CARAT: A Case for Virtual Memory through
Compiler- and Runtime-Based Address Translation

Brian Suchy
Simone Campanoni
Nikos Hardavellas

Peter Dinda
Department of Computer Science, Northwestern University
Evanston, Illinois, United States

Abstract

Virtual memory is a critical abstraction in modern computer
systems. Its common model, paging, is currently seeing con-
siderable innovation, yet its implementations continue to be
co-designs between power-hungry/latency-adding hardware
(e.g., TLBs, pagewalk caches, pagewalkers, etc) and software
(the OS kernel). We make a case for a new model for virtual
memory, compiler- and runtime-based address translation
(CARAT), which instead is a co-design between the com-
piler and the OS kernel. CARAT can operate without any
hardware support, although it could also be retrofitted into
a traditional paging model, and could leverage simpler hard-
ware support. CARAT uses compile-time transformations
and optimizations combined with tightly-coupled runtime/k-
ernel interaction to generate programs that run efficiently
in a physical address space, but nonetheless allow the kernel
to maintain protection and dynamically manage physical
memory similar to what is possible using traditional virtual
memory. We argue for the feasibility of CARAT through
an empirical study of application characteristics and kernel
behavior, as well as through the design, implementation, and
performance evaluation of a CARAT prototype. Because our
prototype works at the IR level (in particular, via LLVM bit-
code), it can be applied to most C and C++ programs with
minimal or no restrictions.

This project is made possible by support from the United States Na-
tional Science Foundation through grants CCF-1533560, CNS-1763743, CCF-
1908488, and by equipment support from Intel Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI °20, June 15-20, 2020, London, UK

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-7613-6/20/06...$15.00
https://doi.org/10.1145/3385412.3385987

CCS Concepts: « Software and its engineering — Oper-
ating systems; Compilers; « Computer systems organi-
zation — Architectures.

Keywords: virtual memory, memory management

ACM Reference Format:

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter
Dinda. 2020. CARAT: A Case for Virtual Memory through Compiler-
and Runtime-Based Address Translation. In Proceedings of the 41st
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI °20), June 15-20, 2020, London,
UK. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3385412.3385987

1 Introduction

Virtual memory has been one of the foundational technolo-
gies of computer systems ever since the implementation of
paging in the Atlas Supercomputer in the 1960s [52]. Since
then, paging has involved a careful hardware/software co-
design spanning the hardware directly on the access path
to main memory and the deepest levels of the kernel. Over
the years, a steady backdrop of work has aimed at minimiz-
ing the cost (both latency and energy) of performing the
address translation from virtual to physical. More recently,
new innovation has been occurring in paging to better han-
dle the combination of exploding physical memory sizes,
challenging power/energy requirements, and workloads.
Historically, another approach to solving the problems
that paging solves, namely protection and mapping (address
binding), has been through purely software-based, language-
restricted memory management. The late 1970s IBM 801 [66]
was probably the earliest complete example of this, with Sin-
gularity [42] being the most recent. Partial implementations
of software-based memory management for arbitrary user
code, albeit lacking protection, have also been very success-
ful. Handle-based memory management within widely-used
early versions of Windows [64] and pre-2001 MacOS [5, Vol.
2, Ch. 1] was probably the most visible, and remains current
in some of today’s hardware MMU-free embedded systems.
We argue that it is time to revisit software-based memory
management on large-scale machines running arbitrary code.
The complexity and costs of the hardware support for paging
are becoming limiting. The hardware structures supporting

https://doi.org/10.1145/3385412.3385987
https://doi.org/10.1145/3385412.3385987
https://doi.org/10.1145/3385412.3385987

PLDI 20, June 15-20, 2020, London, UK

the traditional address translation model (per-core DTLBs,
ITLBs, STLBs, separate structures for different page sizes,
nested TLBs, quad pagewalkers, walker caches) together
already require almost as much area as L1 caches [11]. A
TLB consumes a significant amount of power [24, 50, 63, 78],
and is a prominent thermal hot spot [65]. Early studies find
that TLB power consumption is as high as 15-17% of the
chip power [47, 49]. Subsequent works corroborate these
findings, with industry reporting that TLBs consume up to
13% of a core’s power [30, 70], and later studies estimating
that TLBs are responsible for 20-38% of the energy consumed
by an L1 cache [10, 29]. Increasingly distributed TLBs are no
panacea either, as there are significant overheads associated
with keeping them coherent [4, 6, 11, 62, 76, 79].

Modern processors employ these hardware structures de-
spite their high overheads because performance largely de-
pends on fast address translation. But, what if we can get by
without all this hardware? It is tantalizing to consider ma-
chines which do not need hardware such as TLBs, pagewalk
caches, or pagewalkers, or at least can disable and power it
down when the kernel desires. At the same time, compiler
technology has been advancing [19, 46, 51, 55, 72, 74, 75, 80]
and becoming more readily available through vehicles such
as LLVM [53]. It may have advanced to the point at which
one of the banes of software-based memory management,
namely reliance on and trust of the programmer in the case
of supporting arbitrary user code, may be surmountable.

In this paper, we reevaluate the design choice of the paging-
based model of memory management that has a hardware/-
software implementation (specifically, x64 running Linux)
by considering replacing it with a purely software-based
memory management model. We elaborate on our specific
scheme, Compiler- And Runtime-based Address Translation
(CARAT). CARAT’s goal is to achieve the same protection
and mapping capabilities for arbitrary code that paging pro-
vides, with similar overheads, but without hardware support.
CARAT also exposes other potential advantages because it
can operate at any granularity.

CARAT is based on specialized code injection, new opti-
mizations, and code signing, all implemented in LLVM, and
thus applicable to any language from which LLVM bitcode
can be generated. Compiler middle-end transformations re-
sult in output code that operates using physical addresses,
but that invokes a CARAT runtime on allocations and pointer
escapes (references to allocations in memory), and guards
memory references against kernel-supplied protection re-
quirements. A key insight is that modern compiler optimiza-
tions allow these potentially very costly operations to often
be eliminated or amortized, resulting in low performance
overhead in normal execution of the code. The kernel up-
calls into the CARAT runtime in order to change protections
or move memory, as needed. These changes are then dy-
namically implemented by patching the memory image of
the running program. A key insight is that such runtime

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda

operations are possible with minimal performance overhead.
Our contributions are as follows:

o We describe the design of CARAT in contrast to paging
and discuss its potential advantages (§2).

e We present an empirical feasibility study of CARAT
that shows that its prerequisites can be met (§3).

e We illustrate the design, implementation, and evalua-
tion of a prototype CARAT system that allows experi-
mentation on Linux (§4).

Overall, we make the case for CARAT, and indirectly, for
revisiting software-based memory management.

2 Address Translation with CARAT

Figure 1 diagrams and compares the traditional address trans-
lation model with our proposed CARAT model. The figure
also serves to put terminology we will use throughout the pa-
per into context for both models. Our focus is on Intel/AMD
x86 processors, so when we give specifics, it is with regard to
these processors when operating in 64-bit mode (i.e.,"x64”).

There are three important high-level differences between
models to take note of. First, in the traditional model both
the kernel and the process access memory using virtual ad-
dresses. In contrast, in the CARAT model, both use physical
addresses. The second is that in comparison to the traditional
model, the CARAT model requires substantially more work
within the compiler toolchain and in the process’s run-time
environment. Finally, while the traditional model leans heav-
ily on hardware support, and cannot be effective, or work,
without it, the CARAT model requires no hardware support.
Indeed, because physical addresses are used throughout in
CARAT, there is even an opportunity to simplify and/or
speed up the remainder of the memory system.

2.1 Traditional Model

In the traditional address translation model of paging (Fig-
ure 1(a)), the compilation and linking process is simplified
because it can target an abstract virtual address space that is
independent of the actual machine’s physical address space
or how the kernel is currently using it. From the kernel’s
perspective, the process is mostly opaque, and the kernel’s
responsibility is to create the illusion of the abstract vir-
tual address space. It does this jointly with the hardware by
interposing on each and every memory reference.

Every memory reference, including an instruction fetch,
has its virtual address (VAddr) translated to a physical address
(PAddr) that is ultimately the address the memory system
uses. On x64 and other processors, the VAddr is also used
to immediately begin the cache line lookup in the highest
level(s) of the cache hierarchy, but before any data is returned,
the PAddr resulting from translation is used to determine
if there was a cache hit. Typically, the L1 cache is virtually
indexed, but physically tagged.

CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based Address Translation

‘ Arbitrary Code (C, C++, ...) ‘ T p—

ICompiler 1]

‘ Intermediate Representation ‘

VAddr

Mapper
Kernel 1 1

v
Obiject File |

Link

1
1
1
1
1
1
1
1
1
1
1
1
1
|
1

M
e

Hierarchy
PAddr
v Page Tables
‘ Binary ‘ DRAM
COMPILE TIME RUN TIME

(a) Traditional

PLDI 20, June 15-20, 2020, London, UK

Carat Binary (signed) [process]

Inform

Arbitrary Code (C, C++, ...)
with some restrictions

ICARAT Compiler v Patch

<

CARAT
Runtime

‘ Intermediate Representation ‘

Transformed
Program and State
Runtime Table
Representation

Guard
Injection

Update] Query

)

Escape
Tracking

Allocation
Tracking

‘ Intermediate Representation ‘

Transform

IChange Request

[Mapper J

Kernel

PAddr ‘
\

‘ Core ‘
PAddr {

\ Object File |

CARAT Link
Runtime
Y

Executable ‘

A
‘ Carat Binary (signed)

Cache Hierarchy

PAddr+

DRAM

COMPILE TIME RUN TIME

(b) CARAT

Figure 1. Comparison of the traditional address translation (paging) model with the CARAT model.

Address translation happens at page granularity, so in-
stead of translating VAddr—PAddr, only the bits of the VAddr
that contain the virtual page number (VPN) are translated to
(and replaced by) bits that contain the physical page number
(PPN): VPN—PPN. Technically, the translation is VPN—PTE,
where the PTE (page table entry) contains both the PPN, ac-
cess permissions and metadata about the VPN and PPN.

VPN—PPN is a mapping from occupied virtual pages in
the current virtual address space to the occupied physical
pages in the physical address space. This mapping is deter-
mined by the kernel and it may change over time. Current
systems represent mappings as radix trees.

The two central actors in address translation are the trans-
lation lookaside buffer (TLB) and the pagewalker. The TLB
caches translations that have been read from the in-memory
page tables, and its extremely high hit rate is essential to pro-
viding modern address translation with little performance
overhead compared to using physical addressing. When the
TLB misses, the pagewalker traverses the in-memory page
tables using physical addresses until it finds the relevant PTE
and places the mapping into the TLB.

2.2 CARAT Model

In the CARAT model (Figure 1(b)), the hardware can be
considerably simplified, but the compilation and run-time
environment are considerably more complicated. Because
only physical addresses are used, the TLB and pagewalker
can be eliminated. In a system that provides both the tradi-
tional and CARAT models, the kernel could switch between
them with simple hardware support. For example, on x64,
physical addressing could be reintroduced, allowing a kernel
write to set CRO.PG to zero to disable paging, a capability
already present when an x64 processor is run in 32-bit mode.

