by synthesizing multiplexor trees that are
specific to each given address space, although once again
synthesis costs become very problematic.

It is important to note that the multiplexor tree approach
is not “the best” we considered. There are serious caveats
here as well. In particular, this approach simply cannot encode
arbitrary VPN!PPN mappings as the others are able to.

The high cost of synthesis is a unifying issue for all the
approaches we considered. Even a simple Verilog design can
take hours to synthesized, without optimizations, on a tool
such as Quartus. This pushes designs toward generality—
for example, large tables in the perfect hashing approach
and region registers in multiplexor tree approach. A synthesis
approach that focused on compilation speed would go a along
way to making the more specific approaches feasible.

Figure 18 maps the approaches we described into their
most suitable quadrants in the space of models (Figure 2).
For Core-TLB, the multiplexor tree, particularly the registered
variant, is clearly the most sensible, which is no surprise given
prior work. Given fast enough synthesis, the bespoke variant
would also fit well here. For Core-Pagewalker, both variants of
perfect hashing make sense, with the GPERF variant having
generation cost as a major caveat.

Recall that by “Edge”, we mean a future microarchitecture

Perfect Hash/IPT (CMPH) (§ IV) Perfect Hash/IPT (CMPH) (§ IV)
Pagewalker Perfect HashIPT (GERF) * (§ IV) Perfect Hash/IPT * (GPERF) (§ IV)

Multiplexor Tree (Registered) (§ VII) Espresso/PLA * (§ V)
TLB Multiplexor Tree (Bespoke)* (§ VII)

Core Edge
Fig. 18. Appropriate FAT mechanisms (with caveats noted by *) for the different quadrants of Figure 2.

in which on-chip caches are virtually indexed and tagged, al-
lowing address translation to happen only when main memory
is accessed. This makes it possible for the TLB and Pagewalker
to be slower and/or larger. For the Edge-Pagewalker model,
the same arguments apply as with Core-Pagewalker, and we
believe that this would be the best use of perfect hashing
with inverted page tables. GPERF would again be preferable,
but only if its long generation times could be either tolerated
or overcome. Espresso/PLA would work well for Edge-TLB,
given that more space would be available, but this would only
make sense if the generation costs could be contained. The
functional language approach does not currently fit.

IX. RELATED WORK

Address translation has been the subject of numerous studies
since the inception of the idea and the introduction of TLBs
in computer systems [17]. Over the years, as new workloads
surfaced, the research community continues to re-evaluate
the overhead of address translation as part of the general
memory system characterization. Previous studies have shown
that address translation can account for 5-14% of runtime [11],
[51], with extreme cases (e.g., in big-data applications and
scientific workloads) reaching up to 40-50% of runtime [7],
[36], [48], [56]. In virtualized environments the overhead of
address translation is further exacerbated, due to the nested
address translation from guest to host. Applications in virtual-
ized environments can spend up to 50% of their runtime due
to address translation [11], [48], [51].

Numerous techniques have been proposed for reducing
address translation overhead, both purely hardware [15], [18],
[26] and via hardware/software co-design [1], [5], [12], [51].

Furthermore, multiple studies [7], [15] have made the
observation that pages of larger granularity can significantly
increase performance by reducing the address translation over-
head. Basu et al. [7] showed that the use of the wrong page
granularity can have a significant impact on performance. They
observed that Graph500 [47] spends 51% of its runtime on
address translation when using 4KB pages, compared to a 10%
of runtime when utilizing 2MB pages; however, large page
schemes can lead to overheads too, as most implementations
limit the number of entries allocated for large pages (e.g., at
Intel’s Coffee Lake microarchitecture only 4 and 16 entries
are allocated for 1GB pages in its first level data TLB and
second level shared TLB, respectively).

