
Compiler-Based Timing For
Extremely Fine-Grain Preemptive Parallelism

Souradip Ghosh Michael Cuevas Simone Campanoni Peter Dinda
Department of Computer Science

Northwestern University
{sgh, cuevas}@u.northwestern.edu

simonec@eecs.northwestern.edu, pdinda@northwestern.edu

Abstract—In current operating system kernels and run-time
systems, timing is based on hardware timer interrupts, introduc-
ing inherent overheads that limit granularity. For example, the
scheduling quantum of preemptive threads is limited, resulting
in this abstraction being restricted to coarse-grain parallelism.
Compiler-based timing replaces interrupts from the hardware
timer with callbacks from compiler-injected code. We describe a
system that achieves low-overhead timing using whole-program
compiler transformations and optimizations combined with ker-
nel and run-time support. A key novelty is new static analyses
that achieve predictable, periodic run-time behavior from the
transformed code, regardless of control-flow path. We transform
the code of a kernel and run-time system to use compiler-based
timing and leverage the resulting fine-grain timing to extend
an implementation of fibers (cooperatively scheduled threads),
attaining what is effectively preemptive scheduling. The result
combines the fine granularity of the cooperative fiber model with
the ease of programming of the preemptive thread model.

Index Terms—timing, preemptive scheduling, fine-granularity
parallelism

I. INTRODUCTION

Fully exploiting a modern machine of any kind depends

on extracting and leveraging parallelism across a wide range

of granularities ranging from below the level of individual

instructions to beyond the level of independent long-running

jobs (e.g. [38], [14], [1]). Future machines are likely to further

expand this requirement (e.g. [35], [10], [17]). The goal of this

paper is to shrink the granularity that can be supported dynam-

ically at the software level. How small can the granularity be

at which the machine can be easily programmed?

Why should the HPC community care about fine granularity

parallelism? Because the finer the granularity that can be

achieved, the greater the flexibility in mapping algorithmic

parallelism via a programming model to disparate and dynamic

hardware resources, and thus the greater the ability to fully

exploit those resources. We can see this in programming

models as varied as software data flow [3] to nested data

parallelism [7], [24], [40], the adoption of task graphs into

OpenMP [4], the search for primitives for parallel runtime

This project is made possible by support from the United States Na-
tional Science Foundation through grants CCF-1533560, CNS-1763743, CCF-
1908488, and CCF-2028851, and by equipment support from Intel Corpora-
tion. Some measurements were made possible via use of the Illinois Institute
of Technology’s MYSTIC Testbed, which is supported by the NSF via grant
CNS-1730689.

systems that unify many abstractions [43], [5], [50], and the

development of mechanisms to dynamically control the degree

of algorithmic parallelism used at runtime [2].

A natural programming model, or certainly execution

model, for a shared memory machine, is based on classic

preemptively scheduled threads. Most programmers are famil-
iar with threads in their widely available POSIX incarnation.

Assuming an operating system kernel-based implementation,

the programming model is greatly simplified compared to

other alternatives because the programmer can ignore many

issues, such as blocking. Furthermore, threads can be sched-

uled across time and space with no programmer input, or, at

the other extreme, can have specific, even real-time, constraints

placed on them. The scheduler can straightforwardly dynam-

ically load balance threads using explicit moves or work-

stealing. There is much to like about threads.

However, current thread implementations cannot support

extremely fine granularity operation. As a consequence, par-

allel language extensions such as OpenMP [9], [41], [4]

and Cilk [8], [18], data flow execution models such as

SWARM [32], Parallelex [26], Charm++ [27] and Legion [5],

[54] and run-time models such as ARGObots [50], introduce

or apply far more primitive mechanisms that we refer to here as

tasks. A task is effectively a callback function that is typically
invoked on a free CPU via an indirect call instruction

when the task’s dependencies are met. Tasks are extremely

challenging to program with and are often relegated to the

execution model, with heavy lifting done by the compiler.

Why are threads limited in granularity? Conceptually, a

thread creation and launch is a lightweight affair. After all,

thread state is effectively just register content and a cache foot-

print. Previous work has demonstrated that thread creations

and launches can be extremely fast [21], [56]. The limitation is

due to the need to build around preemption, which is driven by

the kernel’s timer system, which is in turn driven by hardware

timer interrupts. Interrupts are what fundamentally limit the

granularity of preemptive threads.

Interrupts are avoided in the design of cooperative threads

(which we call fibers here), and consequently these can achieve
much finer granularity [55]. With fibers, the locus of each con-

text switch is determined by the programmer and is known at

compile-time. As consequence, the actual code for the context

switch simply involves a register content swap. However, while

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

cooperative threads/fibers can hide the blocking problem from

the programmer, they rely on the programmer to explicitly

invoke the scheduler, either by invoking a blocking call or

by calling a yield() function. Long historical experience
both in academia [42] and in practice in the pre-2000 versions

of MacOS and Windows [45], suggests that programmers are

likely to get this wrong. In a cooperatively scheduled system, if

one programmer gets it wrong in one place, the whole system

suffers. A classic scenario is the programmer assuming that

some loop will be quickly finished and thus not yielding during

its execution. If this assumption turns out to be wrong, the

yield-free loop now blocks all other fibers from executing.

As the target system scales, this problem only gets worse.

Consequently, current cooperative threads/fibers have limited

application, despite their performance benefits.
In this paper, we focus on the underlying problem, tim-

ing. In current systems, most timing-related events, including
for thread scheduling, are based on hardware-based timing.
A timing-based event, such as an invocation of the thread

scheduler, is initiated by an interrupt from a hardware timing

device, and processing the event races with the rest of the

application and kernel code. This form of timing is powerful,

precise, and accurate, but comes at the cost of having to handle

interrupts. We propose compiler-based timing as an alternative
to hardware-based timing.
In compiler-based timing, the entire codebase of the system,

including the operating system kernel itself, is transformed

using modern compiler analyses and transformations to intro-

duce calls into the timer framework that replace hardware
timer interrupts. A major challenge is that the calls are

introduced statically, but they need to occur dynamically at
some desired rate regardless of the code path taken through

the kernel+application ensemble as it runs.
We demonstrate that compiler-based timing is feasible, and

then use it to augment an implementation of fibers with

automatic invocations of yield(). These invocations serve
the same purpose as timer interrupts in preemptive threads. In

other words, we make the fibers implementation “preemptive”,

and thus much more straightforward to program and use, while

still maintaining its low overhead and support for much finer

granularity parallelism.
Our contributions are as follows:

• We motivate, propose, and describe the concept of

compiler-based timing.

• We describe the code analyses and transformations nec-
essary to enable compiler-based timing to have similar

precision to hardware-based timing.

• We design, implement, and evaluate a prototype of

compiler-based timing within the LLVM framework [31]

and the Nautilus kernel [21].

• We design, engineer, and evaluate an implementation of
fibers within the Nautilus kernel that is designed with

compiler-based timing in mind.

• We combine our compiler-based timing and fibers im-
plementations, and evaluate the composite using mi-

crobenchmarks and an application benchmark.

Our results show that compiler-based timing has considerable

potential. It can achieve a timer resolution that is 6.2x better

than what is possible with hardware-based timing. Fibers that

are made preemptive using compiler-based timing can achieve

stable scheduling granularities that are up to 4x better than

what is possible with preemptive, hardware-based timing-

driven threads.

We motivate our work on compiler-based timing through

bridging the fine granularity of cooperative threads and the

ease of programmability of preemptive threads. However, it

is important to understand that timing events are endemic

to the operation of a modern operating system kernel, and

thus compiler-based timing has potential well beyond this

motivation. Additionally, compiler-based timing could also be

applied at user-level, where avoiding hardware-based mecha-

nisms brings the additional performance advantage of avoiding

user/kernel transitions.

Our implementation of compiler-based timing is publicly

available within the open-source Nautilus kernel codebase.

II. SOFTWARE INFRASTRUCTURE AND TESTBED

We leverage the LLVM compiler framework, WLLVM, and

the Nautilus research kernel in this work, and do evaluations on

several x64 machines. We now describe these in more detail.

LLVM: LLVM [31] is a widely-used compilation frame-

work in academia and industry that enables sophisticated

code analyses and transformations. In this work, we use the

framework to implement compiler-based timing at the level

of the LLVM intermediate representation (LLVM-IR), within

the “middle-end” of LLVM. The middle-end provides the API

to develop highly-accurate, program-wide code analyses and

transformations. Alias analysis and inter-procedural passes are

examples of middle-end-only support. While Clang, which

targets C and C++ (including OpenMP), is our front-end,

another benefit of working in the middle-end is that our tools

are language-independent and can thus be used with other

language front-ends to LLVM (e.g. Fortran via flang).