Compile-time: The compilation process in CARAT in-
volves three additional steps compared to the traditional
model. The first additional step is a set of transformations
that serve as the basis for making the executing process both
safe and malleable. Allocation tracking introduces instrumen-
tation code that invokes the runtime whenever there is a
memory allocation. An allocation is a broad term in CARAT,
and includes both static allocations (e.g., globals), and dy-
namic allocations (e.g., mallocs, stack allocs, etc). Escape
tracking is similar, and introduces instrumentation code that
invokes the runtime whenever a pointer is copied (an escape)
or destroyed. Allocations and pointer escapes from the initial
state of the program’s globals are recorded at load time.

Conceptually, guard injection introduces a guard to ev-
ery load, store, and call instruction. A guard verifies that
the physical address about to be used by the instruction is
within the restricted set allowed by the kernel and that the
appropriate access permissions hold. The kernel essentially
provides a dynamic set of address regions and their privileges
to the CARAT runtime, and a guard checks the address range
of the prospective access against this set.

Obviously, if each relevant instruction truly were guarded,
the overhead of CARAT would be abysmal. As we describe in
more detail in Sections 3-4, the CARAT model heavily relies
on compiler optimization technology, including new CARAT-
specific optimizations, to eliminate, combine, or amortize
guards in many situations. An important result is that this is
possible in a wide range of programs.

It may seem strange to guard call instructions, but this is
necessary since the call’s push of the return address onto the
stack could overrun a valid region. Additionally, the prologue
and epilogue code the compiler produces for the callee may
also perform stack accesses. A call guard verifies that all

PLDI 20, June 15-20, 2020, London, UK

such “hidden” stack accesses will be within a legal region.
A failed guard involving the stack causes the kernel to be
invoked. This provides a mechanism by which the kernel can
implement seamless stack expansion, if desired. A compiler
could also ensure that the control flow of calls and returns
happens on a separate control flow stack, thus making a
stack-oriented attack, even ROP, impossible.

How can CARAT guard instruction fetches, which are
also memory references? Instead of guarding them, we place
minimal restrictions on the code that we can compile which
guarantees that the compiler can prove that all control flow
is local to the code it produces (including libraries). All con-
trol flow is then implemented using PC-relative means (we
force position independence for all code, but not data). The
executable is statically linked, resulting in the code being
mobile—the kernel can stop and move the code at any time.

The restrictions needed for the compiler to be able to as-
sure that all control flow is self-contained are the following:
(1) No undefined behavior is allowed. When detected, compi-
lation fails. (2) No self-modifying code is permitted. If casts
from/to function pointers to/from data pointers are detected,
or pointer arithmetic on function pointers is detected, com-
pilation fails. (3) No inline assembly or separate assembly is
allowed. These restrictions apply only to user programs.

The second compilation step involves linking the program
with the CARAT runtime that serves as the backend for the
guards and the escape/allocation tracking code. The run-
time is also the interface with the kernel. A key idea is that
the runtime can patch every pointer in the program that is
affected by a change in mapping the kernel wants to make.

The final compilation step involves signing the resulting
binary with the credentials of the compiler toolchain, so that
it is easy to validate that a specific compiler made the binary.
A kernel can then determine whether to trust the binary
based on the provenance of the compiler.

Run-time: CARAT processes and the kernel run within a
single physical address space using physical addresses. This
is a marked difference from the traditional model.

At program load time, the kernel first validates the sig-
nature on the binary, and then decides whether to trust the
compiler or software/hardware stack that built it. It then se-
lects an appropriately-sized region of memory for the code,
and initial regions for the program’s globals (e.g., data and
bss) and stack. Next, it copies the program code (including
the CARAT runtime, guards, and allocation/escape tracking)
and initialized data into the relevant regions, and then it ini-
tializes bss and the stack. It then writes the currently allowed
regions into space set aside in the runtime for this purpose.
Finally, it invokes the runtime for the first time. This initial
change request causes the runtime to perform a patch of all
global pointers to reflect their initial targets given the layout
the kernel has decided on. The kernel then invokes the entry
point of the program to get the process running.

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda

During normal execution, allocations and escapes that
occur inform the CARAT runtime which then uses them to
update its tracking data structures. Guards are invoked as
needed. If a guard fails to validate an address against the
kernel-supplied regions, it causes the kernel to be invoked,
similar to a page fault in the traditional model. Thread cre-
ations or other sources of additional stacks are handled read-
ily since these added stacks are allocated in heap memory.

To change the available regions of physical memory or
their permissions, the kernel does an upcall that forces all
running threads to dump their register state on their stacks.
The CARAT runtime then performs a barrier and notifies
the kernel that it is safe to change the regions. The kernel
modifies the region set and notifies the runtime, which then
resumes every thread. The next guard will see the changes.

A more significant operation is when the kernel decides
to move a range of data pages. As with a region change, the
kernel first forces all threads into the CARAT runtime, where
they perform a barrier. Note that forcing each thread out also
dumps is current register state onto its stack. This makes
in-register pointers visible for patching, similar to what is
necessary in garbage collection. The kernel next informs the
runtime of the page range migration it intends. The runtime
uses the source range as a query on its data structures to find
all allocations that overlap with the range. If an allocation
only partially overlaps the page, the runtime coordinates
with the kernel until the kernel either selects a range that
does not have an overlapping allocation, or expands the
initially selected one to meet the same requirement.

After the source range has been determined, the CARAT
runtime queries its data structures (and the register snap-
shot on the stack) to find all escapes of all allocations in the
source range. It then patches each escape with the address
the pointer will have once the data in the source range has
been moved into the destination range. That is, the CARAT
runtime swizzles all pointers affected by the proposed data
movement to point to where the data they point to will land
once the movement is complete. Next, it informs the kernel
that it has finished this task. The kernel then performs the
data movement, and resumes all threads of the process.

Note that migrations of pages to/from swap, as well as
demand paging from a file, can also be accomplished in this
framework. To make a page unavailable, we patch its affected
pointers to a physical address that will cause a fault. In x64
systems, one option is to use a non-canonical address. Since
the range of non-canonical addresses is vast, the specific non-
canonical address can be used to encode different conditions
(e.g., swapped, demand-page, “null pointer”, etc).

By using these two kinds of change requests, the kernel
can accomplish the main goals of address translation, namely
protection and migration of physical pages, without using
virtual addresses or the hardware needed to support them.

Architectural benefits: it is important to note that obvi-
ating the need for paging decouples the design of the L1D

CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based Address Translation

cache from constraints imposed by the virtual memory. For
example, modern core designs bend over backwards to hide
the latency to access the level-1 DTLB through the use of
a virtually indexed and physically tagged model, which is
itself severely complicated by the fact that two virtual pages
can be synonyms for the same physical page. x64 processors
today handle this problem through the use of L1D cache
associativities that are much higher than what is necessary
for low miss rates (e.g., 64KB 16-way) [10]. Doubling the
L1D capacity to 128KB or 256KB would require a 32-way or
64-way set associativity respectively, which may well be too
slow and power-intensive. In contrast, CARAT would cut
loose cache design from the anchor of synonyms and paging.
L1D caches under CARAT could have far higher capacities
and thus lower miss rates, while matching or surpassing
current latency and energy requirements.

2.3 Security and Trust

The goal of CARAT is to provide the same protection ca-
pabilities as the traditional paging model: the application
may only access physical addresses chosen by the kernel,
and then only via the kernel’s chosen access types. The pro-
totype described in this paper protects regions (contiguous
runs of physical addresses). The more regions in the applica-
tion’s address space, the higher the cost of this protection at
run-time, which makes compile-time optimization (to elim-
inate access checks) and run-time adaptation (to minimize
the number of regions) essential for performance. Also note
that while the prototype operates at the page granularity,
this is not strictly required by CARAT (Section 6), which
may be an advantage for protection.

To achieve this protection, CARAT shifts the trusted com-
puting base (TCB) from the traditional model’s composite of
the hardware and the kernel to the composite of the compiler
and the kernel. Note that the hardware component here is
massive given the need for low latency, plus x64 hardware
paging is inherently complex (it is Turing-complete [7]),
which suggests it itself is not immune from attack and, in-
deed, has been attacked [26]. Reducing the hardware foot-
print with the TCB is a potential advantage of CARAT.

Arguably, the traditional model’s TCB already includes
the compiler, as the compiler is used to build the kernel.
Furthermore, other work, such as Keystone-Enclave [54] and
the nVIDIA toolchain also shift responsibility within the TCB
to include the compiler. There are two subtle points, however.
CARAT relies on extensive compiler optimizations that are
based on existing and new analysis techniques [19, 46, 51, 55,
72,74,75,80]. These elements expand the size and complexity
of the compiler beyond that needed to build a kernel in the
traditional model. In the case of the prototype, by 63,168 lines
of C++. Furthermore, while in the traditional model, analysis
or optimization bugs when compiling the application can at
worst damage the application, in the CARAT model, such
bugs could lead to protection violations.

PLDI 20, June 15-20, 2020, London, UK

2.4 Undefined Behavior

Undefined behavior in C/C++ include integer overflow, un-
sequenced modifications, data races, loops that do not ter-
minate, strict aliasing violations, memory safety violations,
and alignment violations. The only undefined behaviors that
concern CARAT are the last three. The additional code (the
guards) added by CARAT to the program’s original code guar-
antees protection even in the presence of these undefined
behaviors. A guard validates each memory access against the
kernel’s permitted regions of physical addresses, and aborts
on an out-of-bounds access. Hence, protection is guaranteed
even in the presence of undefined behavior. A CARAT opti-
mization only changes a guard when it can prove that this
invariant is not changed. Finally, the last memory accesses
to consider are those generated by the compiler’s back-end.
Such accesses are controlled by CARAT and trusted by design
as CARAT includes the compiler in the TCB.

3 Feasibility

Can the CARAT model possibly be as—or more—effective
than the traditional model? We now consider the require-
ments that must be met for CARAT to be feasible and effec-
tive, and provide empirical evidence that they are met.

Benchmarks and Testbeds: We use a set of benchmarks
important to a variety of communities. From Mantevo [8, 39]
we use the HPCCG benchmark. From NAS [45], we draw CG,
EP, LU, and FT. From PARSEC [15] we use blackscholes, body-
track, canneal, fluidanimate, freqmine, streamcluster, swap-
tions, and x264. Finally, from SPEC2017, we include deep-
sjeng_s, Ibm_s, mcf_s, nab_s, namd_r, x264_s, xalancbmk_s,
and xz_s. These were chosen to represent different kinds of
interactions with the kernel virtual memory system.

All numbers we report, with with one exception, are col-
lected on a dual-socket system with 2.3 GHz Intel Xeon
E5-2695 v3 processors and 256 GB of DRAM spread across 2
NUMA zones. It runs RHEL Server release 7.7 with a 3.10.0
kernel. The only exception pertains to the results of Table 2
which are collected on a Dell T620 with two 1.8 GHz In-
tel Xeon E5-2603 v2 processors and 32 GB of DRAM spread
across 2 NUMA zones. It runs Ubuntu 18 with a 4.18.0 kernel.

