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Abstract

The term \Grid" has become common parlance
among parallel and distributed computer scientists to
denote a middleware infrastructure for wide-area sci-
enti�c and engineering computing. The discussion of
standards and best practices is ongoing in the Grid
Forum community to identify key pieces of the middle-
ware infrastructure. One of the areas under discussion
is di�erent models for grid information services.

The contribution of this paper is a taxonomy of the
grid information services. That is, of key functionality
that a grid information service must provide. The pa-
per also presents use cases as means to begin to under-
stand user needs. Weaved throughout is a discussion
of two general models of information representation,
and the impact of the model on the services provided.

1 Introduction

The Grid [8] denotes a middleware infrastructure
for wide-area scienti�c and engineering computing
characterized by multiple administrative domains and
geographically broad distribution of resources and
users. Current research is directed toward establishing
the key services that make up the Grid. Though the
grid community agrees that IPv4/IPv6 is a good cur-
rent and immediate future choice for the underlying
network protocol, there is ongoing discussion about
middleware services such as global naming, remote
process execution, authentication, and security. Solu-
tions implementing multiple key services exist in the
Condor [2], Globus [6], and Legion [9] systems. While
Globus currently enjoys broad support in the Euro-
pean community, no one solution has emerged as the
standard. The topic of this paper is one of those key
services, the grid information service.

A grid information service (GIS) is the Grid equiv-
alent of the directory service. It is a software com-
ponent, whether singular or distributed, that main-
tains information about people, software, services, and

hardware that participate in a computational grid, and
makes that information available upon request. A grid
information service can also provide binding, discov-
ery, lookup, and data protection. While directory ser-
vices are generally focused at the network level, that
is, mapping a hostname to an IP address, or a loca-
tion transparent name to its host-speci�c equivalent, a
grid information service must represent a richer set of
entities having richer relationships between them and
more dynamic information. For instance, whereas a
machine's IP address is quite stable, the current aver-
age CPU load over multiple CPUs in an SMP can be
as dynamic as an information service will allow.

The authors represent two sides of the grid infor-
mation service discussion. In one view, grid resource
information is best served by a hierarchical represen-
tation, and on the other side, that a relational or at
table representation is more suitable. A key require-
ment to understanding the points of view is an un-
derstanding of the key services. That is, the kinds of
information to be represented, the usage patterns on
that data, and the replication, distribution, and au-
thorization policies.

The contribution of this paper is a taxonomy of
grid information services. The paper also presents use
cases as means to understand user needs. In the dis-
cussion of concepts and services we remark on how the
di�erent features manifest themselves in two types of
directory services, an LDAP service such as MDS-1
and MDS-2 [3], and a relational database approach,
such as is promoted in [4].

2 Services of Grid Information Service

2.1 Terms

A grid information service provides information
about entities in a grid. An entity is something of
value to a computational grid. Entities can be ser-
vices, such as software; serve as a resource, such as



a compute cluster, or exist as a person, group, or or-
ganization. A list of possible grid entities is shown
in Figure 1. An entity has representation in a grid
information service as an object. An object is a rep-
resentation of a real-world entity. Objects are often
described by a set of value-attribute pairs. 'Object' is
used in its most general sense, that is, there is no as-
sumption about any particular data model. An object
class is a template or type to which an object belongs.
An object is an instantiation of the object class; that
is, it is a concrete representation of a single real world
Grid entity. Finally, a relation is a link between two
objects. Two workstations may be related in that they
both exist as nodes in a cluster.

An object exists in the GIS on behalf of an entity
if the entity meets the following four criteria:

1. Usefulness: the entity can be described succinctly
in a manner that captures key attributes.

2. Uniqueness: the entity is distinguishable from
other entities of the same type

3. Persistence: the entity is long lasting. The at-
tributes of an entity may not transient, however.

4. Generality: the entity has value to multiple ap-
plications or users.

Many Grid entities meet these criteria and a number
of speci�c entities already either exist or have been
proposed. These are listed in Figure 1.

A data model describes the structure of objects and
the relationships between objects in a data repository.
There are four basic data models: hierarchical, net-
work, relational, and object-oriented. The four mod-
els are nearly indistinguishable in their representation
of entity descriptions; it is in the level of support for
relationships that they di�er. As the hierarchical and
network models share much in common, and similarly
the relational and object-oriented model share much,
we focus our attention on the hierarchical and rela-
tional models.