WLLVM: WLLVM [47] extends LLVM compilation to

aggregate all the LLVM bitcode in a project that uses separate

compilation. This aggregation gives us two key capabilities.

First, it allows for whole program integration and optimization,

in our case across the entire kernel and application. Second, it

enables our compiler analyses and transformations to see the

entire static control flow graph of the kernel and application.

Nautilus kernel framework: Nautilus [21] is a publicly
available open-source kernel codebase that currently runs

directly on x64 NUMA hardware, including Xeon Phi. It

comprises over 331K lines of code as measured by sloccount.

Nautilus was designed with the goal of supporting hybrid

run-times (HRTs). An HRT is a mashup of an extremely

lightweight OS kernel framework, such as Nautilus, and a

parallel run-time system [23], [20]. Nautilus can help a parallel

run-time ported to an HRT achieve very high performance

by providing streamlined kernel primitives such as synchro-

nization and threading facilities. It provides the minimal set

of features needed to support a tailored parallel run-time

environment, avoiding features of general purpose kernels that

inhibit scalability. More recent work based on Nautilus has

included extending the concept to include architectural and

compiler changes. This work is an example of the latter.

Nautilus has a range of features that help make the execution

of an HRT more predictable. Identity-mapped paging with the

largest possible size pages is used. All addresses are mapped

at boot, and there is no swapping or page movement of any

kind. As a consequence, TLB misses are extremely rare, and,

indeed, if the TLB entries can cover the physical address space

of the machine, do not occur at all after startup. There are no

page faults. All memory management, including for NUMA, is

explicit and allocations are done with buddy system allocators

that are selected based on the target zone. For threads that

are bound to specific CPUs, essential thread (e.g., context,

stack) and scheduler state is guaranteed to always be in the

most desirable zone. The core set of I/O drivers developed for

Nautilus have interrupt handler logic with deterministic path

length. As used in this work, there are no DPCs, softIRQs, etc,

to reason about: only interrupt handlers and threads. Finally,

interrupts are fully steerable, and thus can largely be avoided

on most hardware threads. Application benchmark speedups

from 20–40% over user-level execution on Linux have been

demonstrated, while benchmarks show that primitives such

as thread management and event signaling are orders of

magnitude faster [21], [22].

Test platforms: Testing is done on two machines. KNL is
a Colfax Ninja Xeon Phi server, which includes a 1.3 GHz

Intel Xeon Phi 7210 (64 cores, 256 hardware threads) mated

to 16 GB of MCDRAM and 96 GB of DRAM. R415 is a

more traditional platform, a Dell R415, which includes two 2.2

GHz AMD 4122s (8 cores total) mated to 16 GB of DRAM.

Nautilus is booted directly on these platforms.

Benchmarks: To evaluate our work, we use a range of
microbenchmarks, some of which are inspired by the mibench

suite [19], including Rijndael (AES encryption), MD5, SHA1,

cycle detection, Dijkstra’s shortest path, and custom kernels

such as dot product, linked list traversal, matrix multiply,

binary search tree traversal, randomized matrix multiply, level

ordered tree traversal, randomized floating point operations,

randomized Fibonacci, k-nearest neighbor, unweighted mini-

mum spanning tree, quicksort, and radix sort.

III. HARDWARE-BASED VS. COMPILER-BASED TIMING

Figure 1 diagrams and compares the traditional hardware-

based timing model, and the proposed compiler-based timing

model. The compiler-based timing model involves substan-

tially more complexity at compile time, but then avoids the

cost of interrupts and MMIO at run-time, resulting in much

reduced overhead on timing events.

A. Traditional hardware-based timing

Figure 1(a) illustrates how timing operates and integrates

with timing-dependent services within a kernel such as Linux

602 931 897

6114 6137

24206
2x AMD4122 4x AMD 6272 Intel Phi 7210

Fig. 2. Overheads of interrupt dispatch to kernel-level (Nautilus interrupt
handler) and to user-level (Linux interrupt handler through signal delivery to
user process).

when running on x64. Compilation (left hand side) is straight-

forward with respect to timing for both the kernel and applica-

tion code. The compiler toolchain is uninvolved with timing.

The action happens at run time (right hand side). The

diagram shows the operation of a single hardware thread, here

labeled a core. The other hardware threads are identical. On

KNL this is repeated 256 times, one per hardware thread.

The kernel’s timer driver accesses the core’s Advanced Pro-

grammable Interrupt Controller (APIC) via memory-mapped

I/O (MMIO) to configure its timer component to fire an

interrupt after a certain period of time. Most kernels, including

Linux and Nautilus, use this hardware timer in one-shot mode,

meaning that it is reconfigured during the interrupt handler.

Modern APICs can usually manage time down to 10 ns

granularity, limited by the APIC clock (typically 100 MHz),

while some also support resolution to the processor cycle

granularity using Intel’s TSC deadline mode.

When the time is up, the APIC timer fires its interrupt.

This results, eventually, in executing the interrupt handler

within the timer driver. It is important to understand that

interrupt dispatch is not free. In a modern Linux kernel, it

will even involve an address space context switch due to the

Spectre/Meltdown [34], [29] mitigation mechanisms [33] that

place almost all of the kernel in a separate address space from

user code, resulting in times on the order of ∼2000 cycles.
Even in a model in which everything runs within a single

address space at kernel level, such as in Nautilus, the interrupt

dispatch is a ∼1000 cycle operation.
The timer driver will upcall relevant components of the

kernel, such as the thread scheduler. Additionally, if user-

level mechanisms are used, such as scheduler activations,

blocking system calls based on time (e.g. select, poll,
and sleep), user-level timers (e.g. SIGALRM, SIGVTALRM,
etc), the dispatch also involves a kernel-to-user upcall, usually

at a substantial additional cost.

Figure 2 illustrates these overheads at both user-level (-

U) and kernel-level (-K). Timing using the cycle counter

begins immediately before an instruction that intentionally

causes the event. User-level reflects the time, in cycles, from

the event to the first instruction of a signal handler in user

code. Kernel-level reflects the time from the event to the first

(a) Traditional Hardware-based Timing (b) Compiler-based Timing

Fig. 1. Comparison of traditional hardware-based timing and compiler-based timing models. Fibers are highlighted as they are our proof-of-concept service.
In an all-kernel system with the traditional hardware-based timing model, the signal/upcall cost is avoided, but interrupt and MMIO costs remain.

instruction of the interrupt handler within the Nautilus kernel.

Three machines are considered. KNL and R415 were described

previously. R815 is a Dell R815 with 4 2.1 GHz AMD 6272

processors. The measurement does not include the unwinding

of the interrupt dispatch, which adds several hundred cycles.

Even in a model, such as with Nautilus, which has no

kernel/user distinction, the overhead of interrupt dispatch and

reconfiguring the hardware time (primarily the former) limits

the timing resolution that is practically possible, regardless

of the resolution of the hardware timer itself. This limitation

on timing resolution cascades into limitations on the services

that depend on timing. Consider the 897 cycles for KNL-K

shown in Figure 2. This places a hard limit on the resolution

of hardware-based timing of at least this number of cycles.

As described elsewhere [13], the total interrupt cost on this

platform is about 1100 cycles, which is the practical timing

limit. Even for the lowest overhead platform (R415-K), the

practical timing limit is well over 800 cycles.

For scheduling fine granularity work, the practical timing

limit places a limit on the granularity that can be handled in a

system that provides preemption. As previously reported [21],

preemptive thread context switches in Nautilus can be done

in 1760 cycles (KNL-K) and 1391 cycles (R415-K), ignoring

floating point context switching and using a constant time

scheduler. These are among the fastest preemptive scheduling

results reported. The current context switch cost on our testbed

is about 2000 cycles, in part because of a real-time scheduler.

To avoid these hardware timing-limited high overheads for

preemption, fiber or task implementations that are intended

to support fine granularity workloads provide no preemption,

and, indeed, often do not even support blocking. This places

the onus on the developer, compiler, and/or run-time system

to produce ensembles of fibers and/or tasks that provably do

not require preemption in order to achieve correctness.

Although Figure 1(a) illustrates a Linux-like kernel, Nau-

tilus, prior to compiler-based timing, is only slight different.

The signal/upcall component is a simple function call in

Nautilus, but the interrupt and MMIO overheads remain. More

details of Nautilus’s timing infrastructure and real-time thread

and task framework are given in Section IV.

B. Proposed compiler-based timing

Figure 1(b) illustrates how compiler-based timing would

operate. In contrast to the traditional model, there is little role

for the hardware timing mechanisms. In fact, the APIC timer

can be simply disabled. This avoids the overhead both of its

interrupts and of configuring it via MMIO. Even if hardware

timer interrupts would be needed for other reasons (e.g., a

watch dog), the rate of timer interrupts would be much lower

than in the traditional model.

