
Vortex: Enabling Cooperative Selective
Wormholing for Network Security Systems

John R. Lange, Peter A. Dinda, and Fabián E. Bustamante

Northwestern University, Evanston IL 60208, USA
{jarusl,pdinda,fabianb}@cs.northwestern.edu

Abstract. We present a novel approach to remote traffic aggregation for
Network Intrusion Detection Systems (NIDS) called Cooperative Selec-
tive Wormholing (CSW). Our approach works by selectively aggregating
traffic bound for unused network ports on a volunteer’s commodity PC.
CSW could enable NIDS operators to cheaply and efficiently monitor
large distributed portions of the Internet, something they are currently
incapable of. Based on a study of several hundred hosts in a university
network, we posit that there is sufficient heterogeneity in hosts’ network
service configurations to achieve a high degree of network coverage by
re-using unused port space on client machines. We demonstrate Vortex, a
proof-of-concept CSW implementation that runs on a wide range of com-
modity PCs (Unix and Windows). Our experiments show that Vortex
can selectively aggregate traffic to a virtual machine backend, effectively
allowing two machines to share the same IP address transparently. We
close with a discussion of the basic requirements for a large-scale CSW
deployment.

Keywords: wormholes, honeynets, honeypots, volunteer systems.

1 Introduction

We present Cooperative Selective Wormholing (CSW), a novel approach to pro-
viding traffic for use in network intrusion detection systems (NIDS). Our ap-
proach adopts a cooperative model [8,11,23,24] in which volunteers contribute
their hosts’ unused network ports and a portion of their bandwidth. NIDS oper-
ators selectively aggregate the traffic bound for these ports in order to effectively
monitor large distributed portions of the Internet.

Collecting and analyzing network traffic to detect new methods of attack has
long been recognized as a necessity by the security community, and numerous
systems have been developed to provide such a service. While the design and
functionality of these systems are vastly different, nearly all of them operate by
aggregating network traffic from some source. CSW is such a source, one whose
volunteer nature presents the potential for dramatically improved coverage of
the Internet.

CSW is inspired by the wormholing model of Weaver, et al. [30], in which a
dedicated, low-cost hardware frontend device is attached to a network of interest

C. Kruegel, R. Lippmann, and A. Clark (Eds.): RAID 2007, LNCS 4637, pp. 317–336, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

318 J.R. Lange, P.A. Dinda, and F.E. Bustamante

Fig. 1. Cooperative Selective Wormholing provides distributed traffic aggregation for
NIDS through volunteer PCs

to forward traffic for a range of IP addresses to a backend honeypot. CSW also
uses a frontend/backend distinction, but it does not require any hardware de-
ployment and allows individual machine owners to participate. CSW enables the
aggregation of traffic bound to specific unused ports, thus allowing the wormhole
to transparently coexist on a volunteer machine. Figure 1 illustrates CSW at a
high level.

Network telescopes are the currently preferred method of traffic aggregation
in the security community [17]. By providing access to portions of the routed IP
address spaces on which little or no legitimate traffic exists, network telescopes
make possible the monitoring of unexpected network events such as network
scanning or some forms of flooding DoS attacks. Perhaps the main drawback
of the telescope approach is that it inherently restricts access to network traffic
to well-connected or well-funded individuals or groups capable of convincing an
organization to redirect its traffic to a remote location.

While it has been shown that accommodations for network telescopes can be
made, the model creates barriers for unaffiliated and unconnected investigators.
In contrast, CSW makes it possible for any researcher to deploy a large scale
distributed traffic aggregation infrastructure, solely by finding individual volun-
teers. It has clearly been shown that it is possible to convince individuals to
volunteer resources for a research effort, often on a massive scale [8,11,23,24].
CSW is similar to such efforts, except that individuals volunteer unused ports
and bandwidth.

CSW wormholes capture traffic destined for unused ports on the volunteer’s
machine and tunnel it to generic backend NIDS that are stood up by researchers
and others. The sender of the traffic is ideally completely unaware that he is
in fact interacting with a backend instead of with the volunteer’s machine. Fur-
thermore, the wormhole only runs on unused ports, none of the volunteer’s own
traffic is disclosed to the backend, alleviating privacy concerns.

Vortex: Enabling Cooperative Selective Wormholing 319

As a first step to realizing the CSW vision, we have developed Vortex, a proto-
type tool that enables volunteers to instantiate cooperative selective wormholes
on their machines. Vortex was developed based on our experience with network
virtualization and high performance grid computing. It is implemented using
VTL and VNET, two toolsets we have presented previously [10,25]. Vortex runs
on both Unix and Windows environments without interfering with any local ac-
tivity. Our evaluation of Vortex helps to establish the feasibility of CSW and
acts as a corner stone to its implementation.

We now elaborate on the three central issues of CSW:

– Coverage: Does the Internet possess enough diversity in open network port
configurations to provide acceptable amounts of traffic for CSW?

– Invisibility to clients: Can CSW systems be designed in such a way as to not
inconvenience the user running them?

– Invisibility to attackers: Will attackers be able to detect the presence of a
CSW on a volunteer’s machine?

We will also present the design, implementation, and evaluation of Vortex, our
CSW proof-of-concept tool.

2 Coverage

The principal issue with any traffic aggregation technique is the degree of cov-
erage it can obtain over the network. We define coverage as the distribution of
traffic aggregators over a sample space. For instance, a network telescope gives
very fine-grained coverage over a very small area, so it can very accurately cap-
ture behavior inside a subnet, but it cannot accurately describe the Internet at
large. Until now the distribution of monitored addresses, the horizontal coverage,
was the only coverage that needed to be considered. CSW improves horizontal
coverage by allowing cheap access to more widely distributed addresses, however
CSW has its own coverage issue: can a CSW system cover a relevant sample of
network ports? We use vertical coverage to denote coverage of network ports.

