
Applications of SRPT Scheduling with Inaccurate Information

Dong Lu∗ Peter Dinda∗ Yi Qiao∗ Huanyuan Sheng† Fabián Bustamante∗
∗Department of Computer Science

†Department of Industrial Engineering and Management Sciences
Northwestern University

{donglu,pdinda,y-qiao3,h-sheng,fabianb}@northwestern.edu

Abstract

The Shortest Remaining Processing Time (SRPT)
scheduling policy was proven, in the 1960s, to yield the
smallest mean response time, and recently it was proven
its performance gain over Processor Sharing (PS) usu-
ally does not come at the expense of large jobs. How-
ever, despite the many advantages of SRPT scheduling, it
is not widely applied. One important reason for the spo-
radic application of SRPT scheduling is that accurate
job size information is often unavailable. Our previ-
ous work addressed the performance and fairness issues
of SRPT scheduling when job size information is inaccu-
rate. We found that SRPT (and FSP) scheduling outper-
forms PS as long as there exists a (rather small) amount
of correlation between the estimated job size and the ac-
tual job size. In the work we summarize here, we have
developed job size estimation techniques to support the ap-
plication of SRPT to web server and Peer-to-Peer server
side scheduling. We have evaluated our techniques with ex-
tensive simulation studies and real world implementation
and measurement.

1. Introduction

The Shortest Remaining Processing Time (SRPT)
scheduling policy is extremely promising because even
in a general queuing system (G/G/1), it is provably op-
timal, leading to smallest possible mean value of oc-
cupancy and therefore of delay time [19]. More re-
cent work has shown that the variance of delay time in
M/G/1/SRPT queuing systems is lower than FIFO and
LIFO [17]. Bansal, et al proved theoretically that the de-
gree of unfairness under SRPT is surprisingly small as-

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, ANI-0301108, EIA-0130869, and EIA-0224449.
Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author and do not necessarily reflect the views
of the National Science Foundation (NSF).

suming an M/G/1 queuing model and heavy-tailed job size
distribution [3]. Gong, et al further investigated the fair-
ness issues of SRPT through simulation [7] and confirmed
the theoretical results regarding the asymptotic conver-
gence of scheduling policies for slowdown [10].

Recently, SRPT [3, 9, 7] has received much atten-
tion in the context of connection scheduling in web
servers. Harchol-Balter, et al prototyped SRPT schedul-
ing on Apache web server and their evaluation showed
the superiority of SRPT over PS [9] in terms of mean re-
sponse time. To further improve the fairness of SRPT
scheduling, Friedman, et al proposed the Fair Sojourn Pro-
tocol (FSP) that combines SRPT with PS to trade off fair-
ness with performance [5]. They concluded that FSP is
both efficient in a strong sense (similar to SRPT), and
fair, in the sense of guaranteeing that it weakly outper-
forms processor sharing (PS) for every job on any sample
path.

All of the previous research on size-based scheduling as-
sumes accurate a priori knowledge of job sizes, which is
not obtainable in many cases. Our recent work [14] stud-
ied the performance of SRPT and FSP when only inaccu-
rate job size information are available. We found that both
SRPT and FSP outperform PS provided a reasonably good
job size estimator is available. In particular, the performance
of SRPT increases as the correlation between the job size
estimates and the actual job sizes increases. If the correla-
tion is too low, PS outperforms both.

In this paper, we summarize our work in applying SRPT
scheduling with inaccurate job size information to web
server and the server side of peer-to-peer (P2P) systems. We
have developed very accurate job size estimators for both
domains, making SRPT applicable. Further reports on our
work are available elsewhere [14, 13, 18] or under submis-
sion.

2. Web server scheduling

The common assumption when applying SRPT schedul-
ing to web servers is that the size of the file to be served is



Figure 1. File size versus service time.

a good estimate of the service time of the request. Our mea-
surements suggest that this is not the case, but we have de-
veloped a new job size estimator that is sufficiently accurate
to preserve much of SRPT’s performance.