The Traditional Model is Expensive: Because of the
interaction of cache hierarchies and address shown in Fig-
ure 1(a), every cycle lost in TLB misses is a cycle that may
be lost in application performance. Growing TLB capacity is
extremely challenging, resulting in level-1 TLBs that have
stayed quite small (e.g., 64 DTLB entries in modern Intel pro-
cessors [44]) and level-2 TLBs growing only glacially (e.g.,
from 1024 STLB entries on 2013’s Haswell to 1536 on today’s
generation). The growth in reach has also been modest, cul-
minating in perhaps 3 GB in today’s TLBs. The combined
pressure to keep delay, power and area at bay, ultimately
hamper the growth of traditional address translation.

PLDI 20, June 15-20, 2020, London, UK

0.5

0.125
0.03125
0.0078125

DTLB Misses/1K Instr.

I R R R)
- S T ot B B I B
I
<

[
IS
o
a
a
o
o

°

Canneal |GG

Fluidanimate |

Fregmine
Streamcluster

Bodytrack |

Blackscholes
Swaptions
xalancbmk

Figure 2. Level-1 DTLB misses per 1000 instructions.

While TLB reach remains uncomfortably low, data foot-
prints continue to grow exponentially [1, 17, 37, 68], and
workloads often suffer TLB misses and long-latency page
walks to satisfy data and instruction fetch requests [12, 13, 24,
32, 38,50, 63, 69, 78]. In Figure 2, we report our own measure-
ments of the level-1 DTLB miss rates for our benchmarks,
collected using Intel’s PMU tools [44]. Some workloads in-
cur more than 116 DTLB misses per thousand instructions.
Despite the STLB, these misses still translate into one page
walk per thousand instructions on average, and as many as 6
page walks for some workloads. Given that each page walk
consumes 47 cycles on average for our workload suite, and
sometimes as much as 108 cycles, it is easy to see why the
cost of address translation continues to be a vexing problem.
Prior studies largely corroborate the high cost of TLB misses,
and the need to mitigate it has fueled much contemporary
research [3, 9, 12-14, 24, 32, 38, 50, 63, 69, 78].

Protection and Mapping can be Separated: Traditional
address translation by paging as in Figure 1(a) solves es-
sentially two problems. The first is mapping, which allows
the kernel to dynamically move memory content located
in physical memory. Such dynamic movement of content
also includes the ability to allocate space for new content
and to migrate content to/from physical memory (swapping,
demand paging, etc). The second problem the traditional
scheme solves is protection. It allows a (possibly overlap-
ping) partition of the physical address space into parts that
the process can access, and parts it cannot. This partition is
also informed by the type of access needed (on x64, {none,
read, read+write} X {none, exec} X {user, kernel}). While tra-
ditional paging achieves protection by considering the page
table entry (PTE) associated with the virtual address, it is the
binding of the physical address and the access type encoded
in the PTE itself that is the heart of protection.

Protection and mapping enable a range of kernel mecha-
nisms and services, such as shared libraries, copy-on-write,
shared memory, automatic stack expansion, debugging, dis-
tributed shared memory, garbage collector accelerators, and
zero-copy I/O. It is feasible to implement these on a CARAT
system. The essential concept, of causing the kernel to be
invoked on a user-level memory reference to a page that the
kernel previously set up to be inaccessible, can also be built
in CARAT. By moving the page address out of any guard

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda

Table 1. Effectiveness of Compiler Optimizations.

Benchmark Opt. Total | Untouched | Opt. Opt. Opt.

Guards Guards 1 2 3
HPCCG 0.405 0.297 0.073 0.035 0.606
CG 0.723 0.218 | 0.130 | 0.375 | 0.278
EP 0.439 0.245 | 0.108 | 0.085 | 0.561
FT 0.592 0.175 | 0.096 | 0.321 0.408
LU 0.757 0.133 | 0.035 | 0.589 | 0.243
Blackscholes 0.320 0.249 | 0.071 0 | 0.680
Bodytrack 0.213 0.136 | 0.048 | 0.030 | 0.787
Canneal 0.587 0.390 0.197 0 0.413
Fluidanimate 0.402 0.210 | 0.192 0| 0.604
Freqmine 0.798 0.513 0.102 0.183 0.202
Streamcluster 0.400 0.316 | 0.083 0 | 0.600
Swaptions 0.343 0.279 0.064 0 0.657
X264 0.685 0.515 | 0.098 | 0.071 0.315
deepsjeng_s 0.583 0.431 | 0.091 | 0.061 | 0.417
Ibm_s 0.762 0.066 0.098 0.598 0.238
mcf_s 0.804 0.406 | 0.098 | 0.300 | 0.196
nab_s 0.534 0.315 0.145 0.075 0.466
namd_r 0.764 0.555 | 0.055 | 0.154 | 0.236
omnetpp_s 0.665 0.408 | 0.235 | 0.021 0.335
x264_s 0.660 0.495 | 0.089 | 0.076 | 0.341
xalancbmk_s 0.781 0.488 | 0.227 | 0.065 | 0.219
XZ_S 0.687 0.442 | 0.148 | 0.097 | 0.313
Arith. Mean 0.587 0.331 | 0.113 | 0.143 | 0.414

region, or by patching the escapes of all allocations on the
page to point to a non-canonical address, the kernel can set
the trap needed to regain control when the page is touched.

While mapping and protection are active when executing
in the kernel, they are configured to be much more lax. In a
modern kernel, the entire physical address space is mapped
into the kernel virtual address space, which already allows
any kernel code to access any physical address. Hence, the
CARAT model of having the kernel run directly using physi-
cal addresses presents little difference.

The traditional scheme, as applied in x64, also serves
as a place to encode the semantics (cache-ability, write-
combining, etc) of the underlying physical addresses, in the
form of the page attribute table (PAT) extension. Note that
PAT coexists with another model, the memory type range
registers (MTRRs) which operate independently of paging.
The MTRR mechanism would be used on a CARAT system.

Tracking for shared libraries would require that LLVM
bitcast-level typing information be preserved in the library
file and made available for the runtime to track. More gen-
erally, enough information must be exist to track pointer
escapes across process boundaries.

Protection can be Maintained through Other Mech-
anisms: In CARAT, only physical addresses are used. Hence,
we must be able to prevent invalid accesses to physical mem-
ory. We do so, conceptually, by guarding each memory ref-
erence in the program using compiler-injected code and
compiler-maintained invariants. While the simplest form
of this obviously has an impossibly high overhead, it is im-
portant to understand that compiler technology can greatly

CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based Address Translation

PLDI 20, June 15-20, 2020, London, UK

W Baseline ® MPX Guard M Range Guard 5.377

6 4.627 1.922
o 1.88 3.842
(]
3 1.575
£ 4 2.627 2.801
£ 2.318
g $§732 1.838 1.972 2.13 2155 1216 2252 4 o 2274 1237 1.183 1722 1536 2.096
& . 1088 1145 1166 1166 1237 1.344 1555 7% 12 66 1517 1364 1.079 - . 1.25
3 2 1.031 111 1:565 1.522.1.138 1.042 : 1.105 1,112
N
g o
S G o 4 2\ \D) S * A e @ N 3 B s 3 3 s < 3 S ° N
z o2 O <« o< W0 @ @ @ o 08 0 ©F & T 0 eh gl

eC & &€ o . A eo‘((\ < oY * ‘\6(\ o @) N o9 *"LB o' o
A %\ad‘ P ¥ @ G« %\‘ep S 6?’696 O *a\,g\ o
(a) Guard injection with general optimizations

6 M Baseline ™ MPX Guard M Range Guard
el
3
£ 4 2.327 ”o
¢ 1.031 1.606 1.792 034 1785 1.815
° 1079 1176 1.019 1.04 1142 ;05 3% 1099 1.145 :'3124 1.014 1.103 1.145 0.999 1'122 1283 1,054 ‘LZ?? 1.111 1?3‘7‘ 1.402 1.358
3 1.018 1.001 0996 0.995 1.002 1907 1035 1013 1.075 = 1.01 1.001 1T 1.039 . 1.092 1.059
2
] O O < < \) e N 2 2) CN-Y o S s Y S < Y Y =y o
z c© © < < A RPN\ S QT o™ 0° o &5 ®F S0 RF T @ @

\4 & ANV of < g™ « Rt 3P o ¥ <
o %\ac'\‘\ %06{\ P G ¢ %e;a @° 62696\ « 0‘0(\"" + *Q)\a(\ 2

(b) Guard injection with CARAT-specific optimizations

Figure 3. Overhead of protection is very small with modern compiler optimizations.

improve the overhead in most cases, and that hardware as-
sistance, both current and future, could improve it further.

We consider the physical address space to be partitioned
into regions, with a set of regions being available to the
process. Note that because of the ability to dynamically move
memory content, these regions are not fixed. A guard needs
to verify that an address is within some valid region.

In the simplest case, the process has a single region. This
can be achieved using a linkage model similar to a “dark
capsule” [25]. In this model, the default stack is placed be-
low the text, resulting in a contiguous range of addresses.
Additional stacks are allocated from the process heap, and
shared libraries are loaded into heap-allocated space.

The single-region model is not intrinsic to CARAT, but
it does represent an optimal case for protection via guards.
Given that most processes tend to have a small number of
contiguous regions in their memory map (Section 5), a multi-
region guard searchs a smaller space compared to the space
of PTEs in the traditional model. Much more important than
the complexity of the guard is the ability to avoid invoking
it in the common case by using compile-time analysis.

Note that run-time software-only guards cannot protect
against instruction fetches from disallowed addresses. A de-
scription of how this is handled as given in Section 2.2. Issues
regarding stack-modifying control flow are also described
there, motivating the need for guarding call instructions.

Three forms of guards are produced. A load or store guard
checks the physical address and extent of a data reference
against the current valid region(s). A call guard precedes a
call and verifies that the stack pointer, when offset by the
maximum stack footprint of the compiler-produced code of
the target function, is within the bounds of a valid region.

Figure 3 shows overheads of single-region guards intro-
duced by CARAT in the absence of other CARAT-introduced

code. We consider guarding stores, loads, and calls with two
techniques of implemention. The straightforward technique
simply does a bounds check using compare and branch logic
(like an upper/lower bound if statement), which unfortu-
nately introduces register pressure and memory references.
We also consider implementing the guard test assuming
Intel’s MPX [43, Vol. 1, Ch. 17]. The MPX variant of the
technique (MPX Guard) does the bounds check assuming a
bounds check instruction, which compares an address to a
bounds register in a single cycle without register pressure
or introducing new memory references. In all cases, an out-
of-bounds or illegitimate address raises a general protection
fault via a non-canonical address reference or MPX violation.

Figure 4 shows the performance of pure software guards
for the worst case (random access pattern) and the best
case (strided reference pattern) as a function of the num-
ber of regions. Two mechanisms are considered: basic binary
search and an “if-tree”, which lays out the search statically.
Hardware assistance, such as the protection components of
rangeTLB [32]) or multiplexor trees [40] could be leveraged
to enhance performance. However, the most important factor
is to avoid the need for a guard in the first place.