The cost is now borne by the compiler side. All source code

(or at least the compiler’s intermediate representation (IR) of

it) for the kernel, run-time system, and application, is supplied

to the compilation process. A new compilation step, whole
program integration, brings the totality of IR-level code, into
a single IR-level representation. In addition, we are supplied

with a target timer resolution.
In the critical next step, a new code transformation, time

hook trigger injection, is applied. This transformation consid-
ers all statically discoverable code paths through the entire

codebase and adds instrumentation to each one. The instru-

mentation consists of calls to a trigger fire function, which
is exported by component of the kernel. The transformation

places these calls such that, at run-time, the calls will occur

at the target timer resolution (or higher), regardless of the

dynamic control flow path being taken by each CPU. This is

a non-trivial undertaking for several reasons. First, while the

timing requirement is placed on the object code that will be

executed, the transformation is based on the IR, which is at a

higher abstraction level. A second reason is that the discovery

of all the possible dynamic control flow paths is complicated

by the existence of things like interrupt handlers and function

pointers. Third, we must guarantee that small code segments

that are frequently iterated (e.g., small, but long-running loops

and recursions) are instrumented. Finally, we must be able to

provide a mechanism analogous to interrupt masking to be

able to avoid instrumentation at times. However, this masking

needs to be implemented at compile-time, not run-time.

The next compile-time step is whole program reoptimiza-
tion, in which we revisit optimization in light of the injected
instrumentation. Note that since all IR code is available to

the compiler, this pass allows for optimization to cross the

boundaries of the injected code and the original code, as well

as module boundaries within the original code. The goal of

this pass is to fuse the injected code and the original code

thoroughly, to attempt to minimize the run-time overhead

of the injected code, which now exists along every possible

control flow path in the kernel.

Finally, back-end optimizations, object code generation,

and linking are done. Note that register allocation and other

resource allocation/code scheduling problems are solved with

the fused code, without regard to boundaries between the

injected code and the rest, which is is quite unlike traditional

code generation for an interrupt handler (for hardware-based

timing). A new kernel component, the time hook infrastruc-
ture, is linked into the final kernel.
As the kernel boots, components of the kernel and run-time

register callback functions with the time hook infrastructure.

These can be scoped to groups of CPUs, and each registration

request contains a periodic or sporadic deadline that is a

multiple of the target granularity configured at compile-time.

These functions are guaranteed to be called at these times.

At run-time, hardware timer interrupts are avoided. Instead,

the injected calls to the trigger fire function invoke the time

hook infrastructure. Unlike timer interrupts, however, these are

simple calls. On each one, the infrastructure finds expired

registered callbacks and invokes them, much like an timer

interrupt handler might. It is the job of the callback function

to determine if the context is safe for it to do its work.

IV. FIBERS AND THREADS IN NAUTILUS

Nautilus implements a range of abstractions for concur-

rency, including tasks, preemptive threads, and thread groups.

In this work, we have added cooperatively scheduled threads,

also known as fibers. Later, we will apply compiler-based

timing to add what amounts to preemption to fibers, resulting

in a replacement for threads with lower overhead.

A. Threads

Our purpose in describing the technical details of Nautilus

threads is to make clear they are already heavily optimized for

performance. Thread scheduling in Nautilus is based on the

classic periodic/sporadic/aperiodic hard real-time scheduling

model [37] applied to threads [13], The thread implementation

itself is preemptive, and every interrupt dispatch can invoke the

scheduler to change the current thread on the CPU. Controlling

time due to interrupts and scheduling overheads is critical to

achieving real-time behavior, and a range of mechanisms are

employed to do this, despite the unpredictability of system

management interrupts (SMIs) on x64 platforms. General

purpose interrupts are steered to the first CPU, and can even

be isolated (to some extent) within a time block. Other CPUs

see only scheduling interprocessor interrupts (IPIs) and one-

shot hardware timer interrupts, which are configured by the

per-CPU earliest deadline first (EDF) scheduling core.

Per-CPU schedulers cooperate globally to provide time-

synchronized real-time scheduling (i.e., gang scheduling,

achieved via time) to groups of threads. The per-CPU sched-

ulers can also be configured to steal threads from each other,

using a power-of-two-choices selection model. In addition

to threads, the schedules manage tasks, which are stateful

callback functions. These are consumed both by task threads

(one per CPU) and by the per-CPU schedulers themselves

when it can be proven they will not cause any admitted real-

time thread to miss a deadline.

In this work, we use the scheduling infrastructure in a

straightforward manner. We consider only non-real-time (non-

RT) threads (aperiodic threads), which we schedule using

round-robin. Work-stealing is disabled, tasks are not used, and

no thread groups, real-time or otherwise, are employed. This

configuration makes the thread scheduler overhead as low as

it can be for comparison to fibers. In this mode of operation

a thread context switch initiated by a timer interrupt takes

on the order of 2200 cycles (∼1.7 μs) to complete on KNL.
This is among the fastest reported context switches of any

thread implementation. For comparison, on the same platform,

a Linux thread context switch requires ∼4900 cycles [21].
B. Fibers

Fibers in Nautilus are lightweight, cooperatively scheduled

threads of execution that are implemented directly in the

kernel. The key difference between threads and fibers is

that a fiber-to-fiber context switch can only happen on an

explicit yield(), while thread-to-thread context switches
can also occur at any time, triggered by an interrupt. Except

for accounting for this difference, the fiber interface has been

designed to be in line with the thread interface to facilitate

porting between the two.

Fiber thread: At boot time, a special “fiber thread” is
created for each CPU, and it exists throughout the kernel’s

lifetime. The fiber thread is a full-blown Nautilus thread

that can be scheduled using all the mechanisms described in

Section IV-A. For example, it can be scheduled as a periodic

real-time thread. When scheduled with an ordinary aperiodic

model, as in this paper, if no competing threads exist, the fiber

thread manages all CPU time (except for interrupts, although

those can also be filtered).

Idle fiber: Unlike an ordinary thread, the fiber thread uses
stack-switching to multiplex itself among the fibers assigned

to the CPU. One of these fibers is the CPU’s idle fiber, which

only runs when there are no other fibers available. The idle

fiber exists to optionally cooperatively yield to the thread

scheduler when no fiber is runnable. This can be done in

three ways: spinning (not yielding at all), sleeping (temporarily

blocking on a configurable timer), and waiting (blocking on a

wait queue that is kicked on any fiber scheduling-related event

for the CPU). These provide a tradeoff between efficiency and

the latency of reacting to a fiber scheduling-related event.

Scheduling: Fiber scheduling decisions are made indepen-
dently on each CPU, using per-CPU state. Fibers can be

created on any CPU, for any CPU, with the choice of target

CPU being either under programmer control or by random

assignment. Similar to Nautilus threads, fibers also provide

a fork primitive to allow arbitrary splitting control flow at

any point, not just at function boundaries. No work stealing

is currently done. Fibers run concurrently on different CPUs.

The per-CPU scheduling policy is nonpreemptive FIFO, which

is constant time, and implemented using per-CPU spinlock-

mediated queues. While the maximum number of threads in

Nautilus is determined at compile-time, there is no static limit

to the number of fibers.

Contexts: A fiber is represented with a minimal structure
whose key element is a stack pointer into the fiber’s stack.

Creating a fiber involves two allocations and initial stack setup

to allow launching the fiber via a trampoline that is invoked

via a context switch to the fiber. This model allows us to avoid

differentiating between fibers that have been started and those

that have not: we can always yield to any non-running fiber.

When a fiber is not running, its context is fully captured on its

stack. This includes the floating point state, which we capture

using the x64 xsave/xrstor instructions. This requires

some special run-time handling due to the alignment and

initialization requirements on the targets of these instructions.

Context switching: A context switch occurs only in re-

sponse to an explicit yield. It is important to understand that

this means it occurs as part of a function call, and this greatly

simplifies and speeds up its handling in comparison to threads.

A context switch has three phases. The first, saving, occurs
when any yield function is called. These functions are wrapped

by an assembly stub that minimally writes all general purpose

registers, excluding flags, onto the stack. If floating point

is enabled, the stack is further configured for the xsave
instruction. This involves making room for a specially aligned

region of appropriate size, zeroing where the header will go,

and then executing the xsave instruction with an appropriate
mask to select which register state to include.1 The assembly

then stashes the stack pointer in the fiber’s structure and calls

into the scheduler.