2.1 Horizontal Coverage

The largest advantage of CSW systems is the possibility of gaining a large degree
of random coverage over the entire Internet address space. Telescopes inherently
sample at a very low resolution, on the order of large subnets, and are difficult
to deploy remotely, so their localized observations may not be representative of
the actual activity taking place across the entire Internet. On the other hand,
CSW systems could provide a random sample of the Internet address space, thus
ensuring more widely applicable analyses. Note that the utility of using volunteer
hosts to gain a distributed presence has already been established [21].

320 J.R. Lange, P.A. Dinda, and F.E. Bustamante

 0

 10

 20

 30

 40

 50

 60

9+87654321

N
o.

of
 H

os
ts

Number of open ports

Hosts per signature

[80, 443]

[139, 445]

[135, 139, 445]

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

ag
e

of
 a

va
ila

bl
e

ho
st

s

Number of open ports

Percentage of non intersecting configurations

(a) Hosts per Signature (b) Signature Availability

Fig. 2. Signature prevalence and intersections from random sample of university hosts

2.2 Vertical Coverage

While CSW systems have the potential to provide superior resolution at the
address level, they inherently restrict port coverage. The issue of this vertical
coverage is specific to CSW, since the resolution possible is dependent on the
heterogeneity of the available ports, and their combinations, present in the Inter-
net. This heterogeneity corresponds to both the prevalence of operating systems
as well as the diversity of services active on volunteer hosts.

A CSW system would ideally be able to stand up port configurations in the
same proportion that those configurations are present in the actual Internet. If
some percentage of machines run a web server then the wormholed traffic would
ideally represent that same percentage. Thus CSW loses its appeal when too
many potential volunteer clients share the same open port configuration.

To gain an idea of the port distribution in the Internet we conducted a study
of the Northwestern University network. We scanned the first 1024 TCP ports
over 1000 machines randomly selected from the university network. We then culled
invalid devices (network switches, printers, etc) from the results, and analyzed the
remaining scans to identify the distribution of open ports. We refer to the set of
open ports on a machine as the port signature or simply the signature of that host.

We positively identified 401 of the 1000 addresses as capable of operating as
a Vortex sensor (general purpose computers running a Vortex-compatible OS)
using the OS fingerprinting functionality of nmap. An additional 253 of the 1000
hosts had no open ports, suggesting either an unknown OS, or (more likely) a
firewalled/secured OS configurations. It is reasonable to believe that many of
these additional hosts are also Vortex-compatible. Nonetheless, we focus on the
(worst case) 401 machines, from which we detected 123 distinct port signatures.

Configuration Diversity. We analyzed the number of hosts running each
signature, to determine if there were any obviously prevalent signatures. The
results are are shown in Figure 2(a), which plots the number of relevant hosts
as a function of the size of the port signature. There are three non-surprising
prevalent signatures, which we label. The most popular signature includes three
ports associated with standard Windows services commonly present on machines

Vortex: Enabling Cooperative Selective Wormholing 321

acting as Windows file servers. The second most popular signature contains a
subset of the Windows file server ports, consistent with a standard Windows
desktop machine. Finally, the third most popular signature consists of ports used
by web servers (http and https). Taken together these signatures are present on
138 (34%)of the 401 hosts we scanned. The figure also shows that there are 81
hosts (20%) with signatures that are unique to our data set, suggesting that
there is a significant degree of diversity in port signatures. The remaining 45%
of hosts exhibited a diverse range of signatures.

Configuration Separation or Non-Intersection. If a selection of signatures
all included a common subset of ports, the effectiveness of CSW in that selection
would be greatly diminished. We define any host whose port signature does not
intersect a given configuration that we want to monitor as an available host
for that configuration. To analyze the degree of separation present in various
signatures, and the availability implications, we used three approaches.

Entire Signatures. We first determined the amount of intersection among the
signatures themselves. We considered each signature in turn and determined the
number of hosts in the set that did not intersect with the selected signature.
These non-intersecting hosts would be available for a CSW of the prospective
signature. The results are shown in Figure 2(b). We can see that the signatures
with the fewest open ports are also the signatures with the highest degree of
availability. This is especially notable when considered with the previous ob-
servation that the most prevalent signatures had only a small number (2 or 3)
ports. The minimum availabilities of 2 and 3 port signatures are 50% and 20%
respectively. More importantly, as the number of open ports increases the num-
ber of available hosts does not decrease to zero. The worst availability is 7.98%
(32 hosts). The typical availability is much higher. Also, we are likely underes-
timating availability as we are not counting hosts that have no open ports.

Port Combinations. We also measured the separation of the signatures by con-
sidering subsets of the ports included in each signature. We considered each
unique signature and looked at the combinations possible when selecting a given
number of ports from the signature. Figure 3 shows the availability of combina-
torial results obtained from choosing different numbers of ports ranging from 1
to 5. When choosing a single port (Figure 3(a)), the availability is simply 100%
minus the percentage of hosts using that port. The top line represents the avail-
ability of the single port while the bottom line shows the percentage of hosts
containing that port in their signature. In the rest of graphs we retain the bottom
line showing the percentage of hosts containing the port combination in their
signature, but use a scatter plot to show the availability. Each point represents
one of the possible port subsets of the given size. The results are sorted by port
combination popularity, with the most common port combinations to the left.

While our previous results on the availability of entire signatures lets us esti-
mate an upper limit for each signature, the combinatorial analysis we describe
here is trying to isolate common port combinations present in the trace, letting
us estimate a lower limit. Figure 2(a) shows that there are three popular small

322 J.R. Lange, P.A. Dinda, and F.E. Bustamante

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

H
os

t P
er

ce
nt

ag
e

Port Combinations

In use %
Available %

 0

 20

 40

 60

 80

 100

 0 200 400 600 800

H
os

t P
er

ce
nt

ag
e

Port Combinations

(a) Single Ports (b) Port Pairs

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000

H
os

t P
er

ce
nt

ag
e

Port Combinations

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000

H
os

t P
er

ce
nt

ag
e

Port Combinations

(c) Port Triples (d) Port Quadruples

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000

H
os

t P
er

ce
nt

ag
e

Port Combinations

(e) Port Quintuples

Fig. 3. Probabilities that a given port combination is available in the set of hosts
gathered from the randomized port scan. Port combinations are calculated from the
signatures present in the scan results, and sorted by decreasing popularity.

port signatures, however combinations including those popular ports are likely
more common. For instance, if a given machine M has the port signature <80,
139, 443, 445> then it would not be included in the host count for either the
<80, 443> or <139, 445> signature, even though it would not be available for
either signature. By analyzing port combinations we can treat machine M as
belonging to both the <80, 443> and <139, 445> signatures.

