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Abstract—The layered structure of the system software stacks
we use today allows for separation of concerns and increases
portability. However, the confluence of widely available virtualiza-
tion and hardware partitioning technology, new OS techniques,
rapidly changing hardware, and significant advances in compiler
technology together present a ripe opportunity for restructuring
the stack, particularly to support effective parallel execution. We
argue that there are cases where layers, particularly the compiler,
run-time, kernel, and hardware, should be interwoven, enabling
new optimizations and abstractions. We present four examples
where we have successfully applied this interweaving model of
system design, and we outline several lines of promising ongoing
work.

Index Terms—interweaving, layering, operating systems, com-
pilers

I. INTRODUCTION

Advances in virtualization and hardware partitioning now
make it possible for a single system to securely host multiple
software stacks simultaneously [9], [59], [38], [39]. Similarly,
in some high performance computing and cloud environments,
systems with diverse software stacks can securely coexist side-
by-side through network traffic segregation. Containerization
simplifies deployment, and fast boot technologies allow us
to think of an entire software stack in much the same way
we have thought about processes in the past. The result of
these advances has been an explosion of innovation across
the software stack, abetted by concomitant hardware advances.
We are no longer bound by the commodity software/hardware
stack. Simply put, we can put whatever stack we want next to
the commodity stack.

We have been working to leverage these advances to im-
prove the state of software/hardware stacks specifically for
parallel programs. As we know from the 50+ year history of
parallelism, parallel programs are quite different from sequen-
tial and ordinary concurrent programs in terms of languages,
patterns, collective behavior, and execution models. Despite
these profound differences, today it is often assumed that only
small variations in the commodity software/hardware stack are
necessary to support parallelism well. At the same time the
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commodity software/hardware stack has grown quite rigid,
which restricts the imagination of the designers of parallel
systems including languages, compilers and run-times, and
limits them to a constrained design space. These restrictions
are already limiting today and will become hard limiters as
exploiting parallelism becomes ubiquitous, the scale of the
necessary parallelism expands, and energy efficiency becomes
increasingly important.

a) Example Limitations: Current hardware/software
stacks for parallelism require virtual memory in the form
of paging, which then demands the existence of TLBs and
other hardware structures. These in turn have substantial
overheads in time and energy. This issue is not limited to
parallel systems. Indeed, there is a cottage industry of work
on addressing the limitations of paging in the general systems
and architecture communities as well. Another limitation of
current hardware/software stacks for parallelism is that all
memory is kept cache-coherent by hardware means. When a
parallel language implementation does not require this, there
is a substantial toll on performance and energy. Yet another
limitation is that events in current hardware/software stacks are
based ultimately on hardware timer interrupts, but these exist
at a considerable remove from the parallel runtime because of
the need to cross a kernel/user boundary multiple times. The
extra latency and overhead this introduces artificially limits
the granularity of action in a parallel runtime system.1

b) Big Picture: Our focus is on layering, in particular the
layers of language, compiler, run-time, operating system, and
hardware. While not impermeable, the existence of these layers
inherently warps the design of a parallel system. Another
critical aspect is the notion of privileged (e.g., kernel) versus
unprivileged (e.g., user) execution, which in turn is a major
enforcer of layering. This notion also means that a substantial
portion of the hardware functionality is unavailable to all but
the kernel, and that higher layers are forced to use the kernel’s
own abstractions.

c) Interweaving Model: We have been investigating how
these layers of a parallel system can and should change,
particularly when the privileged/unprivileged distinction is

1Sections IV and V give examples of our interweaving work that address
the example limitations we note here.



CLANG/LLVM

Link

OpenMP

OpenMP codes
[e.g. SpecOMP, etc.]

Blending

NESL VCODE
Runtime (C)

Legion
Runtime (C++)

NESL Codes
[e.g. Qsort]

Legion Codes
[e.g. HPCG]

Other Existing Ports
(Racket, NDPC,
UPC(partial)) 

(C/C++)
Static  

Kernel Framework 
(C+asm)

Dynamic
Kernel 

FrameworkPredictability

Coherence

Mapping

Hardware Platform
(x64 NUMA, Phi, 
HARP)

Linux 
Environment

Debugging
Enhanced Hybrid Runtime Produced by 

Toolchain

Hardware partitioned 
using previously 
demonstrated techniques

Compilation
Execution

Special Features

1

2 4

3

5

Fig. 1. Example system.

removed. The interweaving model, a particular approach to
layering, is our approach. Here, the specific functionality
needed by a specific parallel system (or even application)
is implemented by integrating (“interweaving”) in a custom
manner functionality formerly kept distinct at each layer. The
custom software/hardware stacks possible in the interweaving
model have the potential to lead to higher performance, more
scalability, and more energy efficiency.