The second phase, switching, asks the scheduler for the
next fiber to run. Currently, the scheduler is simple FIFO—

we enqueue the current fiber on a per-CPU queue and dequeue

the next fiber. The idle fiber is skipped if any non-idle fiber

exists in the queue. We then invoke an assembly-level restore

1We point out the details of floating point save/restore because these steps
can be expensive and both threads and fibers must bear those costs.

Very low mean,
median, and variation

l
on

Very low mean,
median, and variation

(a) Yield (no FPRs) (b) Yield (FPRs w. XSAVE)

Fig. 3. Yield cost breakdown and measurements on KNL.

routine to switch to the next fiber. Note that next fiber’s stack

contains the register state that was saved when that fiber was

switched away from.

In the last phase, restoring, we do the actual stack switch,
loading %rsp with the next fiber’s stored stack pointer. From
this point, we can simply use xrstor to load the floating
point registers, and then pop all the general purpose registers

from the stack. Finally, we can do an ordinary retq to return
from the yield that the fiber originally ran.

Performance: Figure 3 shows the measured yield cost
breakdowns on KNL with and without floating point context.

Note that these figures are box plots—the extremely low

variance results in each box and whiskers are collapsing into

to a horizontal line. The outliers shown are very rare. On R415

there is similar behavior, although the mean costs are lower.

V. IMPLEMENTING COMPILER-BASED TIMING

We now describe our implementation of compiler-based

timing, expanding on the big picture given in Section III-B.

Figure 4 illustrates our compilation process. Our compiler ex-

tensions transform the entire Nautilus kernel codebase (>331K
LOC) and span the kernel code and application code to provide

periodic timing events. Our approach replaces hardware timer

interrupts and operates with lower overhead, and thus finer

granularity can be obtained.

The largest component of our implementation is an LLVM

middle-end analysis and transformation pass. The pass begins

by estimating the run-time clock cycle latency of each LLVM

IR instruction. It then uses a new data flow analysis to integrate

single-instruction latencies along all possible control flows. We

call this the accumulated latency.
The result is estimates of the run-time latencies at the

level of basic blocks, loops, and functions across the entire

codebase.

Armed with these latency estimates we inject calls to

the kernel’s trigger fire function nk_time_hook_fire()
throughout the entire codebase at points where the accumu-

lated latency could reach the target time (e.g., every 1000

cycles). Hence, calls to this function will occur at run-time

at the target timer resolution.

These calls take the place of hardware timer interrupts and

in turn trigger run-time registered callbacks for any rate that

is a multiple of the target timer resolution, providing a soft

real-time guarantee for these callbacks.

Fig. 4. Compiler-based timing transformation process.

Figure 5 shows an example of the transformation our

compiler automatically performs. It is challenging to under-

stand a transformation example at the IR level, particularly

if the reader is unfamiliar with LLVM-IR. In Figure 5 we

have mapped the salient result of transforming the binary

search tree traversal benchmark to its approximate repre-

sentation at the source code level. The injected calls to

nk_time_hook_fire() divide the codebase into intervals.
All colored code has been injected by the compiler transform.

We note intervals, and the loop entry, exit, and latches.

A. Compiler-side: analyses and transformations

Instruction latency estimates: Our code analyses start with
estimates of the latencies of individual LLVM IR instructions.

These estimates are made at design time. To this end, we con-

sidered possible mappings that LLVM x64 back-end can use to

translate an IR instruction into a sequence of x64 machine code

instructions. Some LLVM IR instructions map to individual

x64 machine instructions (e.g., add) [57]. Others require
several x64 instructions. The latency of an IR instruction is

computed by summing up the average latencies of the mapped

x64 instructions. These x64 average latencies are taken from

a previous detailed analysis of our target architecture [16].

We embrace the fact that this IR→x64 mapping is archi-
tecture dependent and includes inaccuracies. Typical com-

piler back-ends perform such translations using a context-

aware approach. For example, the common “maximal munch”

algorithm for instruction selection considers a sequence of

IR instructions (rather than a single IR instruction) at a

time. However, this paper empirically demonstrates that the

precision of using a simple 1-to-many mapping is sufficient

Fig. 5. Result of transformation of binary search tree traversal benchmark.

for compiler-based timing. This is because our analyses care

about the sum of the latencies of a sequence of LLVM IR

instructions. Inaccurate estimates introduce random errors,

resulting in a cancelling effect when summing them. In other

words, the central limit theorem works in our favor.

The latency of a call instruction does not include the

callee’s latency. This allows us to handle instructions

whose callees are unknown at compile-time (e.g., indi-

rect calls). Excessive estimation errors are not incurred

because all functions are transformed to include calls to
nk_time_hook_fire() and, therefore, the callee will also
have calls to nk_time_hook_fire(). While estimation

errors on par with the granularity target are still possible, this

is not problematic in practice based on our empirical results.

Data-flow analysis: Our data-flow analysis is an intra-

procedural forward analysis designed for our goal: estimating

the latency of a sequence of IR instructions. We define the

data-flow values (i.e., the accumulated latency) and the data-

flow equations (i.e., how individual IR instruction latencies

accumulate) to measure and calculate accumulated latency just

before and after every IR instruction of the compiled code. In

particular, data-flow values are integers that represent the clock

cycle latencies. These values are used in data-flow equations

to compute the accumulated latencies. To this end, we define

the GEN set [30] of an individual instruction I (GEN[I]) as
its standalone latency determined as described above. Hence,

GEN[I] represents the contribution of the instruction I to the
accumulated latency. As in typical data-flow analysis [30],

our data-flow equations define the IN and OUT sets of an

instruction I to represent, in our case, the accumulated latency
just before and just after I respectively. In a straight line of
code where an instruction I has only one predecessor P , the
IN set is IN[I] = OUT[P]. In other words, the accumulated
latency just before I is the same one as just after P . The OUT
set of an instruction I is OUT[I] = IN[I] + GEN[I]. In other
words, the accumulated latency just after I is that just prior
to I plus the latency of I . This is sufficient for straightline
control flow such as in Intervals 0 and 1 of Figure 5.

Handling more complex control flow only affects IN[I] as
there can be multiple predecessors. For example, Interval 3 can

be reached after two updates of iterator in the loop body
or just after the iterator definition before the while loop).
In this case, we compute the expected accumulated latency by
calculating the mean of the accumulated latencies between all

predecessors, or, more generally, the unweighted expectation.

Here, the IN set is redefined as IN[I] =
∑

k OUT[Pk] · Pr[Pk]

(∀k ∈ P , the set of predecessor instructions to I), where the
probability distribution over the set of predecessors, Pr[Pk], is

uniform. Notice that this equation simplifies to the previous

definition of IN[I] when there is only a single predecessor.
The choice of a uniform distribution over predecessors

is simple, and leaves room for improvement. For example,

branch weight analysis could be used to produce a more

accurate distribution over predecessors, but would demand

profile-based analysis. We employ the simple design because

profile-based analysis is quite challenging here. In fact, we

are unaware of any infrastructure that would allow LLVM’s

(or other compilers’) profilers to handle kernel code.

The propagation policy could vary by use case. For example,

when stricter guarantees are needed, using a maximum instead

of an weighted or unweighted average would result in a more

conservative timing and therefore might be a better fit.

Interval analysis: Interval analysis uses the expected ac-
cumulated latencies (described above) to decide where timing

events (nk_time_hook_fire()) should occur. This effec-
tively divides the codebase in intervals.

We use the term single entry single exit (SESE) [25] to

precisely define the concept of intervals. It is important to

understand that SESEs are a general concept that subsumes

familiar control flow structures, including loops with their

exit blocks, sequences of basic blocks, if-then-elses (including

their join basic blocks), and others. The definition of a SESE

is a control structure where the entry point dominates, the

exit point post-dominates everything else in the SESE, and

every cycle containing the former also contains the latter

and vice versa. We divide the control flow graph (CFG)

of a function into a hierarchy of SESEs. Finally, the in-

tervals are the selected SESEs that will end with a call to

nk_time_hook_fire().
To determine the intervals, our analysis starts with the entry

point of the function (the entry of the outermost SESE). During

the traversal we maintain a set of interval points, which are
instructions (and their latencies) that mark the ends of the

selected intervals. At the start of the traversal, the interval point

set contains just the entry-point instruction of an SESE. As

the traversal proceeds, we measure the accumulated distance

between the current instruction and the instructions in the

interval point set. When this exceeds the timer resolution (as it

happens at the definition of rand_fp_final of Figure 5),
we promote the current instruction to the interval point set,

thus selecting an interval.

Interval analysis handles instructions with multiple pre-

decessors similarly to our data flow analysis. We use the

same propagation strategy to do this: the interval point value

computed for an instruction with multiple predecessors is the

mean of the interval point values of its predecessors.