Interestingly the graphs for the four higher order combinations (Figure 3(b)-
(e)) exhibit a common structure. Each contains bands of availability in roughly
the same locations, as well as a common dip in availability for combinations of
medium popularity. The other notable aspect of the graphs is that there is a

Vortex: Enabling Cooperative Selective Wormholing 323

Tag MachineClass Signature (Open Ports)
EXG Exchange Server 25, 80, 110, 135, 137, 139, 143, 443,

445, 593, 691, 993, 995
LHS Linux Hosting Service 22, 25, 80, 443, 993, 995
WIN Windows Desktop 139, 445
WFS Windows File Server 135, 137, 139, 445
LMS Linux Mail Server 22, 25, 119, 515, 635, 993
LWS Linux Web Server 22, 25, 80, 443
WDC Windows PDC 53, 88, 135, 139, 389, 445, 464, 593, 636
SMB Linux Mail + SMB 22, 25, 119, 137, 138, 139, 445, 515, 631, 993

Fig. 4. Partial list of Common Machine Configurations and their Signatures

 0

 10

 20

 30

 40

 50

 60

 70

 80

L
IN

W
D

C

D
N

S

L
W

S

E
X

G

L
H

S

SW
S

SO
L

SM
B

L
M

S

W
FS

W
IN

A
va

ila
bl

e
H

os
t P

er
ce

nt
ag

e

Availability of Common Configurations

Fig. 5. Host availability for selective wormholing of several common signatures. Avail-
ability is measured as the percentage of hosts in the host set returned from a randomized
scan that are available for a signature.

more concentrated collection of availability bands towards the top, indicating
that there is substantial availability for a large subset of port combinations.

The upshot of this analysis is that it provides considerable confidence that even
with a restrictive definition for port signature intersection, very popular port sig-
natures are likely to be available on a substantial number of Internet hosts.

Signatures of Common Machine Configurations. We next consider the avail-
ability of port signatures found on currently common machine configurations.
Figure 4 contains a subset of the configurations and signatures we tested. We
included common operating systems (including Windows, Linux, Solaris, and
MacOS X), as well common configurations of those operating systems (such as
web servers, email server, and domain controllers). We considered the signature
for each common configuration and ran it against our host set to determine the
availability of the configuration.

324 J.R. Lange, P.A. Dinda, and F.E. Bustamante

Figure 5 contains the results for the configurations we analyzed. Each machine
configuration is shown along with its corresponding availability in our host set.
The graph shows that the availability is quite good for most common configura-
tions. The worst cases are machines configured as Windows Exchange servers as
well as a Linux mail servers running Samba. This is to be expected since both
of these signatures contain standard Windows ports as well as ports commonly
found on Unix and server-class machines, effectively bridging the different ma-
chine configurations. Still, the results show that at least 20% of hosts will always
be available for any of the given machine configurations.

2.3 Coverage Feasibility

The results from the analysis of our random sample of machines connected to
the Northwestern University network show that there is a substantial amount of
heterogeneity present. While our results may be somewhat limited to our specific
environment, they indicate that the feasibility of obtaining vertical coverage in
the Internet as a whole is likely substantial. Our results suggest that CSW is
likely to be an effective method for collecting traffic from a large and statistically
meaningful sample of the Internet. We should also note that our analysis does
not take into account intermediate network devices such as NATs and firewalls. If
such devices are present then they would interfere with any active CSW located
behind them. We currently do not address these intermediate devices other than
to say that mechanisms, such as UPNP, do exist that could possibly allow traffic
to be delivered to a CSW through a NAT or firewall.

3 The Vortex Cooperative Selective Wormhole

To provide a proof-of-concept and to study other aspects of CSW, we have de-
veloped Vortex. Vortex interfaces with an overlay networking system to support
connectivity with different backends. Vortex is an outgrowth of research into us-
ing virtual machines (VMs) for high performance distributed computing, and so
is built using several tools developed in that work. While these tools provided a
general and easy avenue for implementing a CSW they are by no means required.
Vortex could, for example, be easily implemented as a firewall extension.

3.1 Design

Vortex functions by instantiating a CSW on a client machine and communicating
with a VM running as the backend system. This configuration is what would
typically be seen if Vortex was used as a traffic aggregator for a virtual honeypot
system. Vortex was implemented using our VTL and VNET toolsets [10,25].
Although we evaluate Vortex with a VM backend, the generality of VNET allows
a wide range of backend systems to be used, such as passive monitors, monitors
that perform simple connection interaction, virtual honeypots, or even physical
honeypots. The Vortex architecture is illustrated in Figure 6.

Vortex: Enabling Cooperative Selective Wormholing 325

Vortex

VTL

PCAP libnetFirewall

NIC

VNET
Proxy

Apps

IDS
Analysis
Backend

VNET
Overlay

(Windows/UNIX)
Commodity PC

Operating
System

Physical
Honeypot

VM Based
Honeypot

VM

Backend Network

Fig. 6. Vortex Architecture. Vortex uses VTL to capture packets before they are
dropped by the host firewall. The captured Ethernet frames are then sent to a VNET
proxy which routes the traffic to an IDS backend system.

VTL is a framework designed to allow developers to rapidly develop trans-
parent network services [10]. Primarily, it provides OS-independent methods for
packet serialization, acquisition, and manipulation as well as state models used
when working with stateful connections. VTL is built on top of Pcap [13,31] and
libnet [12], thus providing a cross platform method for interacting with network
traffic. Vortex uses VTL for both selective traffic capture as well as transmis-
sion of any outbound traffic from the VM backend. Vortex also relies on the
VTL mechanisms for packet modification to ensure that traffic is accepted by
all parties as legitimate.