Though a significant amount of research has studied the
patterns [5], [13], [48], [50] and contiguity [51] in address
translation, there has been limited investigation on alternatives
to the radix tree representation. The majority of research takes
a radix tree based translation and TLB caches as a starting

point, and proposes improvements upon such designs. Previous
works that explore alternatives to radix tree translation are
briefly mentioned below. Jacob et al. [38] compared different
address translation designs including inverted page tables.
Similarly, Yaniv and Tsafrir [58] compared radix tree against
hash-based translation, showing that carefully optimized hash-
based schemes have higher performance that existing x64
pagewalk-aided designs. Barr et al. [4] compared cached
page tables against inverted page tables and direct-mapped
Translation Storage Buffers [49]. Finally, Talurri et al. [56]
presented an overview of linear, forward-mapped, and hashed
page tables and the challenges these designs faced on 64-bit
address spaces.

More closely related to our work, Kadayif et al. [42], [44]
proposed a hardware/software co-design for direct generation
of physical addresses without accessing the TLB, and Basu et
al. [7], [29] proposed the use of direct segments for mapping a
linear portion of the virtual address space, while the remaining
address space maintains a page mapping.

Finally, in a complementary work to ours, Hanna et al. [1]
present a novel architecture that allows application and virtual
machine monitors to specify a custom software-supported
address translation mapping.

X. CONCLUSION

We have defined the concept of functional address transla-
tion and then studied it empirically by encoding page tables
captured from a wide range of workloads. Four different
approaches were considered, including perfect hashing for
inverted page tables, Espresso-minimized PLAs that directly
represent VPN!PPN mappings as combinational logic, a
functional language suitable for FPGA implementation of
address translation functions, and a multiplexor search tree
approach that operates over a run-length encoded version of
the mappings. The benefits, drawbacks, and recommendations
for the approaches are shown in Figures 17 and 18.

While the multiplexor tree approach shows the most promise
for current systems, our overall conclusion is that functional
address translation has mixed prospects within current sys-
tems, but that this could readily change if memory manage-
ment at the kernel level was restructured, and/or the rela-
tionship of address translation and the cache hierarchy was
modified. We are currently extending our work in this way.

REFERENCES

[1] ALAM, H., ZHANG, T., EREZ, M., AND ETSION, Y. Do-it-yourself
virtual memory translation. In Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture (New York, NY, USA,
2017), ISCA ’17, ACM, pp. 457–468.

[2] BAE, C., LANGE, J., AND DINDA, P. Enhancing virtualized application
performance through dynamic adaptive paging mode selection. In Pro-
ceedings of the 8th International Conference on Autonomic Computing
(ICAC 2011) (June 2011).

[3] BANZHAF, W., NORDIN, P., KELLER, R., AND FRANCONE, F. Genetic
Programming: An Introduction: On the Automatic Evolution of Com-
puter Programs and Its Applications. Morgan Kaufmann, 1997.

[4] BARR, T. W., COX, A. L., AND RIXNER, S. Translation caching:
Skip, don’t walk (the page table). In Proceedings of the 37th Annual
International Symposium on Computer Architecture (New York, NY,
USA, 2010), ISCA ’10, ACM, pp. 48–59.

[5] BARR, T. W., COX, A. L., AND RIXNER, S. Spectlb: A mechanism
for speculative address translation. In 2011 38th Annual International
Symposium on Computer Architecture (ISCA) (June 2011), pp. 307–317.

[6] BARRETT, R., HEROUX, M., LIN, P., VAUGHAN, C., AND WILLIAMS,
A. Mini-applications: Vehicles for co-design. In Proceedings of the
ACM/IEEE Conference on High Performance Networking and Comput-
ing (SC 2011) (November 2011).

[7] BASU, A., GANDHI, J., CHANG, J., HILL, M. D., AND SWIFT, M. M.
Efficient virtual memory for big memory servers. In Proceedings of the
40th Annual International Symposium on Computer Architecture (New
York, NY, USA, 2013), ISCA ’13, ACM, pp. 237–248.