2.1. Is file size a good estimator of service time?

Size-based SRPT scheduling appeared in digital commu-
nication networks research in 1983 [4]. In this context, the
service time was taken to be equal to the transmission time
of a message, which is proportional to the length of the mes-
sage stored in the node buffers. A web server serving static
requests appears superficially similar in that it transmits
files to the client. However, there are differences. First, in
the digital communication network context, the work repre-
sented by the service time is pushing the bits of the message
onto the wire, while for the web server context, the work in-
volves end-to-end cooperation along an entire shared het-
erogeneous path. Although most transfers are likely to be
dominated by the bottleneck bandwidth in the path and the
latency of the path, there are multiple possible bottlenecks
along the path and they can vary with time due to packet
losses and congestion. Second, the disk(s), memory sys-
tem(s), and CPU(s) of the web server and the client are also
potential bottlenecks. These complexities suggest that the
service time of a request may not be proportional or even
well correlated with the size of the file it serves.

We use the correlation coefficient between file size and
service time (the commonly used Pierson’s R) [1] to decide
on the effectiveness of the estimator.

We modified Apache’s log module so that it records the
response time each request with microsecond granularity.
When deployed, we measure the load conditions on the
disk, network, and CPU. If these resources have zero or
near-zero load, then our response time measurement is also
a measurement of the service time.

File Size R

X < 30 KB 0.0616
30 ≤ X < 500 KB 0.1121

X > 500 KB 0.1033

Figure 2. R depends on file size.

We deployed the module on our department-level web
site and validated that the load was near zero. We collected
data from September 15, 2003 to October 19, 2003. This
trace includes approximately 1.5 million HTTP requests,
among which less than 2% are dynamic PHP requests that
collectively took less than 1% of the total service time
recorded. > 98% of our requests and > 99% of the ser-
vice time in the trace are for static pages. Hence, our web
sever is dominated by static web content. Others claim that
static content dominates web traffic [11, 9] and thus our re-
sults are comparable to theirs. The requests originated from
110 “/8” IP networks, 7220 “/16” IP networks and 31250
“/24” IP networks spread over the world. We claim that this
server is typical. However, our conclusions are also sup-
ported by other measured traces and generated traces.

Given the provenance of the trace, we can now use it to
answer our question. Figure 1 is a log-log scatter plot of file
size versus service time. Visually, we can see hardly any
correlation between file size and service time. File trans-
fer times vary over several orders of magnitude with same
file size. Over the entire 1.5 million requests in the trace, we
find that R is a very weak 0.14. R varies slightly with file
size, as can be seen in Figure 2.

2.2. Domain-based service time estimator

Given that request file size and service time are weakly
correlated, and that the performance of size-based schedul-
ing policies are strongly dependent on the degree of this cor-
relation [14], a natural question is whether there is a better
service time (job size) estimator than file size, one whose
estimates are more strongly correlated with actual service
time. Such an estimator must also be lightweight, requir-
ing little work per request.

Our domain-based estimator relies on the Internet being
statistically stable over periods of time, particularly from
the point of view of the web server. Fortunately, there is
significant evidence that this is the case. Previous research
showed that the Internet not only shows routing stabil-
ity [16], but also spatial locality and temporal locality in
end-to-end TCP throughput [2, 15, 12].

Although the Internet, web servers, and clients form a
highly dynamic system, this stability suggests that previous
web requests (the web server’s access log) are a rich his-
tory which can be used to better estimate the service time
of a new request. We assume that after processing a request



we know (1) its file size, (2) the actual service time, and
(3) the IP address of the client. Collecting this information
is simple and efficient. We use a history of such requests,
combined with the file size and IP address of the current re-
quest to determine the likely service time of the current re-
quest, with the goal of achieving a higher correlation be-
tween the estimated service time and the actual service time
that is higher than the correlation between file size and ac-
tual service time. The correlation R must exceed a thresh-
old in order for SRPT to perform better than PS, and as R
increases, the performance of SRPT increases.

Consider a domain, a neighborhood in the network topol-
ogy. The broad use of Classless Inter-Domain Routing [6]
(CIDR) implies that routes from machines in the domain
to a server outside the domain will share many hops. Sim-
ilarly, the routes from the server to different machines in
the domain will also have considerable overlap. This also
means that the routes will be likely to share the same bot-
tleneck network link and therefore have similar throughput
to/from the server. Smaller domains have more sharing.

The aggregation of CIDR is along a hierarchy of increas-
ingly larger networks and is reflected in IP addresses. The
first k bits of an IP address gives the network of which the
address is a part, the first k − 1 bits give the broader net-
work that contains the first network, and so on. We exploit
this hierarchy in domain-based scheduling, the algorithm of
which is given below.

1 Use the high order k bits of the client IP address to classify
the clients into 2k domains, where the k bits are treated as
the domain address.