Figure 1 illustrates the compile-time and run-time structure
of the system we are building as we pursue our research
agenda. We build upon Nautilus, a static ( 1 ) and dynamic
kernel framework ( 2 ), which we describe in the next sec-
tion. Nautilus provides predictable behavior through a variety
of means, including hard real-time scheduling. We use the
Clang/LLVM compiler toolchain to build both Nautilus and
the parallel application, with OpenMP applications ( 3 ) being
an important current target. Using custom code transformation
passes, we blend the code of the application and the code
of Nautilus at a low-level ( 4 ), including below the level of
individual functions. Other compiler transformations add code
that allows us to solve traditional problems, such as protection
and mapping of memory, and timing, using alternative means.
Finally, the generated code can take advantage of specialized
hardware features such as FPGA-based operators, or relaxed
coherence, that emerging hardware ( 5 ) can provide and that
higher-level parallel languages can exploit.

Given this setting and the overall interweaving model, we
have developed alternative approaches to a range of systems
problems, which we elaborate on. These provide some evi-
dence that the interweaving approach has legs.

II. RELATED WORK

While the HPC community has been reconsidering operat-
ing system design for tightly-coupled parallel computing for
decades now [45], [30], [48], [8], the strict separation between

layers of the stack has remained largely stagnant, especially
at the user/kernel boundary.

Multi-kernels [63], [28], [61], [75], [7], [37], [27] attempt
to strike a middle ground between general-purpose system
software and specialized OSes by space-sharing OSes across
a system, but leave opportunities for co-design across layers
on the table.

In the cloud landscape, Unikernels, aided by ubiquitous
virtualization, allow for high performance for a specific target
set of workloads [46], [54], [69], [74], [60], [14]. Their success
has bled into other areas, including serverless computing [47]
and high-performance computing [50]; a Unikernel target for
Linux is now in the works [66].

Some Unikernels are constructed from application code
using a high-level language [55], a natural progression from
classic library OSes [24]. As more sophisticated systems
languages like Rust come to prominence, decade-old ideas
on using language features to provide or enhance kernel
mechanisms like protection or isolation [10], [41], [64] are
resurfacing in the form of OSes and Unikernels like The-
seus [13], RedLeaf [58], and RustyHermit [49]. However, the
compiler is left out of the loop here; we argue that there is
significant opportunity for bringing compiler technology and
co-design across layers to bear for efficient parallelism.

III. BACKGROUND: NAUTILUS

We build our exploration of Interweaving on Nautilus [35],
a publicly available, open-source OS kernel2 that currently
runs directly on x64 NUMA hardware, including Xeon Phi.
Nautilus comprises over 331K lines of code and Nautilus was
designed with the goal of supporting hybrid run-times (HRTs).
An HRT is a mash-up of an lightweight OS kernel framework,
such as Nautilus, and a parallel run-time system [34], [33].
Nautilus can help a parallel run-time ported to an HRT
achieve very high performance by providing streamlined ker-
nel primitives such as synchronization and threading facilities.
It provides the minimal set of features needed to support a
tailored parallel run-time environment, avoiding features of
general purpose kernels that inhibit scalability.

Nautilus has a range of features that help make the ex-
ecution of an HRT faster and more predictable. Identity-
mapped paging with the largest possible page size is used. All
addresses are mapped at boot, and there is no swapping or page
movement of any kind. As a consequence, TLB misses are
extremely rare, and, indeed, if the TLB entries can cover the
physical address space of the machine, do not occur at all after
startup. There are no page faults. All memory management,
including for NUMA, is explicit and allocations are done with
buddy system allocators that are selected based on the target
zone. For threads that are bound to specific CPUs, essential
thread (e.g., context, stack) and scheduler state is guaranteed
to always be in the most desirable zone. The core set of I/O
drivers developed for Nautilus have interrupt handler logic
with deterministic path lengths. Finally, interrupts are fully

2https://github.com/hexsa-lab/nautilus



steerable, and thus can largely be avoided on most hardware
threads. Application benchmark speedups from 20–40% over
user-level execution on Linux have been demonstrated, while
benchmarks show that primitives such as thread management
and event signaling are orders of magnitude faster [35], [36].
This background description is reproduced from our prior
work, and more details can be found there [35], [29].