Figure 3(a) shows the overheads for guard injection when
only readily-available compiler optimizations are applied to
the codebase. In Figure 3(b), we also apply CARAT-specific
optimizations (Section 4.1). Using the CARAT-specific opti-
mizations combined with MPX hardware support, we can
readily see that the overhead of protection is small (~5.9%).
Even without MPX hardware support, the CARAT-specific
optimizations lead to low overheads in most cases simply by
eliminating or amortizing guards. Table 1 shows how each
CARAT-specific optimization impacts the overhead. Column
“Opt. Guards” is the fraction of original guards that stati-
cally remain after the optimizations. The column “Untouched

PLDI 20, June 15-20, 2020, London, UK

t620 - Random Access

1000 ———rrey —
—<— If Tree
—+— Binary Search U X

10

Guard Time (cycles)

1 1
1 10 100 1000 10000
Number of Regions

(a) Random accesses, if-tree and binary search

t620 - Strided Access

1000 T T
If Tree stride 16384
If Tree stride 4096

If Tree stride 512

m
< —%— If Tree stride 64
> 100 F i |f Tree stride 8 E
o B = ¢ kX
£ L
£ P
° 10F // |
s £
=3
]

1 1 1 1

1 10 100 1000 10000

Number of Regions
(b) Strided accesses, if-tree

Figure 4. Performance of multi-region software guards.

Guards” is the fraction of original guards that could not be
optimized at all. The columns “Opt. 17, “Opt. 2”, and “Opt.
3” show the fraction of original guards that were optimized
through hoisting, scalar evolution, and redundancy elimina-
tion, respectively, which are described in Section 4.1.1.

The upshot here is that the combination of compiler tech-
niques and available hardware features (MPX) make it possi-
ble to fully guard all of our benchmarks with little overhead!

Typical Mappings Change Slowly with Time: In the
traditional address translation model of paging (Figure 1(a)),
a change of protection or mapping is a constant-time oper-
ation, the modification of a page table entry and an invali-
dation. In contrast, in the CARAT model, this is only true
for protection—a region change is a modification of a region
entry. A mapping change could require the patching of a
non-constant number of pointers (addressed later) and a high
rate of mapping changes could exacerbate that problem.

To study the rate of mapping changes, we run our bench-
marks on the quiescent, dedicated machine with instrumen-
tation to capture paging-related behavior. Of course, the rate
of mapping changes on a Linux platform depends on nu-
merous factors, including the overall workload set on the
machine, the memory pressure, the use of protection-based
allocation mechanisms such as first-touch NUMA allocation,
copy-on-write mechanisms and demand-paging, and the ex-
tent to which the kernel is reoptimizing the selection of
physical pages for example for NUMA optimization, kernel
same-page merging, or transparent huge pages.

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda

Our instrumentation includes three components. In the
first, static footprint capture, we examine the composite of
the ELF executable of the benchmark and all shared libraries
that it immediately depends on to find the sizes of all LOAD
sections. A LOAD section indicates a portion of the address
space that the kernel loader is obligated to eventually al-
locate and either fill from file contents (e.g., text and data
sections), or to fill with zeros (e.g., bss sections). We refer to
this space as the static footprint. The static footprint repre-
sents allocations and mappings that could be done by the
kernel immediately at program launch.

The second component, initial mapping capture, happens
when the benchmark is run. Using interposition on the static
constructor mechanism with a preload library, we pause the
program shortly after exec() completes. At this point, we
capture an initial page table snapshot using a previously
published tool [25]. The initial snapshot represents the page
allocations and mappings that have actually been done by
the Linux kernel at program launch.

Our final component, dynamic paging capture, generates
a trace of page table changes from initial mapping capture
through the end of execution. This is done with a kernel
module that uses the Linux MMU notifier [22, 23] interface.
The intended purpose of this interface is to allow external
MMUs (e.g., IOMMUSs, SRIOV MMUs, and hypervisor MMUs
(VTLBs) for virtual machines), to be informed of changes
that Linux makes to the CPU MMUs affecting a given address
space. We use it to learn of changes Linux makes to a process.

It is important to understand that the MMU notifier inter-
face essentially provides us with two kinds of events that are
of interest. One event is a PTE change in which an existing,
valid PTE now points to a different physical page (a page
move). The second, more common, event is a generalization
of a TLB invalidation that provides a range of addresses.

Note that PTE changes (like changing invalid to valid)
due to page allocations are not immediately visible in this
model. Since the relevant PTE was marked invalid before
the allocation, no PTE change event is sent—the PTE should
already be invalid in any secondary MMU. No invalidation
event is sent either, because Linux need not invalidate the
CPUs’ own TLBs either—an invalid PTE cannot possibly be
loaded in any TLB, and hence need not be invalidated. As a
consequence of these limitations, we also track the physical
size of the process address space. This lets us derive the PTE
changes that correspond to allocations.

Table 2 shows our results. Across the board, physical page
movements are incredibly rare events. This may seem sur-
prising given the commonplace use of demand paging and
copy-on-write, but our methodology counts such activity
toward the allocation rate—a faulting access, for example a
write to a read-only copy of a copy-on-write page, triggers
an allocation. Once a physical page is allocated and mapped
into a virtual page, the probability is extremely small that
the kernel will decide to shift its contents to a different page,

CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based Address Translation

Table 2. Page (4KB) Allocation and Movement Rates

Benchmark Static|Initial Page| Page| Exec| Alloc|Move

Footprint|Pages| AllocsMoves| Time| Rate| Rate
HPCCG 1,185 836| 408,106 3| 34.9s]12,027/s|< 1/s
CG 283,307| 837| 279,148 0| 401.8s| 697/s| 0/s
EP 1,628 837 347 0| 706.6s 2/s| 0/s
FT 1,713,821| 845(1,712,775 0| 717.4s| 2,388/s| 0/s
LU 174,649| 835 173,685 0]2250.5s 78/s| 0/s
blackscholes 795 463| 156,335 1| 242.9s| 645/s|< 1/s
bodytrack 1,538| 831 33,145 3| 415.2s 82/s|< 1/s
canneal 1,222| 861| 240,210 3| 177.7s| 1,356/s|< 1/s
fluidanimate 1,208| 838 129,470 3| 540.6s| 241/s|< 1/s
freqmine 1,743 832| 458,431 23|1943.6s| 237/s|< 1/s
streamcluster 1,208| 834 29,570 52| 547.9s 55/s|< 1/s
swaptions 1,406 833 804 0| 852.9s| < 1/s| 0/s
x264 1,695 862 21,703 0| 831.8s 28/s| 0/s
deepsjeng 4,410| 817|1,760,911 0[1538.7s| 1,145/s| 0/s
1bm 1,406| 800(1,071,100 0(4020.8s 267/s| 0/s
mcf 1,422| 830(1,646,263 1|2581.9s| 638/s|< 1/s
nab 1,612 841| 147,376 0]9785.3s 15/s| 0/s
namd 1,925/ 855| 45,063 0| 998.3s 46/s| 0/s
X264 passl 1,744| 843| 43,342 0| 128.2s 345/s| 0/s
X264 pass2 1,744 826| 11,851 0| 412.6 31/s| 0/s
x264 seek500 1,744| 847 43,140 0| 420.8] 105/s| 0/s
xalancbmk 3,610 875| 122,171 0[1287.7s 96/s| 0/s
xz cld 1,514| 810(1,084,486 0]4066.9s| 267/s| 0/s
xz cpu2006 1,514 848|3,933,456 0[4462.2s| 882/s| 0/s
Geo. mean 159/s| < 1/s
Harm. mean 14/s| < 1/s

and update the corresponding virtual page. A second reason
why page movements are very rare is that our programs fit
into physical memory, hence we rarely see page swaps.

Allocation and move rates are of interest for the feasibility
of CARAT. The move rate is the lower bound on the patching
event rate. The allocation rate is related to the demand on
the injected allocation tracking code. In a CARAT system
supporting demand paging, copy-on-write, etc, allocations
also trigger patching events, hence allocation rate also serves
as an extreme upper bound on the patching event rate.

Some applications, exemplified by NAS LU, CG, and FT,
have the potential to be preallocated. As Table 2 shows, their
static footprint and allocations are nearly identical. FT, for
example, operates on large arrays that are implemented as
global variables and which become ELF LOAD sections cor-
responding to bss. CARAT could optimize the handling of
a program like FT by allocating, and patching, the entire
static footprint at exec() This mechanism would amortize
the patching costs of LU, CG, FT, and similar programs.

There are Few Escapes per Allocation: Traditional ad-
dress translation does not have to track pointer escapes at all,
but this is an essential element of CARAT. CARAT must not
only track each escape as it occurs, but, when handling page
movement, it must also patch each escape of each pointer
to an allocation in the migrating page. The more escapes
per allocation that exist, the greater the cost of tracking and
patching, both in terms of space and time.

PLDI 20, June 15-20, 2020, London, UK

100000 ‘
Most Benchmarks

10000
1000
100
|

1

nab_s

|
1 2 3 4 5 6 7 8 1112 13 14 15 16 17 18 19 20 21 22 23 25 26 47

Number of Allocations

Number of Escaping References

= HPCCG ® CG EP mFT mLU Blackscholes Bodytrack Canneal Fluidanimate Fregmine
X264 jeng_s © lbm_s mcf_s ®nab_s '~ namd_r x264_s xz_s

(a) Histogram of allocations with less than 50 Escapes

100000000
10000000
1000000
100000
10000
1000

100

10

Number of Escapes

xz_s [l

X264_s

(%)
Qo
©

mcf_s

Freqmine I

Bodytrack

namd_r [

Streamcl.

Single AIIocCation Outliers
(b) Histogram of allocations with more than 50 Escapes

Figure 5. 90% of allocations across all benchmarks contain
10 or fewer escapes. There are very few allocations with
more than 50 escapes across all benchmarks.

Figure 5 shows histograms of the total number of escapes
per allocation in our benchmarks over the entire run time
of the program. To produce these results, we used an in-
strumented version of the CARAT prototype described in
Section 4. For a majority of the benchmarks, the number of
escapes per allocation is tiny (usually 0, 1, or 2 escapes in
the worst case). The outlier in Figure 5(a) is the application
nab_s from the SPEC2017 benchmarks suite.

Figure 5(b) shows the histogram of all allocations that
contain more than 50 escapes. there are only 22 total alloca-
tions across all of the benchmarks that contain more than
50 escapes. This accounts for significantly less than 1% of all
allocations across all benchmarks.

Tracking Allocations/Escapes uses Little Memory:
CARAT, unlike the traditional model, must dedicate space to
maintain query-able data structures that contain the current
allocations and escapes. It could be the case that the space
costs are insurmountable. To see if this is a real problem we
looked at the physical memory footprint of each benchmark
to see how much overhead was needed to keep track of all
the program’s allocations and escapes. As before, an instru-
mented version of the CARAT prototype was used. The data
structures employed are described in Section 4.

Figure 6 shows compares the memory footprint of the base-
line programs (no CARAT) and the CARAT-instrumented
programs. The memory overhead to track allocations and
escapes is small. It has a geometric mean of 61.9%, but, typi-
cally, the overhead is negligible. The mean is inflated due to
Swaptions (it would be 19% if we limited all overheads to 5x).
The absolute overheads of the worst case benchmarks are:
swaptions (18 GB), bodytrack (100 MB), and nab_s (400 MB).