The hierarchical model represents an object name
space as one or more rooted trees. One object type
serves as the root, and all other entities are related to
a root. Traditionally the hierarchical model has sup-
port for a single relationship, that of parent to child.
As such, relationships are not named and navigation
is accomplished by specifying entity names. LDAP
and XML are hierarchical; both extend the hierarchi-
cal model with 'aliases' or 'pointers', essentially ref-
erences to other objects. The reference relationship
increases the expressive power of the model, but the
links can be costly to traverse during query execution.

The relational data model represents information
as at tables, or relations1. A relation is an object
type; the objects themselves are tuples de�ned by a
set of value/attribute pairs. Relations represent both
entities and relationships between entities. The ability
of the relational data model to represent any relation-
ship between entities (not just the parent-child rela-
tionship) makes it superior to the hierarchical model
for expressing complex relationships. In the following
sections we detail the key services of a GIS.

2.2 Update Interface

An update to an object is the the irrecoverable re-
placement of the existing attribute values with new
values. This update-in-place is in contrast to a ver-
sioning scheme [11]; the latter of which bene�ts from
easier failure recovery. The update interface should al-
low the creation of object classes. Extending built-in
types with attributes that are speci�c to an individual
may or may not be supported. In an object-oriented
representation this would be done with subclassing or
inheritance.

Information services fall into one of three categories
with respect to updates:

� Read-only repositories have no standard means of
changing the information in them. Updates are
usually accomplished through some other inter-
face than the standard interface, such as changes
to a con�guration �le. DNS serves in this ca-
pacity. DNS is read-only; it updates information
it discovers, but the external interface is query
(read) only.

� Read-mostly repositories allow updates to oc-
cur, but are optimized for reads. This may,
for instance, manifest itself in relatively slow
consistency-updating protocols, or time consum-
ing restructuring in the face of multiple additions
or repositions in the data structure. LDAP falls
into this category.

� Read-write repositories assume that updates and
read operations occur with same order of magni-
tude. A relational database management system
is a read-write repository.

Updates to an object in the GIS should be under some
degree of control of the owner of the entity being rep-
resented. That is, the owner should be able to initiate
changes to the object when the resource changes (e.g.,
a cluster is retired, a �le server upgraded, a compute
server gets another network interface). Update fre-

1Can be thought of as at tables of attributes where the
attributes are simple (no arrays, records, etc.)



quency should be supported at a rate that is perceived
by the customer as timely. This notion of timeliness
can vary among resources, but the owner of a super-
computer or fast network path for instance, needs an
accurate up-to-date description of the resource. The
more accurate, the more likely the resource (and the
information service) will be used by others.

Grid Entity Description

organizations accountable bodies, resource owners

people resource admins, resource providers,

GIS admins

physical resources compute resources, network interfaces

services job manager, load leveler, other GIS'

comm resources link capacity, switch capacity,

error rate, drop rate

software pkgs BLAS, LAPACK, etc.

event producers event stream generators

event channels event stream propagators

event dictionary database event types

instruments radar systems, telescopes, etc

network paths avail bandwidth, expected latency

network topologies hosts, switches, routers

wireless devices wireless hosts, wavepoints, cells, etc.

virtual orgs groups of collaborators

... ...

Table 1: Types of Grid entities requiring representa-
tion in a grid information service.

2.3 Query Interface

The query interface de�nes the way in which infor-
mation is retrieved from the information service. In-
formation is retrieved by other grid services, such as
a job scheduler; grid applications, such as an appli-
cation that plans computational resource needs based
on location of data sets; and users. The groups need-
ing query access are not necessarily mutually exclusive
with the groups needing update access. The owner of
a large cluster is likely to be interested in obtaining
descriptions of other large clusters. We suspect, how-
ever, that the numbers of users querying the informa-
tion service are considerably larger than those needing
update rights.

The sophistication of the query interface determines
the ease with which a user can write queries, the
e�ciency of query execution, and the frequency of
queries. Relational and object oriented databases sup-
port a standardized and powerful access method like
Structured Query Language (SQL). SQL queries can
be complex, reducing the total number of queries a
user must submit to get a desired answer, and because
SQL is declarative, queries are optimized so are highly
e�cient. Older hierarchical models such as LDAP use
simpli�ed access protocols. The queries are restricted
to simple expressions expressed in a procedural lan-
guage. Because of the hierarchical structure of LDAP
and XML, a user must possess intimate knowledge of
the tree structure to write queries [10].