IV. INTERWEAVING EXAMPLES

Below we describe several completed and ongoing ef-
forts within the larger Interweaving umbrella that we believe
demonstrate the promise of our approach.

A. Compiler- and Runtime-based Address Translation
(CARAT)

Nautilus has no protection mechanisms or kernel-user dis-
tinction, by design, and, in fact, has a single-address space
with identity mapping between physical and virtual addresses
using the largest possible page size. The result is that a parallel
program on top of it faces no compromises or surprises in
terms of TLB misses. Can we add the benefits of virtual
memory back into the equation without losing these benefits?
Can the benefits of virtual memory be achieved without paging
and the concomitant entanglement of cache design and TLBs?

We have developed a technique in which compiler-based
analyses and transformations of existing code at the LLVM IR
level make it possible to achieve both protection and mobility
of data without any hardware support—all code runs using
physical addresses. This result frees hardware architects from
constraints that might limit them in the search for highly-
efficient platforms.

Simply put, our analyses identify the subset of memory
accesses and allocations that need to be checked at run-time
while our transformations add tracking and protection checks
to them. We do so while scaling to the entire codebase,
including the kernel. Conceptually, protection check code
is introduced at each read or write, and data movements
operate similarly to a garbage collector in a managed language.
However, our techniques apply, with few limitations, to any
code that can be compiled to LLVM. An important result
is that we can demonstrate that it is possible to massively
reduce the potentially high costs of the compiler-introduced
protection and tracking code in most cases. This is because
modern code analysis techniques can provide the information
necessary to aggregate and hoist protection and tracking code,
thus taking it out of the critical path in most instances. This is
particularly true for parallel codes from a range of benchmarks
from NAS [43], Mantevo [6], and PARSEC [11], where the
overheads are <6% (geometric mean). An additional benefit
of this approach to virtual memory is that memory can be
managed at arbitrary granularity, instead of being restricted to
page sizes. Details of our approach and our evaluation can be
found elsewhere [72].

We have also built an enhanced version of this technique
within Nautilus with support for separate compilation. Based
on the PIK model (Section V-A), a Linux user-level program

CPU 0 CPU 1 CPU N
APIC APIC APIC

TPAL
runtime

TPAL
 worker

TPAL
worker

…

Hardware

Kernel mode

CPU 0 CPU 1 CPU N
APIC APIC APIC

…

Hardware

CPU 0 CPU 1 CPU N…

Hardware

TPAL
runtime TPAL worker TPAL worker

Kernel mode

User mode

Nautilus kernel (Nemo)
Linux kernel

1

3

IPI

4
promoted tasks promoted tasks

2

{ unsteady
rates

signalsNK

Fig. 2. Heartbeat signaling mechanisms in Nautilus (left) and Linux (right).
This figure is reproduced from our prior work [65].

can be compiled, transformed, linked, and cryptographically
attested such that it can run as a part of Nautilus, at kernel-
level, using physical addresses, in a simulacrum of a process.
The “process’s” tracking code and protection code directly in-
teracts with Nautilus, and Nautilus can perform per-“process”
and whole system memory defragmentation.

B. Low-Overhead Event Notifications for Heartbeat Schedul-
ing

Heartbeat scheduling [2] is a recently proposed technique
for scheduling recursively parallel task-based programs within
a work-stealing model, for example, Cilk [12], [26]. The
essential idea is that the programmer exposes all available par-
allelism in the program, and then compiler-based techniques
are used to generate both parallel and sequential variants at all
levels. The runtime system dynamically promotes sequential
code to the parallel variants as needed to “right-size” the
extant parallelism, and it can do so in a sound manner that
provides provable bounds on performance of the algorithm.
The runtime is periodically triggered by a “heartbeat” event
that is ultimately caused by a hardware timer interrupt.