Loop analysis and transformations: An SESE that con-
tains at least one loop requires additional attention because

we want all loops to be preemptable. It is often impossible

at compile-time to determine the number of iterations that

a given loop will have at run-time. For example, it is not

possible to know at compile time how many iterations the loop

of Interval 3 of Figure 5 will have at run-time as it depends on

the tree being traversed, which is input dependent. To make

all loops preemptable, our loop analysis considers injecting

calls to nk_time_hook_fire() at three additional points:
the entry, the exit, and in the latch of the outermost loop of
such an SESE. The latch is the basic block that jumps to the

loop condition from within the loop (i.e., the source of the

backedge of the loop).

We analyze an SESE that contains loops in isolation from

the innermost to the outermost. An inner SESE with loops

may have injected calls to nk_time_hook_fire() at

its boundary. Consequently, we must zero the accumulated

latency from the perspective of the enclosing SESE.

Latch: We inject code to invoke

nk_time_hook_fire() periodically throughout the

iterations of a loop that will be executed at run-time. To

decide the instruction periodicity as well as the best code

injection technique to use for such periodicity, we employ

the following strategy.

We use the outcome of our data-flow analysis to determine

the latency of each loop iteration. Such latency is computed

as the latency of the outermost SESE included in the target

loop (this SESE is often informally called “the loop body”).

The ratio between the target timer resolution and the loop

iteration latency (r = granularity
loop latency), is used to choose an ap-

propriate transformation from among the following to handle

the backedge: (a) direct injection, (b) loop unrolling, and (c)

branch injection.

Direct injection is selected if r < 1, indicating that the loop
latency is actually greater than the granularity. In this scenario,

the callback function needs to execute for every iteration of the

loop. Hence, we simply use the previously described interval

analysis to determine the appropriate instructions to mark for

injection inside the loop.

Loop unrolling is selected if 1 ≤ r ≤ β. In this scenario, the
loop is unrolled r times and the last instruction is marked for
injection, effectively forcing the loop to execute the callback

after every r loop iterations.
Branch injection is selected if r > β. In this

scenario, the transform changes the code to execute

nk_time_hook_fire() only every r iterations. This is
accomplished by injecting a conditional branch at the end of

a loop iteration that checks the current iteration number (as

shown at the end of the loop body of Interval 3 in Figure 5).

This approach requires us to know at run-time how many

iterations have been executed since the last time the above

branch was taken. We add an iteration-counting variable C to

the loop, which we zero each time the branch is taken.

The threshold β is heuristically determined to avoid several
potential issues: thrashing of the instruction cache, thrashing

of the branch predictor, code bloat, and increasing compilation

time. Specifically, for a loop with small r, the loop body can be
unrolled without generating code bloat, increasing compilation

time, negatively affecting the branch predictor, or placing

undue strain on the instruction cache. And, as a definite plus,

no additional branch is introduced. On the other hand, for a

loop with a large r, any or all of these drags on performance
could occur if the loop were to be unrolled. In such a

case, even though a branch is introduced, branch injection

is preferable because the transform can be done much faster

than unrolling, the code size will not increase significantly,

and the instruction cache behavior will be minimally affected.

Note further that as β increases, the injected branch becomes
increasingly biased, meaning that the branch predictor is more

likely to predict it correctly. This ameliorates the negative

effects of branch injection. In this paper, we use β = 12.
Entry: Consider a loop that begins just before the last

interval of the parent SESE ends. In this scenario, the next

callback will occur only after some of the loop is executed,

potentially creating a gap larger than the granularity. To reduce

the likelihood of this occurrence we inject a call to the entry

of SESEs that contain loops (i.e., in their pre-headers).

These entry calls can, however, result in unintended addi-

tional overhead. This can be avoided when the timer granu-

larity is large enough and small loops are the target. Hence,

we do not inject entry calls for such loops in that scenario.

Exit: Timing inaccuracies can emerge for loops that exit
in the middle of their body (this is the result of break

at the source code level) or when the number of iterations

a loop executes is not a multiple of the parameter r de-
scribed above. To avoid such inaccuracies, we inject a call to

nk_time_hook_fire() at the exit of SESEs that contain
loops. We inject such a call within a new conditional branch

we add to execute nk_time_hook_fire() only when
C
r > γ. In this paper, we use γ = 0.8.

B. Kernel-side: time hooking

Within the kernel, compiler-based timing is visible via an

interface, the time hook interface, that is designed to be similar
to that of a traditional hardware timer’s device driver interface.

Time hooking is available shortly after boot. Any kernel

component can use the interface through the following two

steps. First, it requests the compiler-based timing resolution,

which is a compile-time parameter that the code transforma-

tions targeted. All times and resolutions are in cycles. The

kernel component’s next step is to register a callback function

(or object). As part of registration, the kernel component

also supplies the time at which the callback function will

first be invoked, and whether it will continue to be invoked

periodically. The invocation time/period is limited by the timer

resolution. The registration process can also scope the callback

to a group of CPUs. The result is analogous to a per-CPU one-

shot or periodic timer that is now active.

From this point on, the callback function will be in-

voked whenever its invocation time/period is reached. These

callbacks are ultimately due to the compiler-injected in-

vocations of the time hook interface’s trigger function,

nk_time_hook_fire(), which serves essentially as the
analog of a per-CPU timer interrupt handler. The trigger

function invokes all expired callbacks on the CPU. Because the

trigger function maintains its own notion of time (via the cycle

counter), it can filter out early callbacks that can occur when

the compiler-side transformations were overly conservative.

Just as with an interrupt handler, a callback function can be

invoked in almost any context. It is the responsibility of the

implementor of the callback function to determine the context,

if necessary. It is also the responsibility of the implementor

to be aware that the callback function can be preempted.

The callback function can selectively mask invocations of

nk_time_hook_fire(), similar to interrupt masking, al-
though here it is a compile-time option.

C. Performance

A key difference between hardware-based timing and

compiler-based timing is that the latter involves only function
calls. No expensive control flow via interrupt dispatch is used.

Consequently, the overhead of compiler-based timing is lower.

nk_time_hook_fire() has been carefully crafted to
avoid all cross CPU synchronization (it only needs to guard

against reentrancy on the same CPU), and thus has very low

overhead that is independent of scale. At 64 cores on KNL, the

overhead is 148 cycles, with very little variance. At 8 cores on

R415, the overhead is 224 cycles, again with minimal variance.

Recall that an interrupt dispatch latency on these machines is

Impossible
Granularity With
Hardware-based

Timing

Overhead of Hardware-based Timing

Improvement

(a) Timing Accuracy (KNL) (b) Overhead (KNL)

Impossible
Granularity

With
Hardware-

based Timing

Overhead of
Hardware-based

Timing

Improvement

(c) Timing Accuracy (R415) (d) Overhead (R415)

Fig. 6. Average timing accuracy and overhead for all benchmarks on both
platforms. Each series is a different benchmark.

Impossible Granularity With
Hardware-based Timing

Overhead of Hardware-based Timinggg

Improvement

(a) Timing Accuracy (b) Overhead

Fig. 7. Timing accuracy and overhead for linked list traversal (KNL).

on the order of 1100 cycles. The latencies here are about 10x

lower because no interrupts are involved.

How accurate is the timing produced by the compiler

transforms and the runtime, and what is its overhead? We

evaluated this on KNL and R415 for every benchmark listed

in Section II, for target timer resolutions of 200, 400, 600,

800, 1000, 2000, 4000, 8000, and 16000 cycles. Here, the

registered callback function simply records the time at which

it was invoked. Figure 6 shows the overall average results

across the benchmarks and platforms. It is generally the case

Impossible Granularity With
Hardware-based Timing

Overhead of Hardware-based Timinggg

Improvement

(a) Timing Accuracy (b) Overhead

Fig. 8. Timing accuracy and overhead for minimum spanning tree (KNL).

that we meet the timer resolution, but the overhead can vary.

We now draw illustrative examples from the KNL results.

Figure 7 shows an example for linked list traversal. The

target resolution is met, with low variance, down to the 200

cycle limit. Furthermore, the overhead has low variance and

is independent of the target resolution. In some situations,

however, the compiler transforms result in early callbacks,

which must repeat, and this then increases overhead. Figure 8

shows an example of this situation.

Generalizing, the system can achieve timing accuracy down

to resolutions of about 200 cycles on KNL. This is limited

by the cost of the nk_time_hook_fire() runtime. The
traditional timing model would have a similar function, driven

by interrupts. The compiler-based timing model can achieve a

timer resolution that is (1100 + 148)/200 = 6.2x better than
the traditional model. On R415 it is 2.8x better.

