
An Optimization Problem in Adaptive Virtual
Environments

Ananth I. Sundararaj Manan Sanghi John R. Lange Peter A. Dinda
{ais,manan,jarusl,pdinda}@cs.northwestern.edu

Department of Computer Science
Northwestern University

ABSTRACT
A virtual execution environment consisting of virtual machines
(VMs) interconnected with virtual networks provides opportu-
nities to dynamically optimize, at run-time, the performance of
existing, unmodified distributed applications without any user
or programmer intervention. Along with resource monitoring
and inference and application-independent adaptation mecha-
nisms, efficient adaptation algorithms are key to the success
of such an effort. In previous work we have described our
measurement and inference framework, explained our adapta-
tion mechanisms, and proposed simple heuristics as adaptation
algorithms. Though we were successful in improving perfor-
mance as compared to the case with no adaptation, none of our
algorithms were characterized by theoretically proven bounds.
In this paper, we formalize the adaptation problem, show that
it is NP-hard and propose research directions for coming up
with an efficient solution.

1. INTRODUCTION
Virtual machines greatly simplify wide-area distributed com-

puting by lowering the abstraction to benefit both resource
users and providers [1, 4]. We have been developing a mid-
dleware system, Virtuoso, for virtual machine grid computing.
Virtuoso, for a user, very closely emulates the existing process
of buying, configuring, and using a computer or a collection
of computers from a web site. Instead of a physical computer,
the user receives a reference to the virtual machine which he
can then use to start, stop, reset, and clone the machine.

The nature of the network presence that the virtual machine
gets depends solely on the policies of the remote site. To deal
with this network problem we developed VNET [8], a sim-
ple layer two virtual network tool. VNET is ideally placed
to monitor the resource demands of the VMs. The VTTIF
(Virtual Topology and Traffic Inference Framework) compo-
nent of Virtuoso achieves this [2]. In addition, the execution
environment can use the naturally occurring traffic of existing,
unmodified applications running inside of the VMs to measure
the characteristics of the underlying physical network.

2. DYNAMIC ADAPTATION PROBLEM
IN VIRTUAL EXECUTION ENVIRON-
MENTS

Any application running in a distributed environment must
adapt to the continuously changing network and computing

resources. Despite many efforts, adaptation has remained very
application specific.

A virtual execution environment, such as Virtuoso 1, pro-
vides an opportunity to dynamically optimize, at run-time, the
performance of existing, unmodified distributed applications
running on existing, unmodified operating systems without any
user or programmer intervention. However, a number of chal-
lenges must first be met. Figure 1 illustrates a simplified adap-
tation scenario wherein a greedy heuristic drives overlay topol-
ogy and routing changes, leveraging data inferred by VTTIF.

Measurement and inference: This involves (a) measuring
the traffic load and topology of applications running inside the
virtual machines, (b) monitoring the underlying network and
inferring its topology, bandwidth and latency characteristics,
and (c) measuring host and VM characteristics such as their
size, compute capacities and demands. In previous work [2, 3]
we have shown how to successfully accomplish these tasks.

Adaptation mechanisms: A wide variety of adaptation mech-
anisms are possible in the context of virtual execution envi-
ronments, such as (a) VM migration, (b) overlay topology and
routing changes, and (c) network and CPU resource reserva-
tion where possible. These have been described previously [9,
6, 7].

Adaptation algorithm: Most importantly, we need an ef-
ficient algorithm to drive the adaptation mechanisms while
guided by the measured and inferred data. Note that there may
be a variety of reasonable adaptation goals in terms of latency,
throughput, congestion, workload etc. For this paper we for-
mulate the problem with the goal of maximizing application
throughput.

VNET monitors the underlying network and provides a di-
rected VNET topology graph, G = (H,E), where H are VNET
nodes (hosts running VNET daemons and capable of support-
ing one or more VMs) and E are the possible VNET links.
Note that this may not be a complete graph as many links may
not be possible due to particular network management and se-
curity policies at different network sites. VNET also provides
estimates for the available bandwidth and latencies over each
link in the VNET topology graph. These estimates are de-
scribed by a bandwidth capacity function, bw : E → R, and a
latency function, lat : E → R.

In addition, VNET also collects information regarding the
space capacity (in bytes) and compute capacity made available
by each host, described by a host compute capacity function,
compute : H → R and a host space capacity function, size

1http://virtuoso.cs.northwestern.edu

Dynamically created ring topology (“fast path links”) amongst the VNETs
hosting the VMs, matching the communication topology of the application
running in the VMs (ring in this case) as infered by VTTIF

Foreign host
LAN 1

User’s
LAN

Host 2
+

VNET

Proxy
+

VNET

���
network

Host 3
+

VNET

Host 4
+

VNET

Host 1
+

VNET

Foreign host
LAN 3

Foreign host
LAN 4

Foreign host
LAN 2

VM 1

VM 4
VM 3

VM 2

Resilient Star Backbone

Merged
matrix as
inferred by
VTTIF

Figure 1: As the application progresses VNET adapts its
overlay topology to match that of the application commu-
nication as inferred by VTTIF leading to a significant im-
provement in application performance, without any par-
ticipation from the user.