VNET is an overlay network toolkit designed specifically for virtual machine-
based environments. It provides a layer 2 abstraction for the VMs, tunneling
complete Ethernet frames through an overlay whose topology and routing rules
are globally controlled [25,26]. Vortex is designed to interface with VNET to
provide connectivity to the virtual machine backend. At startup Vortex connects
to a VNET proxy machine that routes all the traffic from the wormhole to
a specific VNET-connected VM. Because VNET encapsulates entire Ethernet
frames, traffic can move seamlessly between the overlay and a physical network
interface. This allows VNET to connect to physical network devices as well as
virtual network devices exposed by a VM.

The current version of Vortex has a very simple interaction model. A Vortex
client instantiates wormholes on any number of unused ports and forwards all
traffic to wormholed ports to a single VNET proxy. The VNET overlay is then
configured to route all traffic from a given wormhole to a single VM. The VM
is configured with the same IP address and routing table as the client machine,
but has a separate MAC address. Any traffic that is generated by the backend
VM on a wormholed port is tunneled back to the client where it is injected into
the physical network. Despite the simplicity of the current interaction model,
creation of more complicated use models is entirely possible within the
VTL+VNET framework. For example, different wormholed ports on the same

326 J.R. Lange, P.A. Dinda, and F.E. Bustamante

frontend could be routed to separate backend systems. Also, more stringent re-
quirements on the traffic generated by the backend system could easily be added.
The Vortex client can also perform any number of packet transformations, at
layers 2 through 4, to traffic passing both in and out of the wormhole.

We chose to use the VNET+VTL architecture over more established tun-
nelling architectures, such as GRE, due to the ease of integration, packet access
capabilities, and cross platform availability.

3.2 Wormhole Cloaking

While VTL and VNET handle the transmission of network packets from the
volunteer machine to a backend system, Vortex itself must assure seamless in-
tegration of the backend with the client and the client’s network. In order to
transparently instantiate wormholes on a volunteer machine, Vortex must fool
not only the outside world but also the local machine into handling packets as
if they were generated locally. To operate transparently, any packets that are
transmitted out of the wormhole must appear as if they were generated by the
local machine. Also, if a particular port is being wormholed the local host must
not reply to any traffic it receives on that port. Furthermore, in the case of a hon-
eypot backend, traffic must be modified so that it is accepted by the honeypot.
We now consider two key issues that must be addressed.

MAC Addresses. This issue only arises when a backend system wishes to in-
teract with traffic that has been captured, that is it wants to send responses and
receive replies. In this case any packets generated by the backend would need
to share the same MAC address as the volunteer machine. It is feasible that the
volunteer could report the MAC address of their machine and require the back-
end to configure itself to assume that address itself. However, this would require
assumptions about the aggregation technique to be made by the backend, some-
thing we try to avoid. Also it would require volunteers to divulge information
about themselves, which we also seek to avoid.

Instead of requiring the backend to handle this issue we instead have Vortex
perform MAC address translation locally on the volunteer machine. Vortex first
probes the local machine for its MAC and IP addresses, and then issues an ARP
request through VNET to the backend for the local host’s IP. The backend re-
sponds with an ARP reply containing its MAC address, which Vortex intercepts
and stores. From that point onward Vortex rewrites incoming packets with the
appropriate MAC address before forwarding them to either the backend or the
local network. To ensure ARP table consistency all ARP requests and replies
received by the local machine are captured by Vortex and sent to the backend,
similarly any ARP packets generated by the backend are inserted into the clients
local network.

Packet Suppression. The normal response of a TCP stack to a packet arriving
on a closed port is for a host to send an RST packet to the source. However,
in the case that the non-open port is being handled by Vortex, this behavior is
unacceptable. The result would be a source host receiving both a RST packet

Vortex: Enabling Cooperative Selective Wormholing 327

-A VORTEX FW -p tcp –dport 6000:6050 -j ACCEPT
-A VORTEX FW -p udp -m udp –dport 137 -j ACCEPT
-A VORTEX FW -p udp -m udp –dport 138 -j ACCEPT
-A VORTEX FW -m state –state ESTABLISHED,RELATED -j ACCEPT
-A VORTEX FW -j DROP

Fig. 7. Example firewall (IPTables) rules to enable packet suppression

as well as whatever response was generated by the backend for every packet
sent through the wormhole. The additional RST would not only likely interfere
with the TCP connection, but it would also make Vortex’s existence obvious if
the source were an attacker. For Vortex to function correctly these RST packets
must be suppressed.

To handle the TCP RST problem we use the local host firewalls included in
most current OS environments, e.g. iptables and the Windows Firewall. These
firewalls support configurations that simply drop packets destined for a port
disallowed in the firewall rules, thus ensuring that packets to a closed port never
reach the local TCP stack (this is the default behavior for the Windows Firewall).
Figure 7 includes an example configuration for iptables. The example accepts
TCP packets destined for local ports 6000-6050, udp packets for ports 137 and
138, and packets belonging to an established connection. All packets not included
in the rules are dropped and never reach the local TCP stack. Because Vortex
has no mechanism capable of blocking the local client from either receiving or
transmitting packets, Vortex requires such firewall configurations to be in place
in order to operate transparently. This requisite relationship between Vortex
and local firewalls leads us to believe that CSW might be best implemented as
a firewall extension.

4 Invisibility to Volunteers

A core requirement for Vortex is that it be able to function on a volunteer ma-
chine without any interference or impact on performance. While Section 3 dis-
cussed the mechanisms required to make Vortex traffic indistinguishable from
normal host traffic, those are merely the basic requirements for CSW systems to
function. In order for CSW systems to be effective they must also be invisible
in more subtle ways, such as in their performance impacts or interference with
applications the host machine is running. This requires that CSW systems im-
plement mechanisms for detecting user behavior and reacting accordingly. The
current experimental version of Vortex does not implement all of these mech-
anisms, but we envision incorporating them into a later version. To be truly
invisible to a volunteer, a CSW must address the following issues.