2 Aggregate past requests to estimate the service rate (or
representative bandwidth) for each domain. This can be
done with several estimators, but our experiments show that
the estimator SR = Fs

St
performs the best. Here SR is the

representative service rate, Fs is the sum of the requested
file sizes from the domain, and St is the sum of the service
times for these requests. Notice that updating this estimate
after a request has been processed is trivial: simply add the
request’s file size and service time to Fs and St,
respectively (two reads, two adds, two writes). For each
domain, we store Fs and St. An array of these pairs is kept,
indexed by the domain address. The total state size is 2k+1

floating point numbers.
3 For each incoming client request, the web server first

extracts the domain address, indexes the array and computes
SR for the domain. It then estimates the request’s service
time as Testimate = fs

SR
, where fs is the request file size.

The estimator requires a logical shift, two reads, a division,
and a multiply. For a request from a heretofore unobserved
domain, which occurs exactly once per domain, we simply
use file size as the estimate.

4 Apply a size-based scheduling policy such as SRPT using
the estimated service times.

As we might expect, as domains become smaller (k
gets larger), predictive performance increases, at the cost
of memory to store the state. SRPT outperforms PS signifi-
cantly with the support of the domain-based service time es-

Statistics Service Served Requested
Time Chunk Size Chunk Size

Service Time 1.0000 0.7023 0.2833
Served Chunk Size 0.7023 1.0000 0.2339

Requested Chunk Size 0.2833 0.2339 1.0000

Figure 3. Correlation coefficients between
service time, served chunk size and re-
quested chunk size.

timator. A detailed performance evaluation can be found in
our technical report [13].

3. P2P server side scheduling

In the context of peer-to-peer file sharing, research ef-
forts have focused on routing, search, incentives, and a few
other topics. However, as far as we are aware, our ongoing
work [18] is alone in looking at the server side scheduling
problem. The goal of this work is to schedule download re-
quests at the server side of P2P systems so as to minimize
the average response time experienced by P2P users.

3.1. Job sizes in a P2P server

We studied the workload of P2P servers and com-
pared several alternative scheduling policies for server side
scheduling. To do so, we collected a large set of object re-
quest traces from Gnutella, one of the most popular P2P
file-sharing networks.

Interestingly, for P2P scheduling, there are four different
possible definitions for job size: full object size, requested
data chunk size, served data chunk size, and job service
time. While the full object size is usually very large, most
requested data chunks are small, covering only a small frac-
tion of the whole object. More importantly, there is usu-
ally also a significant difference between the requested data
chunk size and the actual served data chunk size. Figure 3
shows clearly that there is some degree of correlation be-
tween service time and requested data chunk size. The cor-
relation between served chunk size and service time is even
stronger, but neither can be known until the job finishes.

3.2. Preliminary results

Since a typical P2P download request is for a specific
chunk of the whole object, we could use the requested
chunk size as a rough estimate of service time, and as the
metric for SRPT scheduling. The much stronger correlation
between served chunk size and service time, on the other
hand, indicates that served chunk size can be a better esti-
mate for service time.

We explored how SRPT performs when using requested
chunk size (CS) and served chunk size (SS) as the schedul-



0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

Load

M
ea

n 
R

es
po

ns
e 

T
im

e 
(S

ec
on

d)

Mean Response Time under Different Loads

FCFS
PS
SRPT−CS
SRPT−SS
SRPT

Figure 4. Mean Response time for different
scheduling policies under varying load.

ing metric. For comparison purposes, we also studied the
scheduling performance for ideal SRPT. The three schedul-
ing policies are denoted as SRPT-CS, SRPT-SS, and SRPT,
respectively. Notice that SRPT-CS can be directly imple-
mented with current tools, while SPRT-SS would require an
accurate estimator. The performance of First-Come-First-
Serve (FCFS) and Processor-Sharing (PS) scheduling poli-
cies are also studied.

Figure 4 gives the mean response time of the five
scheduling policies handling all requests for a P2P server,
with the varying system load. The advantages of the three
SRPT-based policies over PS and FCFS are clear, especially
when the load is close to or above 1. This regime is im-
portant because previous work has shown that P2P servers
often become overloaded [8]. Even with only weak cor-
relation between requested chunk size and service time,
SRPT-CS still gives us a much shorter response time than
FCFS or PS. This suggests deploying SRPT-CS would sig-
nificantly improve the user experience of Gnutella and
tools like it. The gaps between SRPT-CS, SRPT-SS, and
ideal SRPT reveal that there is opportunity to further im-
prove performance by developing accurate predictors of
served chunk size or service time.