VI. COMPILER TIMING-BASED PREEMPTIVE FIBERS

We applied compiler-based timing (Section V) to our co-

operative fibers implementation (Section IV). In this imple-

mentation, the programmer never needs to explicitly invoke

nk_fiber_yield() to cause a context switch, although
he can still elect to do so.

A. Implementation

At boot time, the fibers implementation uses the time hook

interface to register a single callback function that is scoped

to run on all CPUs with a boot-time selected periodicity.

This function will then be invoked periodically on each CPU,

playing the role that a timer interrupt with the same periodicity

would traditionally play.

The callback function proceeds only if the following condi-

tions are true: (1) the CPU is not in interrupt context, (2) the

CPU is currently running its fiber thread, and (3) the currently

running fiber on the CPU is not the idle fiber. If these are true,

then the callback function has been invoked from some active

fiber. It is important to understand that this means that we must

be in the middle of a simple call from that fiber. Therefore,
it is perfectly valid to invoke nk_fiber_yield(), the
cooperative scheduler, on that fiber’s behalf. This is precisely

what the callback function does. The consequence is a context

switch to a different active fiber, if one exists. The idle fiber

has nk_time_hook_fire() masked, but it is engineered
to yield in a controlled manner.

This functionality adds what is, in effect, preemption to the

fibers implementation. The programmer no longer needs to

explicitly/cooperatively give up the CPU by himself calling

nk_fiber_yield(). Implementing this pseudopreemption
functionality required fewer than 100 lines of C code because

the heavy lifting is done by compiler-based timing.

B. Performance

Figure 9 illustrates the costs of thread and fiber context

switches within Nautilus, and breaks these costs down to

their constituant parts: the interrupt or time hook invocation

costs, the costs of saving and loading the general purpose

Compiler-timed
Fibers Have 4x
Lower Context

Switch Costs (No
Floating Point)

Compiler-timed
Fibers Have 2.3x
Lower Context

Switch Costs (With
Floating Point)

(a) KNL

Compiler-timed
Fibers Have 1.9x
Lower Context

Switch Costs (No
Floating Point)

Compiler-timed
Fibers Have 1.7x
Lower Context

Switch Costs (With
Floating Point)

(b) R415

Fig. 9. Cost of context switches for real-time and non-real-time threads,
fibers, and compiler-timed fibers on both platforms.

registers (GPRs) and floating point registers (FPRs), and the

cost of the scheduler, which decides on the next thread or

fiber. For threads, we consider both real-time scheduling and

non-real-time scheduling, which have substantially different

context switch costs due to the added complexity of the real-

time scheduler. The non-real-time scheduler for threads and

fibers is essentially identical—it is a constant time round-robin

scheduler. A substantial cost that both threads and fibers may

bear is FPR save/load. We show results with and without FPRs.

On KNL, the cost of a non-real-time preemptive thread

context switch is about 2063 cycles without FPRs, and 2612

Impossible Granularity With
Hardware-based Timing

Edge of Feasibility for
Compiler-based Timing

Overhead of Hardware-based Timing
Improvement

Edge of feasibility for
Compiler-based Timing

(a) Granularity (KNL) (b) Overhead (KNL)

Impossible Granularity
With Hardware-based

TimingTiming

Edge of Feasibility
for Compiler-
based Timing

Overhead of Hardware-based Timing

ImprovementEdge of
feasibility for

Compiler-based
Timing

(c) Granularity (R415) (d) Overhead (R415)

Fig. 10. Average preemptive fiber granularity and overhead for all benchmarks
on both platforms. Each series is a different benchmark.

Impossible Granularity With
Hardware-based Timing

Edge of feasibility
for Compiler-based Timing

Overhead of Hardware-based Timing

Improvement
Edge of feasibility for

Compiler-based Timing

(a) Granularity (b) Overhead

Fig. 11. Preemptive fiber granularity and overhead for linked list traversal.
No floating point. KNL.

cycles with FPRs. For comparison, a cooperative fiber context

switch is 426 cycles without FPRs and 978 cycles with FPRs.

That is, the cost of a cooperative fiber context switch is

between 2.6x (with FPRs) and 4.8x (without FPRs) lower than

that of the preemptive thread context switch. On R415, the

factors are 2.3x (with FPRs) and 2.6x (without FPRs).

Adding preemption to fibers via compiler-based timing

introduces the benefits of preemption, but increases overhead

because of the cost of the time hook infrastructure processing.

Without FPRs, a pseudopreemptive fiber context switch on

KNL requires 574 cycles, and with FPRs, 1126 cycles. That

is, the cost of a preemptive fiber context switch, enabled

by compiler-based timing, is between 2.3x (with FPRs) and

4x (without FPRs) lower than that of a preemptive thread

context switch initiated by hardware-based timing. On R415,

the factors are 1.7x (with FPRs) and 1.9x (without FPRs).

Can fiber preemption via compiler-based timing achieve a

reliable and stable scheduling granularity/quantum? Paralleling

the methodology of Section V-C, we evaluated this on KNL

and R415. For each benchmark, two copies were run on

each CPU and the callback function context switched between

Impossible Granularity With
Hardware-based Timing

Edge of feasibility
for Compiler-based Timing

Overhead of Hardware-based Timing

ImprovementEdge of feasibility for
Compiler-based Timing

(a) Granularity (b) Overhead

Fig. 12. Preemptive fiber granularity and overhead for minimum spanning
tree. No floating point. KNL.

Limit of Hardware-based Timing

Limit of Hardware-based Timing

(a) KNL (b) R415

Fig. 13. Speedup of compiler-based timing over hardware-based timing for
slicing the PARSEC Streamcluster benchmark to different granularities on
both platforms. Each series is a different problem size.

them. Figure 10 illustrates the average granularity targeted

and achieved, as well as the average overhead, across all

benchmarks and both platforms.

We focus here on KNL. Figures 11 and 12 show the

achievable granularities and corresponding overheads when

scheduling fibers for the same two example benchmarks used

in Figures 7 and 8. Note that in both cases stable scheduling

granularities down to the limit implied by the overhead (574

cycles) are possible. For finer granularities than the “edge of

feasibility”, the system is gracefully degrading (the achieved

quantum does not get smaller). Generalizing, the system can

preemptively schedule fibers with a quantum that approaches

600 cycles (no floating point) or 1200 cycles (with floating

point). On R415, the limits approach 730 cycles (no floating

point) and 870 cycles (with floating point)

Application benchmark: We sliced a sequential version of
the PARSEC Streamcluster benchmark [6] to different granu-

larities using both hardware-based and compiler-based timing

and then compared the wall-clock time of the benchmark

between the two methods. Figure 13 shows the results. The

smaller the granularity, the greater the effect on performance,

up to 3-4x as we approach the finest granularities possible

with compiler-based timing.

VII. RELATED WORK

Concurrency abstractions geared to achieving fine

granularity have been an active topic of research for quite some

time. Examples include QThreads [56], MassiveThreads [39],

StateThreads (http://state-threads.sourceforge.net), Tiny

Theads[12], the generalized primitives of Lithe [43], the

run-time system of Intel’s Thread Building Blocks [48], the

Converse run-time underlying Charm++ [28]), MPC [44],

the Realm event run-time system underlying Legion [54],

Light-Weight Contexts [36], and ARGObots [50], Our work

includes fibers, similar to some of these systems, but we add

preemption to fibers via compiler-based timing.

Some implementations of concurrency abstractions either

are a target for the compiler, such as Maestro [46] and

Nanos++ (https://github.com/bsc-pm/nanox), or extend the

concurrency abstraction into the compiler to allow optimiza-

tion, such as Tapir [49] and OpenMPIR [51]. In contrast, we

use a compiler transform as the mechanism for creating timing

events that drive a concurrency or scheduling abstraction,

such as fibers. Heartbeat scheduling [2] is an abstraction that

demands stable timing events that could be driven by compiler-

based scheduling.

Perhaps closest to our work is the classic work by Feeley

on balanced polling [15], StackThreads/MP [53], [52], and

TAM [11]. Balancing polling uses compilation to introduce

parallel scheduling calls at function boundaries. However, the

transformation is limited, and can result in high overhead.

StackThreads/MP uses minimal compiler support to allow

its run-time to extend the C stack abstraction for fine-grain

threads. This can include what is effectively a context switch

when a fine-grain thread blocks. Finally, TAM includes a

compiler to decide the schedule of threads within a CPU

with the goal of maximizing hardware utilization and/or data

locality. None of these systems attempts to produce timing

behavior that can substitute for a hardware timer, as is the

goal with compiler-based timing.