4.1 Port Collisions

The most obvious form of interference from Vortex arises from port colli-
sions. This occurs when a wormhole and a local application are simultaneously

328 J.R. Lange, P.A. Dinda, and F.E. Bustamante

communicating on the same port number. This can happen when Vortex is
launched or if Vortex has been configured on a specific port, when at some later
point a local connection begins using that port. Because Vortex maintains trans-
parency to the local machine, it must be able to detect these events on its own
and close the wormhole if such an event occurs.

A client’s list of open ports is readily available via the /proc directory on
Linux and a win32 API call in Windows. Currently, Vortex employs active polling
of the corresponding mechanism to acquire a list of open ports on the local
machine and detect collisions with any active wormholes. If a collision is detected
then Vortex closes the wormhole immediately. Polling is neither efficient nor
responsive, so we plan on implementing a method for notification when the local
host requests the use of a currently wormholed port. We plan on utilizing an
NDIS driver hook for Windows environments and library interposition for Unix.

4.2 Performance Degradation

A CSW implementation must also ensure that performance does not significantly
degrade on the client machine. This is especially critical for deployments relying
on the use of volunteers, as no one will run a tool that slows their machine down
noticeably. The performance impact can either be in the form of bandwidth
usage or CPU utilization for packet processing.

To address this issue we are working on mechanisms that allow a user to
specify the amount of resources they are willing to make available. This tech-
nique has been used successfully in many peer-to-peer applications as well as
in cooperative computing initiatives. Our plans with Vortex include the imple-
mentation of a bandwidth rate limiter that is configurable by the user. This will
allow a volunteer to determine the amount of bandwidth which they are willing
to provide to Vortex. Another solution could include rulesets for when CSWs
are allowed to be instantiated, for example only after a machine has been idle
for a given amount time.

Network Overheads. We ran a series of experiments to quantify the performance
of a CSW system (Vortex) as well as the possible performance impact on the
client machine. Our experimental setup consisted of a Vortex client connected to
a virtual machine backend located on the Northwestern University network. We
ran two sets of experiments: first with the client located on a home network con-
nected to the Internet via DSL, and a second with the client on the Northwestern
network. In each case the traffic to the client was generated from machines on
the Northwestern network. For each experiment we measured the raw bandwidth
of both the client machine and the wormhole, as well as the available bandwidth
of both when the other is being flooded with network traffic. We also used the
Linux IProute2 implementation to test the impact of a bandwidth limiter.

Figures 8(a) and 8(c) illustrate the performance of a Vortex CSW. The graphs
show the bandwidth through a wormhole under various conditions. Figure 8(a)
shows the bandwidth of a Vortex CSW running on a client connected to the
same LAN as the backend system, while Figure 8(c) shows the same for a client
located on a DSL line. The Raw column shows the maximum available bandwidth

Vortex: Enabling Cooperative Selective Wormholing 329

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

Host
Flooded

Raw

B
an

dw
id

th
 (

K
B

/s
)

Vortex Bandwidth (LAN)

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

Vortex
Flooded

Raw

Host Bandwidth (LAN)

 0

 50

 100

 150

 200

 250

 300

 350

Limited
10kB/s

Host
Flooded

Raw

Vortex Bandwidth (DSL)

 0

 50

 100

 150

 200

 250

 300

 350

Vortex
Limited

Vortex
Flooded

Raw

Host Bandwidth (DSL)

(a) Vortex LAN (b) Host LAN (c) Vortex DSL (d) Host DSL

Fig. 8. Bandwidth measurements of clients hosted on DSL and LAN connections. (a)
and (c) contain the performance results of a Vortex CSW, while (b) and (d) contain
the performance results of the client machine. Measurements were taken under various
traffic conditions and bandwidth is measured in kilobytes/second. Each figure shows
the mean taken from 10 separate trials.

to a CSW when no other host traffic is present. Vortex is implemented in user
space requiring two context switches for each packet received (One to receive
the packet from PCAP or VNET, plus one to transmit the packet with libnet or
VNET). While these context switches place a limit on the performance of the
present version of Vortex, a more intelligent in-kernel design would be capable of
performing much better. The figures also show the performance impact on the
CSW when the client host is being flooded with traffic to a local service. In both
cases Vortex is not starved of bandwidth and continues to function. Finally, for
the DSL client we configured the kernel to limit the bandwidth from the client
to the VNET proxy, which we will discuss later.

Figures 8(b) and 8(d) show the performance of the volunteer machine running
a Vortex CSW. We performed the same experiments as described earlier. First we
measured the Raw bandwidth of each client machine with Vortex not running and
no other traffic present. We then performed the same test but with a Vortex CSW
configured and being flooded with traffic. Both hosts show a drop of performance
when Vortex is being used heavily, but our implementation is able to cushion the
performance drop to roughly 15% due to its architecture. However, as we stated
above, the performance of a CSW can be improved, and any improvement will
adversely effect the performance of a host. There is clearly a tradeoff that the
volunteer needs to make.

To demonstrate that constraints can be placed on a CSW system to prevent
it from causing too large a drop in host performance, we ran the tests again
with an external bandwidth limiter. For this experiment, we only measured the
performance of the DSL host. In order to constrain Vortex we configured a
network queue, using IPRoute2 in the Linux kernel, to limit any traffic to the
VNET proxy to 10kB/s. We then measured the performance of both the Vortex
CSW as well as the client machine. The results are included in the third column of
figures 8(c) and 8(d). Figure 8(c) shows that the bandwidth of the CSW is indeed
constrained to 10KB/s, while figure 8(d) shows that the performance degradation

330 J.R. Lange, P.A. Dinda, and F.E. Bustamante

on the host is limited to only 10KB/s. By incorporating a user configurable
limiter with a CSW implementation, volunteers will be able to decide the amount
of bandwidth they are willing to donate and be assured that the wormhole won’t
monopolize their host or network.

4.3 Privacy Risks

Dealing with privacy in distributed network monitors has been recognized as a
key concern for any system to be deployed [4,15]. To protect volunteers as well
as to minimize the liability of wormhole operators, selective wormholes must be
very careful about what traffic they allow to be aggregated. The most serious
privacy issue that a CSW must deal with is ensuring that no private local traffic
is mistakenly aggregated, but other smaller issues exist as well. For a CSW
architecture to be successful it must alleviate any concerns that the volunteers
might have.