The event mechanisms available in Linux were not designed
for the purpose of driving heartbeat interrupts at fine granu-
larity (typically ♥ = 20µs—100µs or smaller) at the scale
of even a tiny modern machine (e.g., 16 CPUs). As others
have shown [36], existing software mechanisms in Linux are
unable to achieve predictably low latencies for out-of-band
event signaling—these are nowhere near the latencies, rates,
and jitter that the underlying hardware is capable of.

In collaboration with the heartbeat scheduling team, we
developed a Nautilus-based HRT that uses the same com-
pilation process as the user-level implementation, but does
signaling directly using the x64 hardware, and thus can achieve
the lower limit on architected, out-of-band event signaling
the hardware is capable of. Figure 2 illustrates the different
heartbeat mechanisms in Linux and Nautilus. TPAL is the
name of the heartbeat compilation and run-time system. In the
Nautilus implementation, a LAPIC timer interrupt on CPU 0
( 1 ) is broadcast via IPI ( 2 ) to the TPAL workers on other
CPUs ( 3 ), which in turn promote latent parallelism ( 4 ).
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Fig. 3. Achieved and target heartbeat rate in Nautilus and Linux. This figure
is reproduced from our prior work [65].

Across a range of benchmarks, the scheduling overheads are
13–22% on Linux, and reduce to at most 4.9% in Nautilus.
Furthermore, while the best Linux mechanism cannot sustain
heartbeat signals at a consistent rate for all benchmarks, even
at ♥ = 100 µs and a scale of 16 CPUs, Nautilus not only
hits the target, but it also delivers a consistent, stable rate at
both 100 µs and 20 µs (Figure 3). More details can be found
elsewhere [65].

C. Compiler-based Timing for Fine-grain Preemptive Paral-
lelism

Fully exploiting a modern machine of any kind depends
on extracting and leveraging parallelism across a wide range
of granularities ranging from below the level of individual
instructions to beyond the level of independent, long-running
jobs [56], [23], [1]. Future machines are likely to further
expand this requirement [52], [20], [25]. Fine-granularity
parallelism is of significant interest within the HPC com-
munity (e.g., OpenMP tasking [5]), and is an expectation
of theoretically well-grounded parallelism models for higher-
level parallel languages [12], [26], [40], [2]. Others in this
community have pointed out the increasing importance of
granular computing [51].

Preemptive threads are a natural abstraction for many of
these uses, but, unfortunately, due to their high overheads,
are not generally used. The high cost of preemptive threads
is due in large part to the high costs of handling hardware
timer interrupts. Even when there is no kernel/user boundary to
cross, these are consequential. Thus, using preemptive threads
puts too high a bound on the parallel granularity that can be
achieved. Instead, these systems are based on callbacks, with
all the challenges this entails.

The fundamental issue here is that timing is based on
a hardware/software co-design—a hardware timing device
drives a hardware interrupt dispatch mechanism, which leads
into a software-based timing framework, which leads to a
software-based context switch. What if we replace this with a
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software/software co-design involving the compiler toolchain
and the kernel? Compiler-based timing does exactly this, and
our design, implementation, and evaluation is described in
more detail elsewhere [29].

In compiler-based timing, the entire codebase of the system,
including the kernel itself, is processed using modern compiler
analyses and transformations to introduce calls into the timer
framework that replace hardware timer interrupts. The timer
framework can in turn induce thread context switches. Because
the timer framework is now invoked with the overhead of a
call instruction instead of the overhead of an interrupt, it
can be invoked more often within the bounds of some limit
on overhead. Furthermore, because no interrupt context is
involved, the design of threads can be considerably simplified
and sped up. In fact, they become fibers, with “preemption”
provided by yield()s executed by the timer framework.
These elements combine to reduce the overhead of threads.

Figure 4 illustrates the benefits on a Intel Phi KNL chip.
For comparison, a (non-real-time (non RT)) Linux user-level
thread context-switch, including floating point state, takes
about 5000 cycles on this platform. Our kernel’s (non-RT)
thread context switch using hardware timers (“Threads (non-
RT, FP)” in the figure) is about half that. Using compiler-
based timing, it is slightly more than halved again (“Fibers-
CompTime (FP)” in the figure)3 . As a consequence, our sys-
tem can support preemptive threads with granularities that are
over four times smaller than those possible in the commodity
Linux environment. The granularity limit on this machine is
less than 600 cycles, which is so low that floating point state

3The remaining bars of the figure illustrate other options in the parameter
space of {RT, non-RT} x {Threads, Fibers } x {Cooperative,Compiler-timed}.



management becomes the bottleneck.
A major challenge here is that the compiler transform

needs to introduce timing calls statically, so that they occur
dynamically at some desired rate regardless of the code path
taken through the kernel+application ensemble as it runs.
Modern compiler analysis makes this possible.