2.4 Distribution and Replication

The distribution of a grid information service is the
partitioning of the data space and distribution of the
parts across a wide area. DNS illustrates distribution
well. The name space is hierarchically organized into a
tree of domains which are divided into non-overlapping
zones. The names in a zone are handled by a single
name server. Resolution of a single name can involve
DNS servers in several zones, as the name is resolved
from general (e.g., .edu) to speci�c (.cs). Where not
all sites have all the information, mechanisms should
exist to get the information to the requester, even
when it is not available at the site originally asked.

The hierarchical data model is well suited to the
distribution needs of the computational grid because
the rooted tree lends itself well to partitioning into
subtrees by administrative domains. Partitioning a
RDBMS is not as intuitive; it requires slicing tables
by rows and parceling out the sets of rows.

MDS-2 employs a unique distribution scheme; it
logically and physically separates the data space and
general indexes (the GRIS,) from additional user-
de�ned indexes, (the GIIS.) The purpose is to give the
user more e�cient access to multiple resource reposi-
tories (i.e., GRIS').

Replication is the duplication of data across multi-
ple sites. Replication increases availability and helps
balance workload between replicas. In widely dis-
persed systems like the grid, replication can also re-
duce communication latency. Replication brings with
it the problem of replica consistency. MySQL, for
instance, supports strong consistency with a write-
through policy on updates. But write-through can
be problematic without some kind of soft-state policy
like leases [15] for recovery of partial failures. While
strong consistency may not be practical in a grid in-
formation system, weaker policies result in outdated
information being returned which in turn could result
in less optimal scheduling decisions being made by a
job scheduler.

2.5 Security

Security deals with both trusting the information
and trusting the users that access or update the in-
formation. In particular, the directory service must
support authorization, authentication, and integrity.
Authorization is the veri�cation that users are allowed
to perform requested operations on the data objects.
The resource owner must be able to control access to
and even visibility of the resource depending on the
prospective user. Authentication is the assurance that



the opposite party (machine or person) really is who
he/she claims to be. And integrity asks the question
\why do we trust a piece of information to be correct?"

There are several categories of authorization:

� Open access: Anyone can get the information,

� Property-based access: Access because of what
one is, or where one is. For example, access could
be limited to those on "same network", "physi-
cally present" or with "resolvable DNS name,"

� Identity-based access: Access because of who one
is, or successfully claims to be. Provided through
username/password, certi�cates. This type of ac-
cess is backed up by a layer specifying what one
has access to given their identity, and

� Token-based access: Access because of what one
possesses. For instance, hardware tokens, smart-
cards, certi�cates, capability keys. Access is given
to all who can present that credential, without
caring about their identity.

The integrity design space is also broad:

� Because it's in the repository (and therefore must
have been authorized). This is perimeter (or
Eggshell) integrity,

� Because it contains internal integrity checks, usu-
ally involving digital signatures by veri�able iden-
tities This is item integrity, and

� Because it �ts other available information, and
causes the right things to happen when used. This
is hopeful integrity.

The most common approaches to authorization are
identity-based access and open access; token-based
access is commonly used informally in, for example,
password-protected FTP or Web sites where the pass-
word is shared between all members of a group. In
best practices recommended by the Global Grid Fo-
rum community, authorization and authentication are
achieved through X.509 Certi�cates with support for
delegation to a proxy. The appropriate level of trust
to adopt requires evaluating the cost of implementing
the integrity, the cost of having the integrity break,
and the impact of cost on doing business.

3 Sample Use Cases

3.1 Traditional parallel applications

A simple, but commonplace data decomposition
problem in data-parallel SPMD programs|how to

partition the rows of a matrix into blocks, and then
assign those blocks to processors so that computation
done on the matrix according to the owner-computes
rule will achieve high levels of speedup. On a dedicated
parallel machine or cluster, the static properties of the
resources that are needed to solve this problem are
known implicitly|the programmer knows what pro-
cessors the cluster uses and the topology and capa-
bilities of its communication network. The dynamic
properties of the resources are a non-issue. On a non-
dedicated cluster, life is more complex, but still, the
scope of the information that is needed is limited.

On a computational grid, the static properties of
the compute and communications resources are not
implicit, and their dynamic properties usually necessi-
tate run-time adaptation. Both to initially map itself
onto the grid, and then to adapt its behavior as it runs,
the application needs detailed information about these
resources. Furthermore, it is generally not interested
in individual resources per se, but rather in compo-
sitions of them. For example, if it has been coded to
run on four processors, then, at startup, it will want to
ask things such as \�nd me a set of four unique hosts
which in total have between 0.5 and 1 GB of memory
and which are connected by network paths that can
provide at least 2 MB/s of bandwidth with no more
than 100 milliseconds of latency." As it runs, it will
need to know when \the load on any one of four se-
lected hosts is at least 25% di�erent from the average
across all hosts".