[8] BASU, A., HILL, M. D., AND SWIFT, M. M. Reducing memory
reference energy with opportunistic virtual caching. In Proceedings
of the 39th Annual International Symposium on Computer Architecture
(2012), ISCA ’12, pp. 297–308.

[9] BAUER, M., TREICHLER, S., SLAUGHTER, E., AND AIKEN, A. Le-
gion: Expressing locality and independence with logical regions. In
Proceedings of Supercomputing (SC 2012) (Nov. 2012).

[10] BELAZZOUGUI, D., BOTELHO, F. C., AND DIETZFELBINGER, M.
Hash, displace, and compress. In Proceedings of the 17th European
Symposium on Algorithms (ESA) (2009).

[11] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND MANNE, S. Accel-
erating two-dimensional page walks for virtualized systems. In Proceed-
ings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems (New York, NY, USA,
2008), ASPLOS XIII, ACM, pp. 26–35.

[12] BHATTACHARJEE, A. Large-reach memory management unit caches.
In Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture (New York, NY, USA, 2013), MICRO-46, ACM,
pp. 383–394.

[13] BHATTACHARJEE, A., AND MARTONOSI, M. Characterizing the tlb
behavior of emerging parallel workloads on chip multiprocessors. In
2009 18th International Conference on Parallel Architectures and Com-
pilation Techniques (Sep. 2009), pp. 29–40.

[14] BIENIA, C. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[15] BORG, A., CHEN, J. B., AND JOUPPI, N. P. A simulation based study
of tlb performance. In [1992] Proceedings the 19th Annual International
Symposium on Computer Architecture (May 1992), pp. 114–123.

[16] CHOI, Y.-K., CONG, J., FANG, Z., HAO, Y., REINMAN, G., AND WEI,
P. A quantitative analysis on microarchitectures of modern cpu-fpga
platforms. In Proceedings of the 53rd Annual Design Automation
Conference (DAC 2016) (2016).

[17] COULEUR, J. F., AND GLASER, E. L. Shared-access data processing
system, 1968.

[18] COX, G., AND BHATTACHARJEE, A. Efficient address translation
for architectures with multiple page sizes. In Proceedings of the
Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems (New York, NY, USA,
2017), ASPLOS ’17, ACM, pp. 435–448.

[19] CZECH, Z. J., HAVAS, G., AND MAJEWSKI, B. S. An optimal algorithm
for generating minimal perfect hash functions. Information Processing
Letters 43, 5 (Oct. 1992), 257–264.

[20] DE CASTRO REIS, D., BELAZZOUGUI, D., BOTELHO, F. C.,
AND ZIVIANI, N. CMPH - C minimal perfect hashing library.
http://cmph.sourceforge.net, 2009.

[21] DIETZFELBINGER, M., KARLIN, A., MEHLHORN, K., MEYER
AUF DER HEIDE, F., ROHNERT, H., AND TARJAN, R. E. Dynamic
perfect hashing: Upper and lower bounds. SIAM Journal on Computing
23, 4 (August 1994), 738–761.

[22] DINDA, P., AND GULIANI, A. Dark shadows: User-level guest/host
linux process shadowing. In Proceedings of the 5th IEEE International
Conference on Cloud Engineering (April 2017).

[23] DONGARRA, J., AND HEROUX, M. A. Toward a new metric for ranking
high performance computing systems. Tech. Rep. SAND2013-4744,
Sandia National Laboratories, June 2013.

[24] EKMAN, M., STENSTRÖM, P., AND DAHLGREN, F. Tlb and
snoop energy-reduction using virtual caches in low-power chip-
multiprocessors. In Proceedings of the 2002 International Symposium on
Low Power Electronics and Design (2002), ISLPED ’02, pp. 243–246.

[25] FAN, D., TANG, Z., HUANG, H., AND GAO, G. R. An energy efficient
tlb design methodology. In Proceedings of the 2005 International
Symposium on Low Power Electronics and Design (2005), ISLPED ’05,
pp. 351–356.