D. Function-Granularity Virtualization

The need for systems support for fine-grained tasks is
increasing [51], yet cloud systems that support on-demand
scheduling of such tasks (e.g. using the Function-as-a-Service
model (FaaS) with serverless computing [68], [42], [19],
[71], [32]) often rely on legacy software stacks. To support
low-latency startup for such tasks, aggressive snapshotting is
applied [17], [22].

We have investigated low-latency, isolated execution of
individual tasks and functions by applying the Interweaving
model to build such execution contexts from the ground up,
culminating in an abstraction that we call virtines. Virtines
execute in isolated, virtualized environments using a custom
software stack (e.g. a Unikernel or minimal runtime shim
layer). They are enabled by a microhypervisor (Wasp) and
using custom LLVM compiler support. Programmers write
code as shown in Figure 5, and the compiler and runtime
cooperate to run that function in its own, isolated virtual
machine with start-up overheads as low as 100µs.

virtine int fib(int n) {
if (n < 2) return n;
return fib(n - 1) + fib(n - 2);

}

Fig. 5. Virtine programming in C with compiler support.

Our virtine microhypervisor runs as a user-space process on
either Linux or Windows using KVM or Hyper-V, respectively,
to leverage hardware-specific virtualization features. Other ap-
plications (including dynamic compilers and runtime systems)
can link with the runtime library to leverage virtines. Our
virtine framework can be used with existing code with minimal
changes, and with acceptable overheads.

V. INTERWEAVING NEXT STEPS

We now describe several ongoing and future efforts that
push the Interweaving model further.

A. OpenMP

We are in the process of completing our implementation
of a kernel-level OpenMP as shown in Figure 1. OpenMP
involves increasingly complex language, compiler, and run-
time support to make it possible to express and exploit node-
level parallelism. The result is that the OpenMP run-time
system is increasingly looking like a kernel, and we are
interweaving it with the Nautilus kernel framework so that
it becomes the kernel.

Three different approaches have been designed and im-
plemented, all of which leverage OpenMP code generation
(e.g., -fopenmp) in Clang/LLVM. The first, runtime in kernel
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Figure 11: CCK absolute performance on Linux and Nautilus compared to baseline of stock OpenMP on Linux as a function of CPUs: NAS
application benchmarks; lower is better.

OpenMP process) and whether Linux or Nautilus is being targeted. Figure 11 shows the absolute performance for all three combina-
tions (the baseline of Linux+OpenMP, plus Linux+AutoMP, and

9

Fig. 6. RTK performance relative to Linux as a function of CPUs used:
NAS BT and SP on Phi KNL; higher is better. Baseline (Linux OpenMP)
is horizontal bar at 1.0. t is the single threaded Linux absolute performance.
This figure is reproduced from our prior work [53].

(RTK), involves a port of the libomp OpenMP runtime to the
kernel, allowing any kernel code to use OpenMP pragmas. To
use this approach, OpenMP applications must also be ported
to the kernel. The second, process in kernel (PIK) involves
a specialized process abstraction that allows running Linux
user-level OpenMP code (and all of its various libraries and
runtimes), within the kernel. The code believes it is executing
in a traditional process environment in user-mode, but it is
actually a part of the kernel, running in kernel-mode. To
use PIK, applications need to be recompiled and linked in
a specialized manner, but otherwise no porting is needed.
The third approach, custom compilation for kernel (CCK),
involves compiling OpenMP pragmas (and doing automatic
parallelization) into a form that leverages the kernel framework
without any intermediary. Compilation is porting. Unlike RTK
and PIK, CCK always targets a purely task-based execution
model, which we map directly to the task framework within
Nautilus, which can be viewed as a Linux-like SoftIRQ
framework. Unlike SoftIRQs, however, if the compiler can
estimate task size, its tasks can be run in the scheduler itself,
even in interrupt context.