: H → R. The set of virtual machines participating in the
application is denoted by the set V M. The size and compute
capacity demands made by every VM are also estimated and
denoted by a VM compute demand function, vm compute :
V M → R and a VM space demand function, vm size : V M →
R, respectively.

VTTIF infers the application communication topology in
order to generate the traffic requirements of the application,
A , which is a set of 4-tuples, Ai = (si,di,bi, li), i = 1,2 . . .m,
where si is the source VM, di is the destination VM, bi is the
bandwidth demand between the source destination pair and li
is the latency demand between the source destination pair.

The goal is to find an adaptation algorithm that uses the
measured and inferred data and drives the adaptation mech-
anisms at hand to improve application throughput. In other
words we wish to find

• a mapping from VMs to hosts, vmap : V M → H, meet-
ing the size and compute capacity demands of the VMs
within the host constraints. Further, we may also be
given a set of constraint mappings from VMs to hosts
that have to be maintained at all times, represented by a
set of ordered pairs Mi = (vmi,hi), vmi ∈ VM, hi ∈ H.

• a routing, R : A → P , where P is the set of all paths
in the graph G = (H,E), i.e. for every 4-tuple, Ai =
(si,di,bi, li), allocate a path, p

(

vmap(si),vmap(di)
)

, over
the overlay graph, G, meeting the application demands
while satisfying the bandwidth and latency constraints
of the network.

Once all the mappings and paths have been decided, each
VNET edge will have a residual capacity, rce, which is the
bandwidth remaining unutilized on that edge, in that direction.

rce = bwe − ∑
e∈R(Ai)

bi

For each mapped path, R(Ai), we define its bottleneck band-
width, bb

(

R(Ai)
)

= mine∈R(Ai)

{

rce
}

and its total latency,
tl
(

R(Ai)
)

= ∑e∈R(Ai)

(

late
)

The aim of the adaptation algorithm is to maximize the sum
of residual bottleneck bandwidths over each mapped path. The
intuition behind this objective function is to leave the most
room for the application to increase performance within the
current configuration thereby increasing application through-
put.

Problem 1 (Generic Adaptation Problem In Virtual Execution
Environments (GAPVEE))

INPUT:
• A directed graph G = (H,E)
• A function bw : E → R

• A function lat : E → R

• A function compute : H → R

• A function size : H → R

• A set, VM = (vm1,vm2 . . .vmn), n ∈ N

• A function vm compute : VM → R

• A function vm size : VM → R

• A set of ordered 4-tuples
A = {(si,di,bi, li) | si,di ∈ VM; bi, li ∈ R; i = 1, . . . ,m}

• A set of ordered pairs
M = {(vmi,hi) | vmi ∈ VM,hi ∈ H; i = 1,2 . . .r,r ≤ n}

OUTPUT: vmap : V M → H and R : A → P such that
• ∑vmap(vm)=h

(

vm compute(vm)
)

≤ compute(h), ∀ h ∈ H

• ∑vmap(vm)=h
(

vm size(vm)
)

≤ size(h), ∀ h ∈ H
• hi = vmap(vmi), ∀Mi = (vmi,hi) ∈ M
•

(

bwe −∑e∈R(Ai) bi
)

≥ 0, ∀e ∈ E

•
(

∑e∈R(Ai) late
)

≤ li, ∀e ∈ E
• ∑m

i=1

(

mine∈R(Ai)

{

rce}
)

, where rce = (bwe −∑e∈R(Ai) bi), is
maximized

3. A SPECIAL CASE OF THE ADAPTA-
TION PROBLEM

The generic adaptation problem seeks a mapping, vmap,
from VMs to hosts and a routing, R, of VM traffic over the
overlay network, G. To establish the hardness of the problem,
we consider a special case of the problem wherein all the VM
to host mappings are constrained by the ordered pairs M and
latency demands are dropped, leaving us only with the routing
problem.

Since the mappings are pre-defined, we can formulate the
problem in terms of only the hosts and exclude all VMs. Also,
as the latency demands have been dropped, the application 4-
tuple reduces to 3-tuple, Ai = (si,di,bi), si,di ∈ H, bi ∈ R,
i = 1,2 . . .m. Notice that now si,di ∈ H as VM to host map-
pings are fixed and VMs are synonymous with the hosts that
they are mapped to.

Problem 2 (Routing Problem In Virtual Execution Environ-
ments (RPVEE))

INPUT:
• A directed graph G = (H,E)
• A function bw : E → R

• A set of ordered 3-tuples
A = {(si,di,bi) | si,di ∈ H; bi ∈ R; i = 1, . . . ,m}

OUTPUT: R : A → P such that
•

(

bwe
)

−
(

∑e∈R(Ai) bi
)

≥ 0, ∀e ∈ E,
• ∑m

i=1

(

mine∈R(Ai)

{

rce}
)

, where rce = (bwe −∑e∈R(Ai) bi), is
maximized

V3

V2

V1
V4

1

V3

V2

V1
V4

1

1 1

1

1

1+ε 1+ε

1

1+ε

1+ε 1+ε

V3V1

V4V2

V4V1

V2V1

A set of ordered 2-tuples

V3

V4

V4

V2

1V1

1V2

1V1

1V1

A set of ordered 3-tuples

si di

disi bi

Given an arbitrary instance of EDPP

Converted to a particular instance of RPVEED

A directed graph G = (H,E)

A complete directed graph G = (H,E)

A function bw : E -> R

Figure 2: Reducing EDPP to RPVEED. The edge weights
are bandwidths as specified by the function bw.