[26] FAN, D., TANG, Z., HUANG, H., AND GAO, G. R. An energy efficient
tlb design methodology. In Proceedings of the 2005 International
Symposium on Low Power Electronics and Design (New York, NY, USA,
2005), ISLPED ’05, ACM, pp. 351–356.

[27] FRASER, A., AND WEINBRENNER, T. GPC++
- genetic programming C++ class library.
http://www0.cs.ucl.ac.uk/staff/W.Langdon/ftp/weinbenner/gp.html,
1997.

[28] FREDMAN, M. L., FREDMAN, M. L., FREDMAN, M. L., FREDMAN,
M. L., KOMLOS, J., KOMLOS, J., KOMLOS, J., KOMLOS, J., SZE-
MEREDI, E., SZEMEREDI, E., SZEMEREDI, E., AND SZEMEREDI, E.
Storing a sparse table with o(1) worst case access time. In Proceedings
of the 23rd Annual Symposium on the Foundations of Computer Science
(FOCS) (November 1982).

[29] GANDHI, J., KARAKOSTAS, V., AYAR, F., CRISTAL, A., HILL, M. D.,
MCKINLEY, K. S., NEMIROVSKY, M., SWIFT, M. M., AND ÜNSAL,
O. S. Range translations for fast virtual memory. IEEE Micro 36, 3
(May 2016), 118–126.

[30] HALE, K., AND DINDA, P. Enabling hybrid parallel runtimes through
kernel and virtualization support. In Proceedings of the 12th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE 2016) (April 2016).

[31] HALE, K. C., AND DINDA, P. A. A case for transforming parallel run-
time systems into operating system kernels (short paper). In Proceedings
of the 24th International ACM Symposium on High Performance Parallel
and Distributed Computing, (HPDC 2015) (June 2015).

[32] HALE, K. C., HETLAND, C., AND DINDA, P. A. Multiverse: Easy
conversion of runtime systems into os kernels via automatic hybridiza-
tion. In Proceedings of the 14th IEEE International Conference on
Autonomic Computing (ICAC 2017) (July 2017).

[33] HEROUX, M. A., DOERFLER, D. W., CROZIER, P. S., WILLENBRING,
J. M., EDWARDS, H. C., WILLIAMS, A., RAJAN, M., KEITER, E. R.,
THORNQUIST, H. K., AND NUMRICH, R. W. Improving performance
via mini-applications. Tech. Rep. SAND2009-5574, Sandia National
Labs, September 2009.

[34] HEROUX, M. A., DONGARRA, J., AND LUSZCZEK, P. HPCG technical
specification. Tech. Rep. SAND2013-8752, Sandia National Laborato-
ries, October 2013.

[35] HOANG, G., BAE, C., LANGE, J., ZHANG, L., DINDA, P., AND
JOSEPH, R. A case for alternative nested paging models for virtualized
systems. Computer Architecture Letters 9, 1 (January-June 2010).

[36] HUCK, J., AND HAYS, J. Architectural support for translation table
management in large address space machines. In Proceedings of the
20th Annual International Symposium on Computer Architecture (New
York, NY, USA, 1993), ISCA ’93, ACM, pp. 39–50.

[37] INTEL CORPORATION. 5-Level Paging and 5-Level EPT. Tech. rep.,
2017.

[38] JACOB, B. L., AND MUDGE, T. N. A look at several memory
management units, tlb-refill mechanisms, and page table organizations.
In Proceedings of the Eighth International Conference on Architectural
Support for Programming Languages and Operating Systems (New
York, NY, USA, 1998), ASPLOS VIII, ACM, pp. 295–306.

[39] JENKINS, B. Hash functions.” algorithm alley”. Dr. Dobb’s Journal
(1997).

[40] JENKINS, B. A hash function for hash table lookup (2006). URL www.
burtleburtle. net/bob/hash/doobs. html (2015).