PLDI 20, June 15-20, 2020, London, UK

6 B Baseline ® CARAT

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda

3 4.255 4406.368

2 4

g 1.823

o 2 1 1.002 113 1,001 1.002 1 1.001 1 0.999 1.024 0.991 1 1 1.082 0.926 1.014 1,001 1.005 1 1.619

Q .

N

g 0

S © o e & \ o o 2 & @ © ® et s 5 5 < 5 5 * 5 o

= cC ¢ < WP IR N < S & o007 o &7 o7 O RSN S @l <
*\4 %\a& %0& o (,\\S\&b ?@u ‘5\‘60 Q 606?6\ « ¢ @ o“‘(\e Fe *a\zx\ °

Figure 6. Memory overhead of tracking.

M Baseline ™ CARAT
1.25 1 1.009

0.75
0.5
0.25

<@
N
Q(eﬁ\ o

Normalized Overhead

® L W O @B @
© 0 gl 0"‘“0?\&6““\

W &

N o g e (P K 02 88 R b D o
N N\ 0~ < QS <0 -
2 5\34"39\ + o o o W7 @7 o«\‘\e(’ a0 *'A\”‘\O R 660((\

1 0971 0.997 0.997 1.052 1.05 1032 1.044 (gg3 1.058 1,027 1.028 1.002 %85 1005 0.089 gogp 1.023 1073 1.043 1,019

s o0

Figure 7. Time overhead of tracking allocations & escapes.

Tracking Allocations/Escapes has Low Time Over-
head: It is also possible that the time costs of tracking allo-
cations and escapes, something the traditional model does
not need to do at all, could make the CARAT model infea-
sible. To test this point, we ran our benchmarks using an
instrumented version of the CARAT prototype (Section 4).

Figure 7 shows our results. It is clearly the case that the
tracking overhead is negligible and therefore a nonissue.
In fact, the geometric mean of the overhead is only 1.9%!
Furthermore, even streamcluster, which raised minor con-
cerns when it came to escapes per allocation and memory
overheads, is not the odd one out here. While streamcluster
has many escapes from a small number of allocations, these
occur early, and then no further escapes happen.

4 Prototype

We have developed a prototype of CARAT within the context
of the LLVM compiler toolchain, the Linux kernel, and x64
processors. The intent of the prototype is to approximate
a future hardware environment in which it is possible to
deactivate paging, and a compiler/kernel combination that
takes advantage of it. The data we used in our feasibility
argument of Section 3 was collected using this prototype.
Our prototype consists of middle-end LLVM passes, the
addition of a runtime that is linked to the Linux executable
the compiler produces, and a kernel module that integrates
with the runtime to execute change requests. At a high level,
our compiler injects bitcode into the program that imple-
ments guards for protection, tracks allocations and pointer
escapes, and assists in the patching necessary for page or
object movement. The runtime maintains data structures
that can be queried to determine matching allocations and
escapes. When triggered by the kernel module, the runtime
performs the needed change in protection or mapping.
Figure 8 shows the run-time structure of the prototype
and illustrates how a page movement (mapping change) is

executed. A protection change is a simpler variant of this
process that does not involve patching of program pointers.

4.1 Compiler

The CARAT compiler is responsible for three tasks: injecting
and optimizing guards to enforce protection, injecting and
optimizing memory allocation and pointer escape tracking
code in anticipation of mapping changes, and signing the
final binary to establish trust between the compiler and ker-
nel. Guard and tracking code injection relies on modern code
analyses and transformations (described next). Code sign-
ing uses the same scheme implemented as Microsoft .NET,
which signs the generated CIL bytecode [28].

The CARAT compiler implements protection and tracking
services by targeting the LLVM IR. Only the memory and
call instructions in this representation need to be considered.

4.1.1 Protection. CARAT guarantees that all memory in-
structions access only memory previously allocated by the
program (indirectly via the kernel). To establish this invari-
ant, CARAT conceptually injects guard code before each
memory instruction to validate its address range at run time.
The guard code compares the prospective address range with
a set of valid regions established by the kernel and written by
it into the program’s address space via interaction with the
runtime, as described later. An out-of-bounds check aborts
to the kernel.

To reduce the overhead of guards, CARAT implements
several compiler optimizations and their related code analy-
ses to avoid redundant checking of addresses. CARAT code
analyses include a Program Dependence (PD) analysis [31],
a CARAT-specific data-flow analysis, and a value range anal-
ysis for pointer definitions [16]. The PD analysis relies on
15 memory alias analyses [19, 20, 34, 34, 53, 58, 71, 73] that
we have combined using the alias chaining feature of LLVM
(which implements a best-of-N approach). To further im-
prove the impact of alias analyses on the PD analysis of

CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based Address Translation

CARAT, we modified the LLVM internals to allow alias
queries between functions (something not allowed in main-
line LLVM). CARAT-specific code transformations include
hoisting guards outside loops, merging guards that check
consecutive memory regions, and eliminating redundant
guards. These optimizations roughly add an overhead of
about 22% to the compilation time and, for our benchmarks,
added only minutes to compilation time in the worst case.
We now further describe these code analyses and transfor-
mations and their relationships.

Optimization 1: Hoisting Guards: The first set of opti-
mizations is related to hoisting guards out of loops when the
address being checked is loop-invariant. The loop-invariant
analysis determines when a store or load instruction’s ad-
dress is loop-invariant and will hoist the guard into the pre-
amble of the loop (i.e., the pre-header of that loop). We have
enhanced the default loop invariant analysis of LLVM to rely
on the PD analysis of CARAT; this significantly improved
the detection of loop invariants. Finally, this optimization
recursively applies itself to hoist guards to the outermost
loop possible.

One thing to note is that call instructions are also checked
to guarantee their stack allocation frames are within the
valid memory ranges, as described in Section 3. To reduce
the overhead of call guards, the CARAT compiler hoists a
call guard out of a loop if it can prove that no stack allocation
occurs within that loop, much like a loop-invariant address.

Optimization 2: Merging Memory Guards: The sec-
ond optimization is merging guards of memory instructions
that access consecutive memory locations. In more detail, if
a loop address is statically determined to check a range of ad-
dresses during the lifetime of the loop, we can hoist the guard
out of the loop and perform a single check on the lowest and
highest address that the variable address will alias during the
loop execution. This optimization relies on a standard value
range analysis [16], which we have implemented relying
on both the standard scalar evolution analysis available in
LLVM and the PD analysis of CARAT.

Optimization 3: Removing Redundant Guards: CARAT
implements a new ad hoc analysis, Address Checking for
Data Custody analysis (AC/DC), to avoid re-checking pre-
viously checked addresses. AC/DC is performed using the
available expression data-flow equations [2] where expres-
sions are pointer definitions. Pointer definitions (defs) are
instructions that define an IR variable that holds a pointer.
Such defs are identified using memory alias analysis when
the related variable escapes the function in which it was
declared (i.e., if the pointer gets stored in memory). Given
that GEN[i] is the specific pointer def performed by the in-
struction i, and KILL[i] is the set of defs that could modify
the same IR variable, then IN[i] = (¢ predecessors OUT[p] and

PLDI 20, June 15-20, 2020, London, UK

USER VIRTUAL ADDRESS SPACE

)

3) Dispatch

/ Signal Handler

4) Barrier Signal Handlers|

5) Negotiate Move
6) Determine Affected
Allocations DOy T2y TNy

7) Compute Patches

—
) ARl R CTETETETe e [
9) Barrier 0|0 (0[O0 |O|O o

R [R (R [R |R|R R
10) Perform Move(s) Shared State E|E |E |E |E |E|°®® |E

Kll)nm-rier 0 |1 |2 |3 |4 |5 n/
4) Negotiate Move 2) Signal
.........................
i | Affected Threads

12) Indicate Completion L
CARAT
Module

1) Request Page Move —| MSiResung

KERNEL VIRTUAL ADDRESS SPACE

Figure 8. CARAT prototype executing a page movement.

OUT(i] = (IN[i] — KILL[i]) U GEN[i]. These equations guar-
antee that if a pointer def is available in the IN set of an in-
struction i, then the def is performed before i and is still valid
independent of which execution path was taken to reach i;
they do not need to be guarded. Hence, by guarding only
memory instructions that do not have their related pointer
def in their IN set, CARAT nonetheless can still guarantee
that all memory instructions are protected.

4.1.2 Tracking. To track dynamic heap allocations, the
CARAT compiler injects a callback to the runtime just after
every call to an allocation function (e.g., call malloc(...)).
The callback notifies the runtime about the address of the
new memory block and its size. A similar callback is injected
just before every call instruction to a heap deallocation func-
tion (e.g., call free(...)). The runtime handles static and
stack allocations as well. Stack expansions are triggered by
a call guard that aborts to the kernel. Static allocations are
recorded at program load time.

To track pointer escapes the CARAT compiler identifies
each LLVM IR instruction that could store a pointer in mem-
ory and injects a callback to the runtime to account for it.

4.2 Runtime

The CARAT runtime is linked into the program at the LLVM
IR level, and thus is jointly optimized along with the program
and the protection and tracking code that we inject. It plays
a central role in tracking, protection, and mapping.

Tracking: The runtime maintains an understanding of
the program’s static and dynamic memory allocations and
pointers. It does so by updating a hard-state data structure,
the Allocation Table, in response to callbacks made by the
injected code. The Allocation Table keeps track of all allo-
cations that the program makes, including static allocations
(global and bss variables), and the stack. Each entry in the
Allocation Table also contains a set of all variables that con-
tain a pointer, or escape, to the respective allocation, which
we call the Allocation to Escape Map.

The Allocation Table is currently implemented as a C++
red/black tree whose key is the address of an allocated block

PLDI 20, June 15-20, 2020, London, UK

W Carat Baseline ® 1 Move/s ® 100 Moves/s ® 10,000 Moves/s ™ 20,000 Moves/s
4

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda

2 6.24 9.56
° 212 2.49 211.13 157.05 7.37 . 5
£ 136 177 161 192 146 1.05 3-13 1.85 3.49 1.85 2.87 53.04 7.2 222
. . 11.67 1.58 1.02 1.59 9.08
03 1.27 1.25 1.32 1.02 1.54 0.98 2.5 1.78 1.24
< 1.02 1.55 1.3 1.02 1.63 1
o 1 1 1.26 131 1 10.35 : 1.26 1.6 25
5, 1.02 1 04 1 102 1.02 105 1. 112 1 1.55
z 1.04 1.04 1 1.09 1 1 4
© 1
$ 1 ‘ * % % * % % *
; I I | I I I I I | I I I | I I I I I I |
e
@
Q0
=
° of’ 2 o @ B @ g ® QJ* 52 SRS b S
> O " < X S \O" Q/ ‘(\/ @ O~ - z ‘(v
& ,&Q\(&G“ o Ga“? & ?(e“«\ o o ﬂ S N 0‘0‘\3“)‘)/ & \'ao‘p«\ G;o
o 2

Figure 9. Worst-case page movement overheads. Geomean cut offs: 1 Page/s - 2x, 100 Pages/s - 3x, 10,000 to 20,000 Pages/s -

4x.

of memory, and whose value is the length of the block. The
mappings from an allocation to the escapes, the Allocation to
Escape Map, is currently implemented as a C++ unordered
set and contains pointers to the addresses that contain a
pointer copy of the allocation. Total tracking overhead is on
the order of 1.9%. (Figure 7).