VIII. CONCLUSIONS AND FUTURE WORK

We proposed a new approach to timing, compiler-based

timing, that has the potential to replace traditional timing based

on hardware timer interrupts. Compiler-based timing, which is

enabled by modern compiler analysis and transformation, can

offer far lower overheads and finer granularity than traditional

timing, and this can in turn lead to finer granularity tasks

within parallel systems. Our prototype implementation, which

is based on LLVM-hosted transformations of the 331K+ line

Nautilus kernel, can provide timer resolutions down to 200

cycles on the Intel Xeon Phi, which is about 6.2x better than

is possible with hardware-based timing. We applied compiler-

based timing to add preemption to Nautilus’s fast cooperative

threading system, resulting in context switch costs (and thus

task granularities) that are up to 4x better than is possible

with hardware-timing-based preemption. A more traditional

machine produces similar results.

The concept of compiler-based timing could also be applied

at user-level within a general purpose OS. In this approach,

instead of avoiding the overhead of timer interrupts within the

kernel, the overhead of timer alarm signals, triggered by timer

interrupts, are to be avoided. We are developing a variant of

compiler-based timing for user-level execution, and we are in

the process of applying both the kernel-level and user-level

variants to heartbeat scheduling (described in Section VII).

REFERENCES

[1] ABRAHAM, M. J., MURTOLA, T., SCHULZ, R., PÁLL, S., SMITH,
J. C., HESS, B., AND LINDAHL, E. Gromacs: High performance
molecular simulations through multi-level parallelism from laptops to
supercomputers. SoftwareX 1 (2015), 19–25.

[2] ACAR, U. A., CHARGUÉRAUD, A., , GUATTO, A., RAINEY, M., AND
SIECZKOWSKI, F. Heartbeat scheduling: Provable efficiency for nested
parallelism. In 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (2018).

[3] ARTEAGA, J., ZUCKERMAN, S., AND GAO, G. R. Multigrain paral-
lelism: Bridging coarse-grain parallel programs and fine-grain event-
driven multithreading. In Proceedings of the 31st IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (May 2017).

[4] AYGUADE, E., COPTY, N., DURAN, A., HOEFLINGER, J., LIN, Y.,
MASSAIOLI, F., TERUEL, X., UNNIKRISHNAN, P., AND ZHANG, G.
The design of openmp tasks. IEEE Transactions on Parallel and
Distributed Systems 20, 3 (2009), 404–418.

[5] BAUER, M., TREICHLER, S., SLAUGHTER, E., AND AIKEN, A. Le-
gion: Expressing locality and independence with logical regions. In
Proceedings of Supercomputing (SC 2012) (Nov. 2012).

[6] BIENIA, C. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[7] BLELLOCH, G. E., AND GREINER, J. A provable time and space
efficient implementation of NESL. In Proceedings of the International
Conference on Function Programming (ICFP) (May 1996).

[8] BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON,
C. E., RANDALL, K. H., AND ZHOU, Y. Cilk: An efficient multi-
threaded runtime system. Journal of Parallel and Distributed Computing
37, 1 (1996), 55–69.

[9] CHAPMAN, B., JOST, G., VAN DER PASS, R., AND KUCK, D. Using
OpenMP: Portable Shared Memroy Parallel Programming. MIT Press,
2007.

[10] CHEN, J., JUANG, P., KO, K., CONTRERAS, G., PENRY, D., RANGAN,
R., STOLER, A., PEH, L.-S., AND MARTONOSI, M. Hardware-
modulated parallelism in chip multiprocessors. SIGARCH Comput.
Archit. News 33, 4 (Nov. 2005), 5463.

[11] CULLER, D. E., SAH, A., SCHAUSER, K. E., VON EICKEN, T., AND
WAWRZYNEK, J. Fine-grain parallelism with minimal hardware support:
A compiler-controlled threaded abstract machine. Proceedings of 4th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (1991).

[12] DEL CUVILLO, J., ZHU, W., HU, Z., AND GAO, G. R. Tiny threads:
a thread virtual machine for the cyclops64 cellular architecture. In
Proceedings of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (2005).

[13] DINDA, P., WANG, X., WANG, J., BEAUCHENE, C., AND HETLAND,
C. Hard real-time scheduling for parallel run-time systems. In
Proceedings of the 27th ACM Symposium on High-performance Parallel
and Distributed Computing (HPDC) (June 2018).

[14] DURAN, A., CORBALAN, J., AND AYGUADE, E. An adaptive cut-off
for task parallelism. In Proceedings of the 2008 ACM/IEEE Conference
on Supercomputing (SC 2008) (2008).

[15] FEELEY, M. A message passing implementation of lazy task creation.
In Parallel Symbolic Computing (1992), pp. 94–107.

[16] FOG, A. Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for intel, amd and via cpus. Tech. rep.,
Copenhagen University College of Engineering, 2019.

[17] FORBES, E., AND ROTENBERG, E. Fast register consolidation and
migration for heterogeneous multi-core processors. In Proceedings of
the 34th IEEE International Conference on Computer Design (ICCD
2016) (2016), pp. 1–8.

[18] FRIGO, M., LEISERSON, C. E., AND RANDALL, K. H. The imple-
mentation of the cilk-5 multithreaded language. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language Design
and Implementation (PLDI 98) (1998), pp. 212–223.

[19] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN, T. M.,
MUDGE, T., AND BROWN, R. B. Mibench: A free, commercially
representative embedded benchmark suite. In Proceedings of the fourth
annual IEEE international workshop on workload characterization
(WWC-4) (2001), pp. 3–14.

[20] HALE, K. Hybrid Runtime Systems. PhD thesis, Northwestern Uni-
versity, August 2016. Available as Technical Report NWU-EECS-
16-12, Department of Electrical Engineering and Computer Science,
Northwestern University.

[21] HALE, K., AND DINDA, P. Enabling hybrid parallel runtimes through
kernel and virtualization support. In Proceedings of the 12th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE 2016) (April 2016).

[22] HALE, K., AND DINDA, P. An evaluation of asynchronous software
events on modern hardware. In Proceedings of the 26th IEEE Interna-
tional Symposium on the Modeling, Analysis, and Simulaton of Com-
puter and Telecommunication Systems (MASCOTS 2018) (September
2018).

[23] HALE, K. C., AND DINDA, P. A. A case for transforming parallel run-
time systems into operating system kernels (short paper). In Proceedings
of the 24th International ACM Symposium on High Performance Parallel
and Distributed Computing, (HPDC 2015) (June 2015).

[24] HENRIKSEN, T., SERUP, N., ELSMAN, M., HENGLEIN, F., AND
OANCEA, C. Futhark: Purely functional gpu programming with nested
parallelism and in-place array updates. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI) (June 2017).

[25] JOHNSON, R., PEARSON, D., AND PINGALI, K. The program structure
tree: Computing control regions in linear time. In Proceedings of the
ACM SIGPLAN 1994 conference on Programming language design and
implementation (1994), pp. 171–185.

[26] KAISER, H., BRODOWICZ, M., AND STERLING, T. ParalleX: An
advanced parallel execution model for scaling-impaired applications. In
Proceedings of the 38th International Conference on Parallel Process-
ing Workshops (ICPPW 2009) (Sept. 2009), pp. 394–401.

[27] KALÉ, L. V., RAMKUMAR, B., SINHA, A., AND GURSOY, A. The
Charm parallel programming language and system: Part II–the runtime
system. Tech. Rep. 95-03, Parallel Programming Laboratory, University
of Illinois at Urbana-Champaign, 1994.

[28] KALE, L. V., YELON, J., AND KNAUFF, T. Threads for interoperable
parallel programming. In International Workshop on Languages and
Compilers for Parallel Computing (LCPC ’97) (1996), pp. 534–552.

[29] KOCHER, P., HORN, J., FOGH, A., , GENKIN, D., GRUSS, D.,
HAAS, W., HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER, T.,
SCHWARZ, M., AND YAROM, Y. Spectre attacks: Exploiting speculative
execution. In 40th IEEE Symposium on Security and Privacy (S&P’19)
(2019).

[30] LAM, M., SETHI, R., ULLMAN, J., AND AHO, A. Compilers: Princi-
ples, techniques, and tools. Pearson Education (2006).

[31] LATTNER, C., AND ADVE, V. Llvm: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004. (2004), IEEE,
pp. 75–86.

[32] LAUDERDALE, C., AND KHAN, R. Towards a codelet-based runtime
for exascale computing. In Proceedings of the 2nd International
Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop
Era (EXADAPT 2012) (Mar. 2012), pp. 21–26.

[33] LEYDEN, J., AND WILLIAMS, C. Kernel-memory-leaking intel proces-
sor design flaw forces linux, windows redesign. The Register (January
2018).

[34] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS, W.,
FOGH, A., HORN, J., MANGARD, S., KOCHER, P., GENKIN, D.,
YAROM, Y., AND HAMBURG, M. Meltdown: Reading kernel memory
from user space. In 27th USENIX Security Symposium (USENIX Security
18) (2018).