3.2 Traditional distributed applications

Workow-style distributed applications create a vir-
tual datapath for requests on top of the grid's re-
sources. This induces a mapping process very similar
to a traditional parallel application. The application
will ask such things as \�nd me four processors such
that if I map my datapath onto them in this manner
then I can achieve a throughput of n requests per sec-
ond while still keeping the latency below 10 seconds."

3.3 Non-traditional applications

Non-traditional applications, especially those that
have interactivity demands that can be expressed as
real-time constraints, are emerging to take advantage
of the explosion of resources provided by grid-based
computing. Examples of these include interactive
scienti�c visualization, distributed laboratories, and
computer-aided design. These applications are com-
posed of interacting programs, actuators, sensors, re-
mote data sources, and distributed users and typically



have high I/O or computation demands necessitating
the inclusion of at least one high-end computational
resource such as an SMP-node cluster.
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Figure 1: Example DV visualization pipeline: logical
view as �lters operating on stream, and physical view
as active frames moving through compute resources.

Figure 1 illustrates one such application, Dv [1].
Dv is a framework for constructing interactive scien-
ti�c visualizations for wide-area environments. The
Dv programmer can trivially transform a sequential
C++ vtk (vtk [13] is a popular toolkit for building vi-
sualizations) program into a Dv program. The logical
view of a Dv program is as a owgraph, as shown in the
top of the Figure 1. When the user requests that some
region of interest in a remote database be transformed
via the owgraph to a display on his workstation, an
\active frame" is sent to the remote database. Embed-
ded in the active frame is the code that implements
the owgraph, and a scheduler that assigns nodes on
the owgraph to hosts in the Grid. The active frame
reads the region of interest from the database, and
then propagates back to the user, executing owgraph
nodes and reevaluating its schedule as each owgraph
node is executed. The goal of the scheduler is to choose
where to execute the owgraph nodes such that and
end-to-end deadline can be met with high probability.

3.4 Applications with Indirect Reliance
on Grid Information Service

Applications exist that rely on systems indirectly,
making use of other Grid software that uses the di-
rectory service. Two important examples are systems
that provide network information and schedulers that
map applications to Grid resources.

While the information generated by these systems
may not meet the strict criteria for inclusion in a grid
information system, the structure and location(s) of
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Figure 2: RPS system: conceptual view.
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Figure 3: RPS system: constellation of components
that must be managed.

their instances often does. For example, the RPS sys-
tem [5] system provides time-series predictions of �ne-
grain measurement streams. While RPS is conceptu-
ally quite simple (see Figure 2), it is designed to be
highly exible in terms of where its components run
and how they communicate. When con�gured to pre-
dict, for example, the load on a host, the components
form a \prediction pipeline" such as can be seen in
Figure 3. Each component, or box, in the �gure can
be run on a di�erent host, and each communication
path (arrow) can use a di�erent underlying protocol.
This exibility is important because the costs of mea-
surement and prediction vary widely with the resource
being monitored, making it absolutely necessary to be
able to say \run the (expensive) predictor on that ma-
chine." RPS is not alone in its needs. Remos [12]
and NWS [14], also need to manage large numbers of
components with complex relationships.

Grid schedulers are perhaps the most common in-
terface that applications have and will have to the
Grid. To do their work of mapping applications to
Grid resources, Grid schedulers generate frequent and
complex queries over diverse resources.



4 Conclusion

A clear bene�t of a hierarchical name space is that
it naturally decomposes across administrative bound-
aries. Localized control within an administrative do-
main is essential for a wide area solution if broad ac-
ceptance is to be achieved. Our vision of a distributed
grid information service, giving nod to DNS, is a hier-
archical decomposition of the global name space into
a top layer under centralized control. But at the low-
est level, where the resources themselves reside and
the need for complex relationships is greater, adminis-
trators can be free to choose the implementation that
best suits their needs. They may choose to decompose
the hierarchy all the way down to the leaves, or may
instead choose a non-hierarchical representation.

To enable interoperability between levels, the in-
terface language must be expressive. The Open Grid
Services Architecture (OGSA) e�ort [7] is a positive
step toward standardization on a richer protocol.
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