All three implementations can run the full Edinburgh
OpenMP microbenchmarks [15], [16] and the NAS parallel
benchmarks [43]. Figure 6 gives example results for the NAS
BT and SP benchmarks. The average performance gain of
RTK over Linux OpenMP on Phi KNL across all scales
and benchmarks is 22% (geometric mean). PIK performs
similarly. A repetition of the study on an 8 socket, 192 core
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machine found similar results (∼20% for RTK and PIK). CCK
performance is not easily summarized.

More information about this work can be found in a separate
paper [53] that will appear at the SC ’21 main conference
(hopefully contemporaneously with this ROSS paper.)

B. Coherence and Consistency

The one-size-fits-all approach in today’s memory con-
sistency and cache coherence models creates unnecessary
constraints that hinder performance. Ordering constraints in
consistency models serialize all accesses of a particular type,
without selectivity. A fence orders writes that produce data
before setting the done flag, but it also orders all other writes
the thread issued, even if they are unrelated to the intended
use of the fence. Individual writes within a producer’s data
production subroutine could semantically proceed in any order,
yet x86-TSO [62] unnecessarily enforces a total order. Thread-
private data are tracked in the coherence protocol, even though
there are no other sharers for the data [21]. Producers and
consumers keep stealing each other’s cache lines and transfer
them across the interconnect, only for them to be stolen
back, blindly following the rules of today’s reactive coherence
protocols, while involving even a third node (the directory) that
is often located far away from the producer/consumer cores.

We envision a system that is free from these inefficiencies,
where information on parallelism, data sharing, and memory
ordering requirements flows from the higher levels of the
stack (e.g., high-level programming languages) to the lower
levels. Armed with knowledge of the programmer’s intent, the
compiler, runtime, OS and architecture can decouple data with
different requirements from the rest of the data space, and steer
their behavior proactively by instructing the hardware to apply
specialized memory ordering rules, data sharing mechanisms,
and mapping primitives for on-chip data placement. We are
currently working toward realizing this goal in a system as
shown in Figure 1.

We have developed and are in the process of testing a
hardware cache coherence protocol that extends the currently
used MESI protocol with support for selective coherence
deactivation. This support has been designed with high-level
parallel languages in mind, though it is not restricted to them.

Via an implementation of the protocol in Sniper [18], we are
able to simulate current and future x64 machines of different
structures that include the protocol and compare them with
machines that do not. Figure 7 gives an example of the
preliminary results. Here, the PBBS benchmarks [70] are used,
as compiled with a variant of the MPL Parallel ML language
implementation [57], [73] that uses the semantics available in
this language and in how the implementation manages memory
to automatically drive our protocol. In the specific scenario
given in the figure, the average speedup is ∼46%, while the
interconnect energy (not shown) is reduced by ∼53%. The
benefits grow with scale and disaggregation.

C. Blending

We are in the process of reconsidering the Application
Binary Interface (ABI) between processes and between a
process and a kernel. In particular, we are considering the
customization of such ABIs (generated by our compiler) to
enable software to blend together at run-time even when
developed using a very different execution model (e.g., kernel
versus application). Blending continues into the kernel itself.

One candidate application we foresee for blending is sub-
page granularity transparent far memory. Current far memory
systems either operate at page granularity for transparent
swapping to remote nodes [31], [3] or require programmer an-
notations tagging data structures as remotable [67]. Compiler
blending can automatically make these decisions and evacuate
objects to remote memory transparently.

A second concept we are exploring is blended device
drivers. Here, the idea is to merge driver code with code
throughout the kernel and application. This blurring of the
boundary between the driver and everything else may reduce
latency through the use of polling and allow more efficient
execution by executing driver code during even short periods
of waiting elsewhere in the kernel or application. As a proof of
concept, we have already extended the compiler-based timing
work of Section IV-C to support distributed device polling
and applied it to simple drivers. The normally interrupt-
driven logic of the drivers is straightforwardly replaced with a
constant-time poll check, and the compiler injects this polling
check throughout the kernel using compiler-based timing. As a
result, these devices appear to behave as if they were interrupt-
driven, but no interrupts ever occur for them.