[35] LIS, M., KEUN SUP SHIM, CHO, B., LEBEDEV, I., AND DEVADAS,
S. Hardware-level thread migration in a 110-core shared-memory
multiprocessor. In 2013 IEEE Hot Chips 25 Symposium (HCS) (2013),
pp. 1–27.

[36] LITTON, J., VAHLDIEK-OBERWAGNER, A., ELNIKETY, E., GARG, D.,
BHATTACHARJEE, B., AND DRUSCHEL, P. Light-weight contexts: An
os abstraction for safety and performance. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation
(OSDI 2016) (November 2016).

[37] LIU, J. W. S. Real-Time Systems. Prentice Hall, April 2000.
[38] MARTORELL, X., AYGUADÉ, E., NAVARRO, N., CORBALÁN, J.,

GONZÁLEZ, M., AND LABARTA, J. Thread fork/join techniques for
multi-level parallelism exploitation in numa multiprocessors. In Pro-
ceedings of the 13th International Conference on Supercomputing (ICS)
(1999), pp. 294–301.

[39] NAKASHIMA, J., AND TAURA, K. MassiveThreads: A Thread Library
for High Productivity Languages. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014, pp. 222–238.

[40] NVIDIA CORPORATION. Dynamic parallelism in CUDA, Dec. 2012.
[41] OPENMP ARCHITECTURE REVIEW BOARD. Openmp application

program interface 3.0. Tech. rep., OpenMP Architecture Review Board,
May 2008.

[42] OUSTERHOUT, J. Why threads are a bad idea (for most purposes).
Invited presentation at USENIX ATC 1996, 1996. (widely cited).

[43] PAN, H., HINDMAN, B., AND ASANOVIĆ, K. Composing parallel soft-
ware efficiently with lithe. In Proceedings of the 31st ACM Conference
on Programming Language Design and Implementation (PLDI) (June
2010).

[44] PÉRACHE, M., JOURDREN, H., AND NAMYST, R. Mpc: A unified
parallel runtime for clusters of numa machines. In Proceedings of the
2008 European Conference on Parallel Processing (EuroPar) (2008),
pp. 78–88.

[45] PIETREK, M. Happy 10th anniversary, windows 3.0. MSDN Magazine
(July 2000).

[46] PORTERFIELD, A., NASSAR, N., AND FOWLER, R. Multi-threaded
library for many-core systems. In 2009 IEEE International Symposium
on Parallel & Distributed Processing (2009), pp. 1–8.

[47] RAVITCH, T. https://github.com/travitch/whole-program-llvm, 2016.
[48] REINDERS, J. Intel threading building blocks: outfitting C++ for multi-

core processor parallelism. O’Reilly, 2007.
[49] SCHARDL, T., MOSES, W., AND LIESERSON, C. Tapir: Embedding

fork-join parallelism into LLVM’s intermediate representation. In
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2017) (January 2017).

[50] SEO, S., AMER, A., BALAJI, P., BORDAGE, C., BOSILCA, G.,
BROOKS, A., CARNS, P., CASTELL, A., GENET, D., HERAULT, T.,
IWASAKI, S., JINDAL, P., KAL, L. V., KRISHNAMOORTHY, S., LIF-
FLANDER, J., LU, H., MENESES, E., SNIR, M., SUN, Y., TAURA, K.,

AND BECKMAN, P. Argobots: A lightweight low-level threading and
tasking framework. IEEE Transactions on Parallel and Distributed
Systems 29, 3 (2018), 512–526.

[51] STELLE, G., MOSES, W. S., OLIVIER, S. L., AND MCCORMICK, P.
Openmpir: Implementing openmp tasks with tapir. In Proceedings of the
Fourth Workshop on the LLVM Compiler Infrastructure in HPC (2017).

[52] TAURA, K., TABATA, K., AND YONEZAWA, A. Stackthreads/mp:
integrating futures into calling standards. In Proceedings of the seventh
ACM SIGPLAN symposium on Principles and practice of parallel
programming (PPoPP ’99) (1999), pp. 60–71.

[53] TAURA, K., AND YONEZAWA, A. Fine-grain multithreading with mini-
mal compiler support-a cost effective approach to implementing efficient
multithreading languages. In Proceedings of the 1997 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’97) (1997), pp. 320–333.

[54] TREICHLER, S., BAUER, M., AND AIKEN, A. Realm: An event-based
low-level runtime for distributed memory architectures. In Proceedings
of the 23rd International Conference on Parallel Architectures and
Compilation (PACT 2014) (2014), p. 263276.

[55] VON BEHREN, R., CONDIT, J., ZHOU, F., NECULA, G. C., AND
BREWER, E. Capriccio: Scalable threads for internet services. In
Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (SOSP) (October 2003).

[56] WHEELER, K. B., MURPHY, R. C., AND THAIN, D. Qthreads: An api
for programming with millions of lightweight threads. In Proceedings
of the 2nd Workshop on Multithreaded Architectures and Applications
(MTAAP 2008, colocated with IPDPS 2008) (2008).

[57] ZHAO, F., AND HAHNENBERG, M. Decoupling software pipelining in
LLVM. Project Report, CMU 15-745, and Code Repo, June 2011. https:
//code.google.com/archive/p/15745-project-dswp/.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

The prototype system described in the paper is implemented as

an extension of the LLVM 9 compiler framework and the Nautilus

kernel framework.

LLVM 9 is widely available (https://github.com/llvm/llvm-

project), and has a UIUC/BSD-style license or Apache 2.0 license.

WLLVM is widely available (https://github.com/travitch/whole-

program-llvm), and has an MIT license. We make no changes.

Nautilus is publicly available (https://github.com/HExSA-

Lab/nautilus), and has an MIT license. Changes for

compiler-based timing are in the compiler-timing branch of

https://github.com/PeterDinda/nautilus

Microbenchmarks are influenced/partially incorporate Michi-

gan’s mibench (http://vhosts.eecs.umich.edu/mibench//), which is

in the public domain. Our offshoots are MIT licensed.

Most experiments were run on a Colfax Ninja Xeon Phi server,

which includes a 1.3 GHz Intel Xeon Phi 7210 (64 cores, 256 hard-

ware threads) mated to 16 GB of MCDRAM and 96 GB of DRAM.

Dell R415s and R815s were also used for some minor elements of

the paper.

Experiments consisted of:

1. Timing and overhead measurements of Nautilus’s thread and

new fiber implementations

2. Timing and overheadmeasurements of interrupt-driven thread

preemption

3. Timing and overhead measurements of the compiler-based

timing approach as a replacement for hardware-based timer inter-

rupts

4. Timing and overhead measurements of the compiler-based

timing approach to add preemption to the fibers implementation

ARTIFACT AVAILABILITY

Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved

license.

Hardware Artifact Availability: There are no author-created hard-

ware artifacts.

Data Artifact Availability: There are no author-created data

artifacts.

Proprietary Artifacts: None of the associated artifacts, author-

created or otherwise, are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: https://github.com/PeterDinda/nautilus

Artifact name: Nautilus Kernel (compiler-timing

branch on this fork)↪→

Persistent ID: https://github.com/llvm/llvm-project

Artifact name: LLVM compiler framework (specifically

version 9)↪→

Persistent ID: https://github.com/embecosm/mibench

Artifact name: mibench suite (influential, several

used)↪→

Persistent ID:

https://github.com/travitch/whole-program-llvm↪→

Artifact name: WLLVM

Persistent ID: 10.5281/zenodo.3879742 /

https://zenodo.org/record/3879742↪→

Artifact name: Compiler-Based Timing System - MAIN

ARTIFACT↪→

BASELINE EXPERIMENTAL SETUP, AND

MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Colfax Ninja Xeon Phi server, which

includes a 1.3 GHz Intel Xeon Phi 7210 (64 cores, 256 hardware

threads) mated to 16 GB of MCDRAM and 96 GB of DRAM. Dell

R415s and R815s were also used for some minor elements of the

paper.

Operating systems and versions: Nautilus Kernel, compiler-timing

branch

Compilers and versions: LLVM 9 and associated front-ends

Applications and versions: Mibench (some), mostly an influence

Libraries and versions: none

Key algorithms: dot product, linked list traversal, matrix multi-

ply, bst, randomized matrix multiply, level order tree traversal, ran-

domized fp operations, Rijndael, md5, sha-1, randomized fibonacci

computation, knn, cycle detection, unweighted mst, dijkstra, qsort,

radix sort

Input datasets and versions: generated by benchmark algorithms

URL to output from scripts that gathers execution environment

information.

http://pdinda.org/Stuff/sc20-envs/