The process of building the data structures can currently
be done in two ways. The first involves updating structures
as the program runs, while the second involves updating
in batches . We use the first method when we are tracking
allocations, and the second when tracking the escapes. The
Allocation Map changes slowly, while the Allocation to Es-
cape Map changes quickly. By batching the later, we can
mitigate redundant/outdated work.

Protection: The runtime provides a landing zone in which
the kernel module places an array of memory regions and
their attributes that is ordered by address. A guard can then
search for an address range within this array using binary
search. For a small enough number of regions, this can be
optimized into checking via Intel MPX in a single-cycle.

Mapping: Figure 8 illustrates the operations that occur
when a page movement occurs. Steps 4-12 are done by the
runtime. Triggered by the kernel, all relevant threads in
the program enter a signal handler (dumping their register
state on the stack) and synchronize (a “world stop”). They
then negotiate a move with the kernel module. Given the
final source and destination page(s), the runtime finds all
affected allocations, and updates the Allocation Table to
reflect their new destinations. It then uses the Allocation
to Escape Map to find all pointers into these objects, and
patches these pointers to reflect the new addresses. Next,
the handler updates all the on-stack register contents that
are affected by the move. Next, it moves the data and frees
the data at the old location. Lastly, the threads synchronize
again, inform the kernel that the operation is complete, and
then return from their signal handlers.

4.3 Kernel Module

The primary purpose of the CARAT kernel module is to
coordinate the threads of the process and to negotiate a page
movement. At one point, our prototype involved having the

module compute and execute patches directly (steps 4-12
of Figure 8), but having a signal handler do this within the
CARAT runtime is simpler.

When the CARAT executable starts, its runtime registers
itself with the kernel module, and the two agree on a com-
munication channel that consists of a shared memory and
a signal. On a page movement request (step 1), the module
places the parameters into the shared state and then sig-
nals every thread within the process (step 2). This has the
effect of forcing the threads to dump their register state on
their signal handler stacks, where it can be patched. The
CARAT signal handler is the entry point to the runtime for
the patching process, described earlier.

In step 4, the runtime, executing in the signal handler, and
the kernel module negotiate the move. Note that because
we manage memory in units of pages, a page movement
request on the part of the kernel may expand. For exam-
ple, an allocation on the page may span to the next page.
Since allocations must move in their entirety, the runtime
will notify the module that both pages need to be moved.
The kernel module can then veto or approve the move. A
protection change is done in the same manner, except with
no negotiation process.

4.4 Evaluation of Page Movement (Mapping)

We previously described the low memory and run-time cost-
s/overheads for tracking and guarding in the CARAT proto-
type (Section 3). What remains is to understand the costs of
protection and mapping changes in the prototype. Since a
protection change involves a simplified version of the process
for a mapping change, we focus here on mapping changes
(page movements).

Figure 9 shows the run-time overhead for each of our
benchmarks when CARAT is actively moving the process’s
pages as it runs. Here, the program executes while we select
a worst-case page to move, invoke the CARAT process for
moving it, and repeat. By worst case we mean the runtime
selects a page that overlaps the allocation with the most
pointer escapes. We do this at different rates. Recall from
Table 2 that the typical page movement rate on Linux while
running these benchmarks is much less than 1/s. At 1/s, the

CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based Address Translation

PLDI 20, June 15-20, 2020, London, UK

Table 3. Worst-case Page Movement Costs in Cycles.

Benchmark Page | Patch Gen. | Register Allocation & | Prototype | Prototype w/o Total Prototype w/o

Expand & Exec. Patch | Mem. Movement Cost Expand Cost Cost | Expand / Total Cost
HPCCG 33755 21637 67 32693 55459 21704 88152 0.2462
CG 35319 19458 134 26121 54911 19592 81032 0.2418
EP 16875 13831 66 11537 30772 13897 42309 0.3285
FT 29110 15385 164 29336 44659 15549 73995 0.2101
LU 33675 14130 321 37349 48126 14451 85475 0.1691
Blackscholes 16686 12276 225 10182 29187 12501 39369 0.3175
Bodytrack 46704 8408 130 76856 55242 8538 132098 0.0646
Canneal 38952 12530 170 8821 51652 12700 60473 0.21
Fluidanimate 8475 2750 120 12137 11345 2870 23482 0.1222
Freqmine 23941 10330 51 21097 34322 10381 55419 0.1873
Streamcluster 31503 16780 60 24733 48343 16840 73076 0.2304
Swaptions 65805 2715 206 214785 68726 2921 283511 0.0103
X264 88122 9992 235 186558 98349 10227 284907 0.0359
deepsjeng_s 39332 10229 221 71227 49782 10450 121009 0.0864
Ibm_s 12561 9844 44 7523 22449 9888 29972 0.3299
mcf_s 459841 27561 303 677193 487705 27864 1164898 0.0239
nab_s 7609060 3518 36 9636192 7612614 3554 17248806 0.0002
namd_r 53651 16338 97 70399 70086 16435 140485 0.117
omnetpp_s 444237 1010 18 569406 445265 1028 1014671 0.001
x264_s 888996 15131 332 3162014 904459 15463 4066473 0.0038
xalancbmk_s 493725 3511 114 922548 497350 3625 1419898 0.0026
XZ_S 43306 6158 43 76809 49507 6201 126316 0.0491
Geo. Mean 67467 9051 110 79214 88097 9206 178647 0.0515

overhead of CARAT page movements on program run-time
is negligible to small. We also show overheads for rates of
100/s (> 100X the measured move rate), and 10,000-20,000/s
(almost double our maximum measured allocation rate).

At 10,000-20,000 page moves per second, the average over-
head is between 124% and 163%. It is important to note here
that we are doing movements at these rates—in fact, a page al-
location is not the same as a page movement, as the sum total
of CARAT processing that would occur for actual page alloca-
tion would be a single Allocation Table update to reflect the
program allocation that triggered the page allocation. The
overhead of actual page allocation is much much lower.

For some of the applications, moving memory at rates in
excess of the expected rate causes unacceptable execution
times. For example, Bodytrack has a measured expected page
movement rate of 0.007/s, but actually can operate with <5%
overhead even at 100/s (four orders of magnitude higher than
the measured rate). It is only when we escalate the rate to
10,000/s (six orders of magnitude) that the overhead becomes
unacceptable and measurement becomes infeasible (Body-
track at 10,000/s runs for 14.5 hours compared to a baseline
of 4 minutes). The asterisks in the figure indicate scenarios
in which measurement was infeasible for this reason. The
important point is that the overhead of moving pages at ex-
pected rates (<1/s) is negligible. Additionally, the overheads
shown are conservative, for reasons we will discuss next.

Table 3 breaks down the average cost of a CARAT page
movement into its constituent parts for each application
(the rows). The columns show the number of cycles spent
in the following: “Page Expand” is the time to find all the

allocations associated with the target page, and then expand
to a set of surrounding target pages that have no allocation
that breaches the boundaries of the set. “Patch Gen. & Exec”
is the time to find and update all the escapes from allocations
on the target page set. Note that this is typically quite small.
The always minuscule “Register Patch” time is spent patching
registers that happen to contain an escape. “Allocation and
Movement Cost” is the time to allocate a new memory block
for the target page set and copy the data to it. “Prototype
Cost” sums the first three columns, and is the cost of the
prototype, ignoring the cost of allocating and moving the
memory (which is not counted for paging either.) “Prototype
w/o Expand Cost” further removes the “Page Expand” cost.
“Total Cost” is the measured overhead.

The “Page Expand” cost exists and the correlated “Allo-
cation and Movement Cost” is often large because of the
impedance mismatch of tracking at allocation granularity
and moving at page granularity. “Prototype w/o Expand /
Total Cost” is the fraction of the total cost that is not due
to this mismatch. Note that this is typically quite small. If
CARAT operated entirely at the granularity of allocations
(described in more detail in Section 6), we would expect the
overheads of Figure 9 to be scaled by these fractions. We
would expect a 95% average (geometric mean) reduction.

5 Related Work

We have integrated broadly-scoped related work throughout
the paper. A description of the challenges of modern TLBs
and the community’s efforts to address them is at the start of
Section 3. Here we focus on work that is more tightly scoped

PLDI 20, June 15-20, 2020, London, UK

to the CARAT model.

Although we considered the CARAT model from the per-
spective of replacing paging, it can more generally be con-
sidered to be a form of automatic handle-based memory
management. Manual handle-based memory management
was commonplace in early, highly successful PC OSes, such
as Windows [64] and pre-2001 MacOS [5, Volume 2, Chapter
1], and remains in use today on some embedded hardware.
Two clear advantages are arbitrary granularity of operation
and physical addressing. Two clear disadvantages are a lack
of protection and reliance on the programmer to use the
handle interface correctly, which is almost as challenging as
doing locking correctly. CARAT attempts to remove these
disadvantages, to make protected handles automatic.

Automatic handle-based memory management with pro-
tection dates back at least to work to leverage the descriptor-
based operation of the Burroughs B5000 [18],[56, Chapter 2]
by restricting programmers to specific high-level languages.
More influential to our thinking is the IBM 801 [66], which
combined physical addressing, a heavily restricted high-level
language (PL.8), and a trusted compiler as the basis for pro-
tection ([66, pp. 240]). The most recent work in this vein that
we are aware of is the Software Isolated Process (SIP) [41] of
the Singularity OS [42]. A SIP is an opaque, self-contained
process that communicates through monitored channels and
is written in a modified version of C#, called Sing#. The pro-
tection and mapping of a SIP rely on guarantees rooted in this
managed language, and implemented via its compiler and
runtime environment. In contrast to these models, CARAT’s
goal is to support arbitrary languages and code through the
IR and concomitant transforms of a modern compiler.

The use of the compiler to implement software protec-
tions is not a new concept. EffectiveSan [27] uses software
checking to to sanitize object types and bounds for C/C++
with low overhead. This work relates to CARAT’s guards, but
not tracking or page/object movement features. It is further
evidence of the feasibility of using software checking for
protection. CARAT can also be thought of as extending Soft-
ware Fault Isolation (SFI) [21, 33, 67, 77] to all user programs
regardless of trust. In fact, many of the innovations in SFI are
also potential candidates for further optimization of CARAT,
and some of the optimizations in CARAT could potentially
be deployed in SFI. Finally, another alternative to achieving
protection is proof-carrying-code (PCC) [59-61] which has
been demonstrated to allow safe kernel extensibility. If code
can carry a verifiable proof with it that it is safe with respect
to some security policy, then it is possible to eliminate all
guards. The optimizations that CARAT is performing for
guard amortization is somewhat akin to the compiler trying
to generate proofs about the safety of the code.

Kadayif et al. [48, 49] developed compiler/TLB co-designs
that make it possible to skip the normal TLB lookup path
when the virtual address is within a set of shortcuts installed

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda

by the compiler-generated code. Considerable power and en-
ergy could be saved. Like CARAT, this work heavily leverages
the compiler to reduce requirements for the hardware. How-
ever, it still requires a TLB to function. In contrast, CARAT’s
goal is to achieve purely physical addressing, avoiding virtual
memory support in hardware altogether.