D. Pipeline Interrupts

One issue with current hardware (particularly x64 systems,
though not limited to them) that we have run into again and
again is the unbelievably high cost of interrupt (or exception)
dispatch—the time from when an interrupt occurs to the first
instruction of the interrupt handler. We have measured this to
be on the order of 1000 cycles [29], [36]. In a system with
kernel/user separation (e.g., Linux) this cost is generally not
the first-order concern since other, higher costs are involved
(e.g., context switch due to Spectre/Meltdown mitigation,
signal injection cost for delivery to the application) or, for
some HPC hardware, the interrupt can be directly mapped to



a doorbell for the user-level code. In an interwoven system,
however, the interrupt/exception dispatch cost is a major
concern. The compiler-based timing work of Section IV-C
is all about mitigating it for a specific device (a timer), and
distributed device polling (Section V-C) is attempting to extend
that mitigation for other devices.

We are also considering how to tackle the problem from
the hardware perspective. We have developed a realizable
extension of branch prediction logic that would allow a simple
interrupt (no privilege level change, etc) in an interwoven
system to be delivered as if it were a kind of branch instruction
injected into the instruction fetch logic. MSR manipulation,
similar to the existing syscall instruction, provides the
mechanism to return to the interrupted code. The latency
would be similar to that of a correctly predicted branch
instruction, 100-1000× better. Because the hardware timer
in the LAPIC is already on-chip and next to the core, it
is the first interrupt for consideration. Another interest is
an instruction exception, for example for #MF/#XF, which
would facilitate efficient virtualization of the floating point
ISA, and #GP, which would facilitate handling transparent
far memory (Section V-C) and protection faults/swapping in
CARAT (Section IV-A).

At this point, we have developed an initial proof of concept
of this idea within PIN.

E. Bespoke Contexts

We believe new types of virtualized services will be pos-
sible using bespoke execution contexts, of which the virtines
described in Section IV-D are an initial instantiation. These
are execution environments tailored to a particular workload’s
needs. Bespoke contexts eliminate unnecessary overheads and
carry little “runtime baggage.” For example, if there is no
need for device I/O, a runtime environment (or OS) that
supports I/O drivers is unnecessary. A piece of code which
leverages only integer math need not have the OS layer set
up the floating point unit, and so on. Note that bespoke
contexts go further than Unikernels [50], [69], [4], [55] and
RumpKernels [44], as an application leveraging such services
service might not need an OS at all; a minimal or no runtime
environment may suffice. For example, we may even leave
the machine in 16-bit mode as it boots up for certain simple
services. The key is that these contexts are constructed at
compile time, and in that way they can be seen as a type of
synthesized runtime environment. Bespoke contexts are one
example of an interwoven stack, and the compiler can help to
synthesize them.

F. RISC-V / OpenPiton

Our work has generally been very specific to x64. We are
currently exploring a port of Nautilus and other components to
RISC-V, an open instruction set architecture that includes open
implementations, such as in OpenPiton. By working on open
hardware, we anticipate being able to more deeply explore
hardware changes prompted by the interweaving model. At
the present time, Nautilus partially boots on RISC-V.

G. High-level Parallel Languages As Enablers

Based on our experiences with coherence deactivation (Sec-
tion V-B) and other domains, it has become increasingly
clear that high-level parallel languages are enablers for the
interweaving model. It may seem very counterintuitive that
extremely high-level (indeed, mathematically defined!) ab-
stractions in such languages would have much to do with
the guts of a compiler, kernel, or hardware, but they do. The
main observation is that due to the rich, well-defined semantics
of these languages (including their run-time environment as
seen by the programmer), it is much more straightforward
to understand what an application is doing. Properties that
the lower-level parts of the system could leverage might
require immense effort for code analysis to prove about
C/C++/Fortran+OpenMP/MPI. In contrast, these same proper-
ties are simply available by construction in high-level parallel
languages. Conversely, properties that fall out of programs
written in these languages may prompt new innovation in the
lower-level parts of the system.

We expect that this synergy will become ever more im-
portant with scale and particularly with heterogeneity of
the underlying hardware. Impedance matching heterogeneous
hardware (or reconfigurable hardware) to a high-level parallel
language is a current focus of ours.

VI. CONCLUSION

We have been working to improve the state of the hardware/-
software stack for parallel programs. We demonstrated several
promising examples for which the Interweaving model, where
distinctions between traditionally rigid layers are blurred, can
produce significant improvements. Parallel task scheduling,
event notification, address translation, preemptive scheduling,
lightweight virtualization are just a few areas where there is
demonstrated potential for Interweaving, and we suspect that
there are more.

AVAILABILITY

The systems described in this work are freely and pub-
licly available, and can be found on our web site at http:
//interweaving.org.
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