There is no perfect way to address the problem of mistakenly aggregating
private traffic. Ultimately the issue is tied to the behavior of the user and the
other members of the users network. For instance, if a volunteer provides a Linux
client on a corporate LAN, Vortex could be instructed to instantiate wormholes
associated with windows file sharing services. If for some reason another user on
the LAN decides to start trying to communicate with those ports, then traffic is
being aggregated that might possibly be very sensitive in nature. In other words,
a CSW system like Vortex can do nothing to prevent users from purposefully
but mistakenly transmitting sensitive information through a wormhole. Vortex’s
method of preventing this is to allow a user to blacklist ports that they don’t
want Vortex to use, however this requires action by the user and does not prevent
mistakes from being made.

The other privacy issue is the aggregation of sensitive information outside
of aggregated network traffic. Vortex is specifically designed to require as little
information from the user as possible. Currently the only information available
to the Vortex backend system is the IP address of the machine as well as a list of
in use network ports. If the user wishes, they are able to locally configure Vortex
to only use a defined set of ports in case that they don’t wish to disclose the
port signature of their machine. Depending on the type of backend system in use,
further steps can be taken to increase anonymity. For instance, non-interactive
backend systems might not need to know the actual IP address of the volunteer
machine, in which case Vortex could anonymize the IP and MAC addresses.
Previous work has demonstrated anonymization of network data [16,32], and
such techniques could easily be implemented in Vortex.

4.4 Security Exposure

Besides avoiding the exposure of private information, CSW systems must not
create additional security vulnerabilities on the client machine or their network.
The security issues themselves are shared with and have been explored in the
context of other aggregation techniques, but the location of the aggregation

Vortex: Enabling Cooperative Selective Wormholing 331

nodes brings new aspects to the problem. There are two main new aspects to
the security problem: exploitability of the wormhole implementation, and risks
to the local resources resulting from a compromised backend system. Vortex
currently minimizes the former, while leaving the latter as a policy decision for
wormhole operators.

The current version of Vortex does minimal processing besides simply encap-
sulating Ethernet frames and tunneling them to a backend. The only processing
performed by Vortex is on the Ethernet level headers themselves, which must
first pass through network equipment and a pcap filter that only accepts packets
with a valid format. However this might change if Vortex is implemented with ad-
ditional packet processing capabilities such as anonymization, so such changes
must be implemented with great care. Furthermore the packets captured by
Vortex are never delivered to the local host, they are simply encapsulated and
tunneled through Vortex.

The issue of transmitting traffic from the backend onto the volunteer’s local
network poses a complicated problem. While this issue is common to honeynets
and other traffic aggregators, the fact that the potentially harmful traffic is being
inserted onto a volunteer’s network leads to a much more sensitive situation.
Ultimately this is a policy decision that must be made by the wormhole operators
themselves. Even though the current version of Vortex blindly writes all traffic
from wormholed ports to the network, the capability to block all or some of
the traffic is available through the VTL and VNET frameworks. VNET can
be configured to only forward traffic from the wormhole but not to it, and VTL
provides packet inspection mechanisms which would allow Vortex to make packet
injection decisions based on rulesets run against the packet contents. Other CSW
implementations could inject traffic at remote locations seperate from the client’s
network presence. This would allow full communication between the backend and
attacker while not requiring the client to inject any traffic onto it’s local network.

5 Invisibility to Attackers

To further evaluate the utility of CSW we investigated the degree to which the
wormholes were detectable by an attacker. This section assumes that the CSW
wormhole is connected to a honeypot or some other system that emulates an
actual service. These systems depend on an attacker believing that their target
is actually a legitimate machine, so it is important to understand whether CSW
systems provide enough information to tip off an attacker. Furthermore, if an
attacker discovers a wormhole then they can simply avoid it, or try to disrupt
it [1,3].

The methods an attacker can use to detect the presence of wormholed port
fall into two categories: First, because wormhole traffic is tunneled to a remote
location, the packet latencies will be larger for wormhole traffic as opposed to
traffic handled by the local machine. Second, because a honeypot will be config-
ured differently from a client machine, often with a different OS, packet formats
and network behavior will differ between the wormhole and local services. It is

332 J.R. Lange, P.A. Dinda, and F.E. Bustamante

beyond the scope of this work to explore the possibility of transforming traffic
formats to mimic different hosts, so we only focus on the issue of latency.

For CSWs to be hidden from an attacker, the added latency of the wormhole
must fall within the variance of the latency for a local service. This means that
the degree to which wormhole latency is masked depends on the connection
quality and location of the wormhole host, the backend, and the attacker. Our
experiments attempted to capture the different environments under which all
three components might operate.

We conducted the experiments by installing Vortex wormholes at various net-
work locations and connecting them to our VM backend located on the North-
western University network. We then ran latency measurements from PlanetLab
nodes located across North America. We measured latency by using tcpdump to
time the durations of SYN/SYN-ACK sequences resulting from TCP connection
setup requests. We chose to measure the SYN/SYN-ACK sequence because it
is handled in kernel and so is independent of application behavior. The Vortex
sensors were located on a home network with a DSL Internet connection, a home
network with a cable Internet connection, and a Northwestern local area net-
work. For each test we measured the SYN/SYN-ACK latency for a local service
and a wormhole service.

The results are given in Figure 9. Each graph is for different client network
(DSL, Cable, LAN). In a graph, paired bars compare the local service latency
(left bar) with the wormhole latency (right bar). Bar pairs are given for each of
the “attacker” PlanetLab sites. It is important to note that each bar represents
an average, and standard deviation whiskers are also shown.