DINAMITE [57] implements a form of CARAT’s allocation
tracking to support bug-finding, but it is limited to dynamic
memory allocations (malloc). CARAT tracks all allocations
and escapes, and uses this information for memory manage-
ment.

6 Conclusions and Future Work

It is time to revisit software-based memory management in
this era of the every-increasing complexity of the hardware
support structures that underlie traditional virtual memory.
To support this general assertion, we have made a case for
compiler- and runtime-based address translation (CARAT), a
specific model in which only physical addresses are used. We
contrasted CARAT with the traditional paging model and
explained its advantages and disadvantages in Section 2. We
then demonstrated CARAT’s feasibility through empirical
means in Section 3. Finally, in Section 4 we described and
evaluated a prototype CARAT system, showing that it can
provide the benefits of the traditional model (protection and
mapping)—with no hardware support—with low overhead.

Kernel-level Implementation: Our prototype has sev-
eral limitations that we are now working on ameliorating.
The first is that it is a largely user-level implementation that
operates on top of Linux’s complex paging apparatus. We
are currently building a second version of CARAT within the
Nautilus kernel [35, 36], a framework in which x64 paging is
ignored using identity-mapping, and all code runs in kernel
mode for performance reasons. Our intent is to reintroduce
protection in this kernel using CARAT.

JITs and Other Language Models: Our prototype does
not support self-modifying code, inline assembly, or other
language features or concepts that do not flatten into the
LLVM middle-end. We do not believe this is an intrinsic
limitation of the CARAT model, but rather a question of
pushing the model into LLVM front- and back-ends, as well
as into run-time code generators such as a JIT. However, to
do this will require new methods for optimizing protection.
We are studying this matter.

Allocation Granularity: A big limitation of our proto-
type is that it operates with pages instead of the only natural
allocations done by the program. As a consequence, it must
obey both the page-level semantics of the Linux kernel, and
the allocation-level semantics of the application. This neces-
sitates the negotiatiation with the kernel that will not break
the allocation-level semantics. We are working on a version
of CARAT that discards the page abstraction, eliminating ne-
gotiation and allowing allocation granularity management.

CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based Address Translation PLDI 20, June 15-20, 2020, London, UK

References

[1] 2010. The Data Deluge. The Economist (25 February 2010). https:
//www.economist.com/leaders/2010/02/25/the-data-deluge

[2] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers,
principles, techniques. Addison Wesley.

[3] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. 2017.
Do-It-Yourself Virtual Memory Translation. In Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA 2017).

[4] Nadav Amit. 2017. Optimizing the TLB Shootdown Algorithm

with Page Access Tracking. In 2017 USENIX Annual Technical Con-

ference (USENIX ATC 17). USENIX Association, Santa Clara, CA,

27-39. https://www.usenix.org/conference/atc17/technical-sessions/

presentation/amit

Apple Corporation. 1985. Inside Macintosh. Addison-Wesley.

A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. H. Loh. 2017.

Avoiding TLB Shootdowns Through Self-Invalidating TLB Entries.

In 2017 26th International Conference on Parallel Architectures and

Compilation Techniques (PACT). 273-287. https://doi.org/10.1109/

PACT.2017.38

[7] Julian Bangert, Sergey Bratus, and Rebecca Shapiro andSean W. Smith.
2013. The Page-Fault Weird Machine: Lessons in Instruction-less
Computation. In Proceedings of the 7th USENIX Workshop on Offensive
Technologies (WOOT).

[8] Richard Barrett, Michael Heroux, P. Lin, C. Vaughan, and A. Williams.
2011. Mini-applications: Vehicles for Co-Design. In Proceedings of the
ACM/IEEE Conference on High Performance Networking and Computing
(SC 2011).

[9] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and
Michael M. Swift. 2013. Efficient Virtual Memory for Big Memory
Servers. In Proceedings of the 40th Annual International Symposium on
Computer Architecture (ISCA 2013).

[10] Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2012. Reducing
Memory Reference Energy with Opportunistic Virtual Caching. In
Proceedings of the 39th Annual International Symposium on Computer
Architecture (Portland, OR) (ISCA ’12). 297-308.

[11] A. Bhattacharjee. 2017. Preserving Virtual Memory by Mitigating
the Address Translation Wall. IEEE Micro 37, 5 (Sep. 2017), 6-10.
https://doi.org/10.1109/MM.2017.3711640

[12] A. Bhattacharjee. 2018. Breaking the Address Translation Wall by
Accelerating Memory Replays. IEEE Micro 38, 3 (May 2018), 69-78.
https://doi.org/10.1109/MM.2018.032271063

[13] A. Bhattacharjee, D. Lustig, and M. Martonosi. 2011. Shared last-
level TLBs for chip multiprocessors. In 2011 IEEE 17th International
Symposium on High Performance Computer Architecture. 62-63. https:
//doi.org/10.1109/HPCA.2011.5749717

[14] A. Bhattacharjee and M. Martonosi. 2009. Characterizing the TLB
Behavior of Emerging Parallel Workloads on Chip Multiprocessors. In
18th International Conference on Parallel Architectures and Compilation
Techniques (PACT 09). 29-40. https://doi.org/10.1109/PACT.2009.26

[15] Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D.
Dissertation. Princeton University.

[16] Johnnie Birch, Robert van Engelen, and Kyle Gallivan. 2004. Value
range analysis of conditionally updated variables and pointers. pro-
ceedings of Compilers for Parallel Computing (CPC) (2004), 265-276.

[17] R. E. Bryant, R. H. Katz, and E. D. Lazowska. 2008. Big-Data Com-
puting: Creating revolutionary breakthroughs in commerce, science,

—_—
o »a
s

and society. White Paper, Computing Community Consortium Com-
mittee, Computing Research Association (22 December 2008). http:
//cra.org/ccc/resources/ccc-led-whitepapers/

[18] Burroughs Corporation. 1961. The Descriptor-A definition of the B5000
Information Processing System. Technical Report BULLETIN 5000-
20002-P. Burroughs Corporation, Detroit, MI. USA.

[19] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones,

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Gu-Yeon Wei, and David Brooks. 2014. HELIX-RC: An Architecture-
compiler Co-design for Automatic Parallelization of Irregular Pro-
grams. In Proceedings of the 41st Annual International Symposium on
Computer Architecuture (Minneapolis, Minnesota, USA) (ISCA ’14).
IEEE Press, Piscataway, NJ, USA, 217-228. http://dl.acm.org/citation.
cfm?id=2665671.2665705

S. Campanoni, T. M. Jones, G. Holloway, G. Y. Wei, and D. Brooks.
2012. HELIX: Making the Extraction of Thread-Level Parallelism
Mainstream. IEEE Micro 32, 4 (July 2012), 8-18. https://doi.org/10.
1109/MM.2012.50

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado,
Periklis Akritidis, Austin Donnelly, Paul Barham, and Richard Black.
2009. Fast byte-granularity software fault isolation. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles.
45-58.

Jonathan Corbet. 2008. Memory Management Notifiers. https://lwn.
net/Articles/266320/.

Jonathan Corbet. 2017. A Last-Minute MMU Notifier Change. https:
//lwn.net/Articles/732952/.

Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient Address
Translation for Architectures with Multiple Page Sizes. In International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

Peter Dinda and Akhil Guliani. 2017. Dark Shadows: User-level
Guest/Host Linux Process Shadowing. In Proceedings of the 5th IEEE
International Conference on Cloud Engineering.

Christopher Domas. 2015. The Memory Sinkhole. In Proceedings of
Black Hat USA 2015.

Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: Type
and Memory Error Detection Using Dynamically Typed C/C++. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2018).

ECMA 2005. Standard ECMA-335 Common Language Infrastructure
(CLI) (3rd ed.). ECMA, Rue du Rhone 114 CH-1204 Geneva. http://
www.ecma-international.org/publications/standards/Ecma-335.htm

Magnus Ekman, Per Stenstrom, and Fredrik Dahlgren. 2002. TLB and
Snoop Energy-reduction Using Virtual Caches in Low-power Chip-
multiprocessors. In Proceedings of the 2002 International Symposium
on Low Power Electronics and Design (Monterey, CA) (ISLPED °02).
243-246.

Dongrui Fan, Zhimin Tang, Hailin Huang, and Guang R. Gao. 2005.
An Energy Efficient TLB Design Methodology. In Proceedings of the
2005 International Symposium on Low Power Electronics and Design
(San Diego, CA) (ISLPED *05). 351-356.

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. 1987. The pro-
gram dependence graph and its use in optimization. ACM Transactions
on Programming Languages and Systems (TOPLAS) 9, 3 (1987), 319-349.

J. Gandhi, V. Karakostas, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley,
M. Nemirovsky, M. M. Swift, and O. S. Unsal. 2016. Range Translations
for Fast Virtual Memory. IEEE Micro 36, 3 (May 2016), 118-126. https:
//doi.org/10.1109/MM.2016.10

GoogleNativeClient [n.d.]. Native Client. https://developer.chrome.
com/native-client.

Bolei Guo, Matthew J Bridges, Spyridon Triantafyllis, Guilherme Ot-
toni, Easwaran Raman, and David I August. 2005. Practical and ac-
curate low-level pointer analysis. In Proceedings of the international
symposium on Code generation and optimization. IEEE Computer Soci-
ety, 291-302.

Kyle Hale and Peter Dinda. 2016. Enabling Hybrid Parallel Runtimes
Through Kernel and Virtualization Support. In Proceedings of the 12th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE 2016).

Kyle C. Hale and Peter A. Dinda. 2015. A Case for Transforming

https://www.economist.com/leaders/2010/02/25/the-data-deluge
https://www.economist.com/leaders/2010/02/25/the-data-deluge
https://www.usenix.org/conference/atc17/technical-sessions/presentation/amit
https://www.usenix.org/conference/atc17/technical-sessions/presentation/amit
https://doi.org/10.1109/PACT.2017.38
https://doi.org/10.1109/PACT.2017.38
https://doi.org/10.1109/MM.2017.3711640
https://doi.org/10.1109/MM.2018.032271063
https://doi.org/10.1109/HPCA.2011.5749717
https://doi.org/10.1109/HPCA.2011.5749717
https://doi.org/10.1109/PACT.2009.26
http://cra.org/ccc/resources/ccc-led-whitepapers/
http://cra.org/ccc/resources/ccc-led-whitepapers/
http://dl.acm.org/citation.cfm?id=2665671.2665705
http://dl.acm.org/citation.cfm?id=2665671.2665705
https://doi.org/10.1109/MM.2012.50
https://doi.org/10.1109/MM.2012.50
https://lwn.net/Articles/266320/
https://lwn.net/Articles/266320/
https://lwn.net/Articles/732952/
https://lwn.net/Articles/732952/
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
https://doi.org/10.1109/MM.2016.10
https://doi.org/10.1109/MM.2016.10
https://developer.chrome.com/native-client
https://developer.chrome.com/native-client

[

—

—

= =

—

—

[

—

[t

—

PLDI 20, June 15-20, 2020, London, UK

Parallel Runtime Systems Into Operating System Kernels (short pa-
per). In Proceedings of the 24th International ACM Symposium on High
Performance Parallel and Distributed Computing, (HPDC 2015).