4. Conclusions and future work

We have applied SRPT scheduling with estimated job
sizes in web server scheduling and P2P server side schedul-
ing. For web server scheduling, we found that file size is
not a good estimator for its service time and developed
a domain-based service time estimator that dramatically
enhances the performance of SRPT scheduling. For P2P
server side scheduling, we have demonstrated the utility of

using SRPT with a very simple estimator and we are cur-
rently working on more sophisticated estimators.

References

[1] ALLEN, A. O. Probability, statistics, and queueing theory
with computer science applications. Academic press, Inc.,
1990.

[2] BALAKRISHNAN, H., SESHAN, S., STEMM, M., AND
KATZ, R. H. Analyzing Stability in Wide-Area Network
Performance. In Proceedings of ACM SIGMETRICS (June
1997).

[3] BANSAL, N., AND HARCHOL-BALTER, M. Analysis of
SRPT scheduling: investigating unfairness. In Proceedings
of SIGMETRICS/Performance (2001), pp. 279–290.

[4] BUX, W. Analysis of a local-area bus system with controlled
access. IEEE Transactions on Computers 32, 8 (1983), 760–
763.

[5] FRIEDMAN, E. J., AND HENDERSON, S. G. Fairness and
efficiency in web server protocols. In Proceedings of SIG-
METRICS/Performance (2003).

[6] FULLER, V., LI, T., YU, J., AND VARADHAN, K. (rfc1519)
Classless Inter-Domain Routing (CIDR): an address assign-
ment and aggregation strategy, September 1993.

[7] GONG, M., AND WILLIAMSON, C. Quantifying the prop-
erties of srpt scheduling. In Proceedings of IEEE MASCOTS
(2003).

[8] GUMMADI, K. P., DUNN, R. J., SAROIU, S., GRIBBLE,
S. D., LEVY, H. M., AND ZAHORJAN, J. Measurement,
modeling, and analysis of a peer-to-peer file-sharing work-
load. In Proc. 19th ACM SOSP (2003).

[9] HARCHOL-BALTER, M., SCHROEDER, B., BANSAL, N.,
AND AGRAWAL, M. Size-based scheduling to improve
web performance. ACM Transactions on Computer Systems
(TOCS) 21, 2 (May 2003).

[10] HARCHOL-BALTER, M., SIGMAN, K., AND WIERMAN, A.
Asymptotic convergence of scheduling policies with respect
to slowdown. Performance Evaluation 49, 1/4 (2002).

[11] KRISHNAMURTHY, B., AND REXFORD, J. Web Protocols
and Practice: HTTP1.1, Networking Protocols, Caching,
and Traffic Measurements. Addison-Wesley, 2001.

[12] LU, D., QIAO, Y., DINDA, P., AND BUSTAMANTE, F.
Characterizing and predicting tcp throughput on the wide
area network. Tech. Rep. NWU-CS-04-34, Northwestern
University, Computer Science Department, April 2004.

[13] LU, D., SHENG, H., AND DINDA, P. Effects and impli-
cations of file size/service time correlation on web server
scheduling policies. Tech. Rep. NWU-CS-04-33, Northwest-
ern University, Computer Science Department, April 2004.

[14] LU, D., SHENG, H., AND DINDA, P. Size-based schedul-
ing policies with inaccurate scheduling information. In Pro-
ceedings of IEEE MASCOTS (2004).

[15] MYERS, A., DINDA, P. A., AND ZHANG, H. Performance
characteristics of mirror servers on the internet. In Proceed-
ings of IEEE INFOCOM (1999), pp. 304–312.

[16] PAXSON, V. End-to-end routing behavior in the Internet.
IEEE/ACM Transactions on Networking 5, 5 (1997), 601–
615.

[17] PERERA, R. The variance of delay time in queueing sys-
tem M/G/1 with optimal strategy SRPT. Archiv fur Elek-
tronik und Uebertragungstechnik 47, 2 (1993), 110–114.

[18] QIAO, Y., LU, D., BUSTAMANTE, F., AND DINDA, P.
Looking at the server side of peer-to-peer systems. In 7th
Workshop on Languages, Compilers, and Run-time Systems
for Scalable Computers (LCR 2004) (2004).

[19] SCHRAGE, L. E., AND MILLER, L. W. The queue M/G/1
with the shortest remaining processing time discipline. Op-
erations Research 14 (1966), 670–684.