As expected the location of the various parties plays a large role in determin-
ing the average and standard deviation of the latency of a connection. Neither
the DSL nor the cable networks exhibited enough latency variance to effectively
mask the presence of a wormhole. Only the wormhole located on the LAN was
able to disguise the presence of a wormhole. While somewhat discouraging, the
tests do show that the latency is dependent only on the added latency between
the wormhole client and the backend system, meaning that the wormhole im-
plementation added minimal latency from packet processing. This suggests that
intelligent and dynamic distribution of a backend system over a hosting service
such as PlanetLab could help disguise the presence of a wormhole. That is, were
the backend itself running on PlanetLab, it could move closer to the client. Fur-
thermore, if the backend were a virtual machine, implementing such movement
could be readily accomplished [22].

6 Related Work

Many different communities have sought to harness the unused resources of vol-
unteer machines to perform large calculations or large scale measurements. The
most well known of these projects uses donated CPU time to perform extremely
large calculations. Projects such as SETI@home [24] and Folding@home [11] have
demonstrated considerable success with such an approach, harnessing hundreds

Vortex: Enabling Cooperative Selective Wormholing 333

 0
 20
 40
 60
 80

 100
 120
 140

T
or

on
toU
T

U
C

L
A

O
SUM
IT

L
at

en
cy

 (
m

s)

Syn−SynAck Latency through DSL

 0
 20
 40
 60
 80

 100
 120
 140

T
or

on
to

U
T

E
P

U
C

SD

O
SUM
IT

L
at

en
cy

 (
m

s)

Syn−SynAck Latency through Cable

 0
 20
 40
 60
 80

 100

T
or

on
to

U
T

E
P

U
C

SD

O
SUM
IT

L
at

en
cy

 (
m

s)

Syn−SynAck Latency through LAN

Fig. 9. Differences in latency between a local service and a CSW. Measurements were
made by timing the Syn/SynACK sequence caused by the establishment of a TCP
connection. Measurements were taken from various PlanetLab sites distributed across
North America. For each site the latency of a local service is shown on the left side
while the CSW latency is on the right.

of thousands of machines. The Internet measurement community has recently
explored such a model, following the realization that widely distributed sensors
were necessary to gain a relevant view of the network [8,23]. Measurement and
computational clients can all be characterized as active, in that they compute
or measure something and report the results. CSW clients, however, are pas-
sive, since they simply tunnel anything they receive back to a backend. While
this difference might seem minor, it has serious implications for client privacy
and security. Recent work in IDS systems has begun to move towards distrib-
uted monitoring as well [2,5,6,19,28], but these systems have yet to demonstrate
a technique as readily deployable as a measurement system or computational
engine.

To date traffic aggregation techniques have confined themselves to so called
dark address spaces [14,18,27,33,34]. The idea is to aggregate traffic destined for
unused IP addresses and reroute it into a given backend. This usually requires
the reconfiguration of network equipment controlling large network domains.
While this method of traffic aggregation, commonly referred to as a network tele-
scope, is effective in collecting large amounts of candidate traffic, it has several
drawbacks. First, it requires large segments of empty address space. This ad-
dress space usually can only be found in large organizations such as universities.
Accessing this address space requires the cooperation of network administra-
tors for the entire period of aggregation. Furthermore, telescopes are inherently

334 J.R. Lange, P.A. Dinda, and F.E. Bustamante

restrictive in the distribution of the aggregated address space. While substan-
tial amounts of traffic can be aggregated from entire dark subnets, such traffic
is usually only resulting from automated attacks such as worms or large port
scans.

The concept of using wormholes to distributed the network presence of a
centralized NIDS backend system was first proposed by Weaver, Paxson, and
Staniford [30]. The overall concept is very similar in their work and ours, in that
both use distributed wormholes to aggregate traffic into a centralized backend
system. However, while their system provides a wormhole for all traffic to a
given IP address, we propose to selectively wormhole a subset of traffic based
on the network port the traffic arrives at. Additionally, while Weaver, et al
propose a hardware solution that requires colocation, the architecture of CSW
relies on volunteers donating unused resources of any commodity PC, creating
no deployment costs for an operator.

Much work has previously been done in the implementation of actual IDS
backend systems, including [7,9,20,29,34]. Our work is aimed at providing traffic
aggregation for these systems. Even though most of these systems include their
own mechanisms for traffic aggregation we do not propose to replace them, in
fact we believe that CSW is a technique that can be used to augment the already
present aggregation facilities these systems have in place.

7 Conclusion

In this paper we introduced the concept of Cooperative Selective Wormholing
(CSW), a new technique of traffic aggregation for intrusion detection systems.
We demonstrated that there is room in the present Internet for CSW systems
to achieve adequate address and port coverage, and examined the advantages
and disadvantages of CSW compared to present traffic aggregration techniques.
We presented a proof-of-concept CSW system, Vortex, and evaluated its perfor-
mance, including its visibility to volunteers and attackers.

In the future we plan on expanding Vortex to provide a deployable selective
wormhole architecture for use by security researchers. We are also looking for
opportunities to integrate Vortex into existing honeynet architectures or other
IDS analysis systems.

References

1. Allman, M., Barford, P., Krishnamurthy, B., Wang, J.: Tracking the role of adver-
saries in measuring unwanted traffic. In: The 2nd Workshop on Steps to Reducing
Unwanted Traffic on the Internet (2006)

2. Bailey, M., Cooke, E., Jahanian, F., Nazario, J., Watson, D.: The internet motion
sensor: A distributed blackhole monitoring system. In: Proceedings of the 12th
Annual Network and Distributed System Security Symposium (2005)

3. Bethencourt, J., Franklin, J., Vernon, M.: Mapping internet sensors with probe
response attacks. In: Proceedings of the 14th USENIX Security Symposium (2005)

Vortex: Enabling Cooperative Selective Wormholing 335

4. Claffy, K., Crovella, M., Friedman, T., Shannon, C., Spring, N.: Community-
oriented network measurement infrastructure workshop report (2006)

5. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: End-to-end containment of internet worms. In: Proceedings of the
twentieth ACM symposium on Operating systems principles, ACM Press, New
York (2005)

6. Frincke, D.A., Tobin, D., McConnell, J.C., Marconi, J., Polla, D.: A framework for
cooperative intrusion detection. In: Proc. 21st NIST-NCSC National Information
Systems Security Conference, pp. 361–373 (1998)

7. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture
for intrusion detection. In: Proc. Network and Distributed Systems Security Sym-
posium (February 2003)

8. Grizzard, J.B., S Jr., C.R., Krasser, S., Owen, H.L., Riley, G.F.: Flow based ob-
servations from neti@home and honeynet data. In: Proceedings of the 2005 IEEE
Workshop on Information Assurance and Security, IEEE Computer Society Press,
Los Alamitos (2005)

9. Jiang, X., Xu, D.: Collapsar: A vm-based architecture for network attack detention
center. In: Proceedings of the 13th USENIX Security Symposium (2004)

10. Lange, J.R., Dinda, P.A.: Transparent network services via a virtual traffic layer
for virtual machines. In: Proceedings of the 16th IEEE International Symposium
on High Performance Distributed Computing, IEEE Computer Society Press, Los
Alamitos (to appear, 2007)

11. Larson, S.M., Snow, C.D., Shirts, M., Pande, V.S.: Folding@home and
genome@home: Using distributed computing to tackle previously intractable prob-
lems in computational biology. In: Grant, R. (ed.) Computational Genomics, Hori-
zon Press (2002)

12. Libnet, http://libnet.sourceforge.net/
13. Libpcap: Libpcap, http://sourceforge.net/projects/libpcap/
14. Liston, T.: The labrea tarpit, http://labrea.sourceforge.net/labrea-info.html
15. Lundin, E., Jonnson, E.: Privacy vs intrusion detection analysis. In: Proceedings

of Recent Advances in Intrusion Detection (1999)
16. Minshall, G.: Tcpdpriv, http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html
17. Moore, D., Shannon, C., Voelker, G., Savage, S.: Network telescopes: Technial

report. Technical Report CS2004-0795, University of California, San Diego (2004)
18. Moore, D., Voelker, G.M., Savage, S.: Inferring internet Denial-of-Service activity.

In: Prcoeedings of the 2001 USENIX Security Symposium (2001)
19. Pouget, F., Dacier, M., Pham, V.H.: Leurre.com: On the advantages of deploying

a large scale distributed honeypot platform. In: Proceedings of ECCE’05, E-Crime
and Computer Conference (2005)

20. Provos, N.: A virtual honeypot framework. In: Proceedings of the 13th USENIX
Security Symposium (2004)

21. Rajab, M.A., Monrose, F., Terzis, A.: On the effectiveness of distributed worm
monitoring. In: Proceedings of the 14th USENIX Security Symposium

22. Sapuntzakis, C., Chandra, R., Pfaff, B., Chow, J., Lam, M., Rosenblum, M.: Opti-
mizing the migration of virtual computers. In: Proceedings of the 5th Symposium
on Operating Systems Design and Implementation (December 2002)

23. Shavitt, Y., Shir, E.: Dimes: Let the internet measure itself. ACM SIGCOMM
Computer Communication Review 35(5) (2005)

http://libnet.sourceforge.net/
http://sourceforge.net/projects/libpcap/
http://labrea.sourceforge.net/labrea-info.html
http://ita.ee.lbl.gov/html/contrib/tcpdpriv.html

336 J.R. Lange, P.A. Dinda, and F.E. Bustamante

24. Sullivan, W.T., Werthimer, D., Bowyer, S., Cobb, J., Gedye, D., Anderson, D.:
A new major seti project based on project serendip data and 100,000 personal
computers. In: Cosmovici, C., Bowyer, S., Werthimer, D. (eds.) Proceedings of the
Fifth International Conference on Bioastronomy. IAU Colloquim, vol. 161, Editrice
Compositori, Bologna, Italy (1997)

25. Sundararaj, A.I., Dinda, P.A.: Towards virtual networks for virtual machine grid
computing. In: Proceedings of the 3rd USENIX Virtual Machine Research and
Technology Symposium (2004)

26. Sundararaj, A.I., Gupta, A., Dinda, P.A.: Increasing application performance in
virtual environments through run-time inference and adaptation. In: Proceedings
of the 14th IEEE International Symposium on High-Performance Distributed Com-
puting, IEEE Computer Society Press, Los Alamitos (2005)

27. The Honeynet Project, http://project.honeynet.org
28. Vigna, G., Kemmerer, R.A., Blix, P.: Designing a web of highly-configurable in-

trusion detection sensors. In: Lee, W., Mé, L., Wespi, A. (eds.) RAID 2001. LNCS,
vol. 2212, Springer, Heidelberg (2001)

29. Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A.C., Voelker, G.,
Savage, S.: Scalability, fidelity, and containment in the potemkin virtual honeyfarm.
In: Proceedings of the 20th ACM symposium on Operating systems principles,
ACM Press, New York (2005)

30. Weaver, N., Paxson, V., Staniford, S.: Wormholes and a honeyfarm: Automatically
detecting novel worms. In: DIMACS Large Scale Attacks Workshop (2003)

31. WinPcap, http://www.winpcap.org/
32. Xu, J., Fan, J., Ammar, M., Moon, S.: Prefix-preserving ip address anonymization:

Measurement-based security evaluation and a new cryptography-based scheme. In:
Proceedings of the 10th IEEE International Conference on Network Protocols,
IEEE Computer Society Press, Los Alamitos (2002)

33. Yegneswaran, V., Barford, P., Jha, S.: Global intrusion detection in the domino
overlay system. In: Proceedings of Network and Distributed System Security Sym-
posium (2004)

34. Yegneswaran, V., Barford, P., Plonka, D.: On the design and use of internet sinks
for network abuse monitoring. In: Jonsson, E., Valdes, A., Almgren, M. (eds.)
RAID 2004. LNCS, vol. 3224, Springer, Heidelberg (2004)

http://project.honeynet.org
http://www.winpcap.org/

	Introduction
	Coverage
	Horizontal Coverage
	Vertical Coverage
	Coverage Feasibility

	The Vortex Cooperative Selective Wormhole
	Design
	Wormhole Cloaking

	Invisibility to Volunteers
	Port Collisions
	Performance Degradation
	Privacy Risks
	Security Exposure

	Invisibility to Attackers
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