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. 2011. Toward
Dark Silicon in Servers. IEEE Micro 31, 4 (July-August 2011), 6-15.
Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2018. Devirtualizing
Memory in Heterogeneous Systems. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems (Williamsburg, VA, USA) (ASPLOS
’18). ACM, New York, NY, USA, 637-650. https://doi.org/10.1145/
3173162.3173194

Michael A. Heroux, Douglas W. Doerfler, Paul S. Crozier, James M.
Willenbring, H. Carter Edwards, Alan Williams, Mahesh Rajan, Eric R.
Keiter, Heidi K. Thornquist, and Robert W. Numrich. 2009. Improving
Performance Via Mini-Applications. Technical Report SAND2009-5574.
Sandia National Labs.

C. Hetland, G. Tziantzioulis, B. Suchy, K. Hale, N. Hardavellas, and
P. Dinda. 2019. Prospects for Functional Address Translation. In Pro-
ceedings of the 27th IEEE International Conference on the Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS).

Galen Hunt, Mark Aiken, Manuel Fahndrich, Chris Hawblitzel, Orion
Hodson, James Larus, Steven Levi, Bjarne Steensgaard, David Tarditi,
and Ted Wobber. 2007. Sealing OS Processes to Improve Dependability
and Safety. In Proceedings of the 2nd ACM European Conference on
Computer Systems (EuroSys) (Lisbon, Portugal). 341-354.

Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking the
Software Stack. SIGOPS Operating Systems Review 41, 2 (April 2007),
37-49.

Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software
Developer’s Manual. Intel.

Intel Corporation 2019. Intel 64 and IA-32 Architectures Optimization
Reference Manual. Intel Corporation.

H. Jin, M. Frumkin, and J. Yan. 1999. The Open MP Implementation
of NAS Parallel Benchmarks and Its Performance (NAS 3). Technical
Report NAS-99-011. NASA.

Nick P. Johnson, Jordan Fix, Stephen R. Beard, Taewook Oh, Thomas B.
Jablin, and David I. August. 2017. A Collaborative Dependence Anal-
ysis Framework. In Proceedings of the 2017 International Symposium
on Code Generation and Optimization (Austin, USA) (CGO ’17). IEEE
Press, Piscataway, NJ, USA, 148-159. http://dl.acm.org/citation.cfm?
id=3049832.3049849

Toni Juan, Tomas Lang, and Juan J. Navarro. 1997. Reducing TLB Power
Requirements. In Proceedings of the 1997 International Symposium on
Low Power Electronics and Design (Monterey, CA) (ISLPED ’97). 196—
201.

I. Kadayif, P. Nath, M. Kandemir, and A. Sivasubramaniam. 2004.
Compiler-directed physical address generation for reducing dTLB
power. In Proceedings of the IEEE International Symposium on the Per-
formance Analysis of Systems and Software (ISPASS). 161-168.

I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju, and G.
Chen. 2002. Generating physical addresses directly for saving in-
struction TLB energy. In Proceedings of the 35th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 185-196.
Vasileios Karakostas, Jayneel Gandhi, Adrian Cristal, Mark Hill,
Kathryn McKinley, Mario Nemirovsky, Michael Swift, and Osman
Unsal. 2016. Energy-efficient address translation. In IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
631-643.

George Kastrinis, George Balatsouras, Kostas Ferles, Nefeli Prokopaki-
Kostopoulou, and Yannis Smaragdakis. 2018. An efficient data struc-
ture for must-alias analysis. In Proceedings of the 27th International
Conference on Compiler Construction. ACM, 48-58.

[52] T.Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. 1962.

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda

One-Level Storage System. (April 1962).

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the 2004 International Symposium on Code Generation and Optimiza-
tion (CGO’04). Palo Alto, California.

Dayeol Lee, David Kohlbrenner, Shweta Shinde, Dawn Song, and Krste
Asanovic. 2019. Keystone: An Open Framework for Architecting TEEs.
arXiv:1907.10119 [cs.CR]

David Leopoldseder, Lukas Stadler, Thomas Wiirthinger, Josef Eisl,
Doug Simon, and Hanspeter Mdssenbock. 2018. Dominance-based
duplication simulation (DBDS): code duplication to enable compiler
optimizations. In Proceedings of the 2018 International Symposium on
Code Generation and Optimization. ACM, 126-137.

Hank Levy. 1984. Capability-Based Computer Systems. Digital Press.
Svetozar Miucin, Conor Brady, and Alexandra Fedorova. 2016. End-
to-end Memory Behavior Profiling with DINAMITE. In Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2016).

Vaivaswatha Nagaraj and R. Govindarajan. 2015. Approximating
Flow-sensitive Pointer Analysis Using Frequent Itemset Mining. In
Proceedings of the 13th Annual IEEE/ACM International Symposium on
Code Generation and Optimization (San Francisco, California) (CGO
’15). IEEE Computer Society, Washington, DC, USA, 225-234. http:
//dl.acm.org/citation.cfm?id=2738600.2738629

George Necula. 1997. Proof-carrying Code. In Proceedings of the 24th
ACM SIGPLAN-SIGACT symposium on Principles of Programming Lan-
guages (POPL 1997).

George Necula and Peter Lee. 1996. Proof-Carrying Code. Technical
Report CMU-CS-96-165. School of Computer Science, Carnegie Mellon
University.

George Necula and Peter Lee. 1996. Safe Kernel Extensions Without
Run-time Checking. In Proceedings of the 2nd USENIX Symposium on
Operating Systems Design and Implementation (OSDI 1996).

Mark Oskin and Gabriel H. Loh. 2015. A Software-Managed Approach
to Die-Stacked DRAM. In Proceedings of the 2015 International Con-
ference on Parallel Architecture and Compilation (PACT) (PACT ’15).
188-200. https://doi.org/10.1109/PACT.2015.30

Mayank Parasar, Abhishek Bhattacharjee, and Tushar Krishna. 2018.
SEESAW: Using Superpages to Improve VIPT Caches. In ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA).
193-206.

Charles Petzold. 1988. Programming Windows. Microsoft Press.
Kiran Puttaswamy and Gabriel H. Loh. 2006. Thermal Analysis of
a 3D Die-stacked High-performance Microprocessor. In Proceedings
of the 16th ACM Great Lakes Symposium on VLSI (Philadelphia, PA)
(GLSVLSI *06). 19-24.

George Radin. 1983. The 801 Minicomputer. IBM Journal of Research
and Development 27, 3 (May 1983), 237-246. Originally published at
ASPLOS I and republished in ACM SIGARCH Computer Architecture
News, Volume 10, Number 2, March 1982.

David Sehr, Robert Muth, Cliff L Biffle, Victor Khimenko, Egor Pasko,
Bennet Yee, Karl Schimpf, and Brad Chen. 2010. Adapting software
fault isolation to contemporary CPU architectures. (2010).
Semiconductor Industry Association and Semiconductor Research
Corporation. 2015. Rebooting the IT Revolution: A Call to Action. NSF
Workshop Report (September 2015).

Seunghee Shin, Guilherme Cox, Mark Oskin, Gabriel H. Loh, Yan Soli-
hin, Abhishek Bhattacharjee, and Arkaprava Basu. 2018. Scheduling
Page Table Walks for Irregular GPU Applications. In Proceedings of
the 45th Annual International Symposium on Computer Architecture
(Los Angeles, California) (ISCA °18). 180-192. https://doi.org/10.1109/
ISCA.2018.00025

Avinash Sodani. 2011. Race to Exascale: Opportunities and Challenges.
In Keynote at the 44th Annual IEEE/ACM International Symposium on

https://doi.org/10.1145/3173162.3173194
https://doi.org/10.1145/3173162.3173194
http://dl.acm.org/citation.cfm?id=3049832.3049849
http://dl.acm.org/citation.cfm?id=3049832.3049849
http://arxiv.org/abs/1907.10119
http://dl.acm.org/citation.cfm?id=2738600.2738629
http://dl.acm.org/citation.cfm?id=2738600.2738629
https://doi.org/10.1109/PACT.2015.30
https://doi.org/10.1109/ISCA.2018.00025
https://doi.org/10.1109/ISCA.2018.00025

CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based Address Translation

[71]

(72

—

(73

—_

(74]

(75]

[76]

Microarchitecture (Porto Alegre, Brazil) (MICRO 44).

Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. ACM, 32-41.

Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-flow
Analysis in LLVM. In Proceedings of the 25th International Conference
on Compiler Construction (Barcelona, Spain) (CC 2016). ACM, New
York, NY, USA, 265-266. https://doi.org/10.1145/2892208.2892235
Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow
analysis in LLVM. In Proceedings of the 25th international conference
on compiler construction. ACM, 265-266.

Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N
Nguyen. 2012. Build code analysis with symbolic evaluation. In Pro-
ceedings of the 34th International Conference on Software Engineering.
IEEE Press, 650—660.

Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-object-sensitive
pointer analysis more precise with still k-limiting. In International
Static Analysis Symposium. Springer, 489-510.

C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez, A.
Mendelson, N. Navarro, A. Cristal, and O. S. Unsal. 2011. DiDi: Mitigat-
ing the Performance Impact of TLB Shootdowns Using a Shared TLB
Directory. In 2011 International Conference on Parallel Architectures

[77]

[78]

[79]

[80]

PLDI 20, June 15-20, 2020, London, UK

and Compilation Techniques. 340-349. https://doi.org/10.1109/PACT.
2011.65

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-
ham. 1993. Efficient Software-Based Fault Isolation. In Proceedings of
the Fourteenth ACM Symposium on Operating Systems Principles (SOSP
1993).

ZiYan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019.
Translation Ranger: Operating System Support for Contiguity-aware
TLBs. In Proceedings of the ACM/IEEE 46th International Symposium on
Computer Architecture (Phoenix, Arizona) (ISCA ’19). 698-710. https:
//doi.org/10.1145/3307650.3322223

Zi Yan, Jan Vesely, Guilherme Cox, and Abhishek Bhattacharjee.
2017. Hardware Translation Coherence for Virtualized Systems.
In Proceedings of the 44th Annual International Symposium on Com-
puter Architecture (Toronto, ON, Canada) (ISCA ’17). 430-443. https:
//doi.org/10.1145/3079856.3080211

Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoqing
Zhang. 2010. Level by Level: Making Flow- and Context-sensitive
Pointer Analysis Scalable for Millions of Lines of Code. In Proceedings
of the 8th Annual IEEE/ACM International Symposium on Code Gener-
ation and Optimization (Toronto, Ontario, Canada) (CGO ’10). ACM,
New York, NY, USA, 218-229. https://doi.org/10.1145/1772954.1772985

https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1109/PACT.2011.65
https://doi.org/10.1109/PACT.2011.65
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/3079856.3080211
https://doi.org/10.1145/3079856.3080211
https://doi.org/10.1145/1772954.1772985

	Abstract
	1 Introduction
	2 Address Translation with CARAT
	2.1 Traditional Model
	2.2 CARAT Model
	2.3 Security and Trust
	2.4 Undefined Behavior

	3 Feasibility
	4 Prototype
	4.1 Compiler
	4.2 Runtime
	4.3 Kernel Module
	4.4 Evaluation of Page Movement (Mapping)

	5 Related Work
	6 Conclusions and Future Work
	References