[41] JIN, H., FRUMKIN, M., AND YAN, J. The Open MP Implementation
of NAS Parallel Benchmarks and Its Performance (NAS 3). Tech. Rep.
NAS-99-011, NASA, March 1999.

[42] KADAYIF, I., NATH, P., KANDEMIR, M., AND SIVASUBRAMANIAM,
A. Compiler-directed physical address generation for reducing dtlb
power. In IEEE International Symposium on - ISPASS Performance
Analysis of Systems and Software, 2004 (March 2004), pp. 161–168.

[43] KADAYIF, I., SIVASUBRAMANIAM, A., KANDEMIR, M., KANDIRAJU,
G., AND CHEN, G. Generating physical addresses directly for saving
instruction tlb energy. In Proceedings of the 35th Annual ACM/IEEE
International Symposium on Microarchitecture (2002), MICRO 35,
pp. 185–196.

[44] KADAYIF, I., SIVASUBRAMANIAM, A., KANDEMIR, M., KANDIRAJU,
G., AND CHEN, G. Generating physical addresses directly for saving
instruction tlb energy. In 35th Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2002. (MICRO-35). Proceedings. (Nov
2002), pp. 185–196.

[45] KOCOLOSKI, B., AND LANGE, J. Hpmmap: Lightweight memory
management for commodity operating systems. In Proceedings of the
28th IEEE International Parallel and Distributed Processing Symposium
(IPDPS) (May 2014).

[46] KOZA, J. R. Genetic Programming: On The Programming Of Comput-
ers By Means of Natural Selection. MIT Press, 1992.

[47] LIST, T. G. Graph500.
[48] MCCURDY, C., COXA, A. L., AND VETTER, J. Investigating the tlb

behavior of high-end scientific applications on commodity microproces-
sors. In Proceedings of the ISPASS 2008 - IEEE International Sympo-
sium on Performance Analysis of Systems and Software (Washington,
DC, USA, 2008), ISPASS ’08, IEEE Computer Society, pp. 95–104.

[49] MICROELECTRONICS, S. Ultrasparc iii user’s manual.
[50] PHAM, B., BHATTACHARJEE, A., ECKERT, Y., AND LOH, G. H.

Increasing tlb reach by exploiting clustering in page translations. In 2014
IEEE 20th International Symposium on High Performance Computer
Architecture (HPCA) (Feb 2014), pp. 558–567.

[51] PHAM, B., VAIDYANATHAN, V., JALEEL, A., AND BHATTACHARJEE,
A. Colt: Coalesced large-reach tlbs. In Proceedings of the 2012
45th Annual IEEE/ACM International Symposium on Microarchitecture
(Washington, DC, USA, 2012), MICRO-45, IEEE Computer Society,
pp. 258–269.

[52] PK GUPTA. Accelerating datacenter workloads, 2016.
[53] RUDELL, R. L., AND SANGIOVANNI-VINCENTELLI, A. Multiple-

valued minimization for pla optimization. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 6, 5 (Sep.
1987), 727–750.

[54] SCHMIDT, D. C. GPERF: A perfect hash function generator. In
Proceedings of the 2nd Usenix C++ Conference (April 1990), Usenix.

[55] SILBERSCHATZ, A., AND PETERSON, J. L. Operating System Concepts
(Alternate Edition). Addison-Wesley, 1989.

[56] TALLURI, M., HILL, M. D., AND KHALIDI, Y. A. A new page table for
64-bit address spaces. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles (New York, NY, USA, 1995), SOSP
’95, ACM, pp. 184–200.

[57] TREICHLER, S., BAUER, M., AND AIKEN, A. Language support for
dynamic, hierarchical data partitioning. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2013) (Oct. 2013).

[58] YANIV, I., AND TSAFRIR, D. Hash, don’t cache (the page table). In
Proceedings of the 2016 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Science (New York, NY,
USA, 2016), SIGMETRICS ’16, ACM, pp. 337–350.