4. ANALYSIS

Theorem 1. RPVEE is NP-hard.

The NP-hardness for the problem is established by reduc-
tion from the Edge Disjoint Path Problem (EDPP) which is
shown to be NP-complete in [5]. In the interest of space we
provide only a brief sketch of the reduction here.2

Problem 3 (Edge Disjoint Path Problem (EDPP))

INPUT:
• A graph G = (H,E), |H| = p, |E| = q
• A set of ordered 2-tuples S = {(si,di) | si,di ∈ H; i = 1, . . . ,k}

OUTPUT:
• Yes, if and only if ∀(si,di) ∈ S their exist edge disjoint paths

from si to di in G = (H,E)

• No, otherwise

For reducing EDPP to an instance of the decision version of
RPVEE (RPVEED), construct a complete graph G′ = (V,E ′)
where bw((u,v)) = 1 + ε if (u,v) ∈ E and bw((u,v)) = 1 if
(u,v) /∈ E. Further for all (si,di) ∈ S , let (si,di,1) ∈ A . Fig-
ure 2 illustrates this reduction. Note that there exists edge dis-
joint paths for the EDPP if and only if the sum of bottleneck
bandwidths in the instance of RPVEED is k·ε.

Since GAPVEE is a special case of RPVEE, the following
theorem immediately follows.

Theorem 2. GAPVEE is NP-hard.

5. STATUS
We have previously developed a variety of heuristics to drive

the adaptation mechanisms [9]. Though they were successful
in improving performance relative to the naive approach (with
no adaptation), we believe there is significant scope for im-
provement. Therefore, as a first step, we have formalized the
adaptation problem and given preliminary results of its hard-
ness.

Even though the problem in this most generic incarnation is
computationally hard, special cases of the problem amenable

2Complete proofs at: http://virtuoso.cs.northwestern.edu/

to efficient solutions will be of significant interest as we have
a working system wherein various adaptation algorithms can
be deployed and studied conveniently.

There are a number of well studied variants of our problem
such as routing un-splittable flows. We believe that the rich
collection of approximation algorithms already available for
them can be adapted to our specific problem. Accordingly, we
have begun work in that direction.

6. CONCLUSION
We formalize the adaptation problem that arises in virtual

execution environments consisting of virtual machines inter-
connected by virtual networks. Such a platform provides op-
portunities to dynamically optimize, at run-time, the perfor-
mance of existing, unmodified distributed applications running
on existing, unmodified operating systems without any user or
programmer intervention. We show that the adaptation prob-
lem is NP-hard and propose potential research directions for
coming up with efficient solutions to certain interesting spe-
cial cases.

7. REFERENCES
[1] R. Figueiredo, P. A. Dinda, and J. Fortes. A case for grid

computing on virtual machines. In Proceedings of
ICDCS, May 2003.

[2] A. Gupta and P. A. Dinda. Infering the topology and
traffic load of parallel programs running in a virtual
machine environment. In Proceedings of the 10th
Workshop on Job Scheduling Strategies for Parallel
Program Processing(JSSPP), June 2004.

[3] A. Gupta, M. Zangrilli, A. I. Sundararaj, P. Dinda, and
B. Lowekamp. Free network measurment for adaptive
virtualized distributed computing. Technical Report
NWU-CS-05-13, June 2005.

[4] X. Jiang and D. Xu. Soda: A service-on-demand
architecture for application service hosting platforms. In
Proceedings of the 12th IEEE International Symposium
on High Performance Distributed Computing (HPDC),
pages 174–183, June 2003.

[5] R. Karp. Compexity of Computer Computations, chapter
Reducibility among combinatorial problems, pages
85–103. Plenum Press, New York, 1972.

[6] J. R. Lange, A. I. Sundararaj, and P. A. Dinda. Automatic
dynamic run-time optical network reservations. In
Proceedings of the 14th International Symposium on
High Performance Distributed Computing (HPDC), July
2005.

[7] B. Lin and P. A. Dinda. Vsched: Mixing batch and
interactive virtual machines using periodic real-time
scheduling. In Proceedings of ACM/IEEE SC 2005
(Supercomputing), 2005.

[8] A. I. Sundararaj and P. A. Dinda. Towards virtual
networks for virtual machine grid computing. In
Proceedings of the 3rd USENIX Virtual Machine
Research and Technology Symposium (VM), May 2004.

[9] A. I. Sundararaj, A. Gupta, and P. A. Dinda. Increasing
application performance in virtual environments through
run-time inference and adaptation. In Proceedings of the
14th International Symposium on High Performance
Distributed Computing (HPDC), July 2005.

