
Windows Performance Monitoring and Data Reduction
Using WatchTower

Michael W. Knop 1,2

knop@cs.northwestern.edu

Jennifer M. Schopf 1,2

jms@mcs.anl.gov

Peter A. Dinda 1

pdinda@cs.northwestern.edu

ABSTRACT
We describe and evaluate WatchTower, a set of library routines
that simplifies the collection of performance data for the
monitoring of Windows NT/2000. WatchTower has an overhead
similar to that of existing tools but is more easily embedded into
other applications. More important, we show how data reduction
techniques can be used to diminish the volume of performance
data gathered to only that which is useful; while still capturing the
overall behavior of the computer.

Keywords
Performance monitoring, data reduction, Windows NT/2000

1. INTRODUCTION
There is a growing need for systems that can automatically detect
performance bottlenecks or more serious problems and then
dynamically adapt their execution to fix themselves. The first step
toward this kind of fault-tolerant and adaptive computing is
performance monitoring. While the many UNIX variants have
been studied extensively in this respect, Windows research in this
area remains in its infancy. For the Windows operating systems to
become viable options in autonomic computing, we must begin
with the subject of performance monitoring.

To this end we have developed WatchTower, a set of library
routines that simplifies the collection of Windows performance
data. WatchTower provides easy access to the performance
counters that the Windows NT/2000 operating systems manage
and is easily embedded into monitoring software. Our application
based on WatchTower has comparable overhead to Microsoft’s
Perfmon [11] running in background mode.

Arguably, the amount of Windows NT/2000 performance data
that is available can be overwhelming. Blindly monitoring all the
performance counters Windows makes accessible could result in

1Northwestern University, Department of Computer Science, 1890
Maple Avenue, Evanston, IL 60201
2Argonne National Laboratory, Mathematics and Computer Science
Division, 9700 South Cass Avenue, Argonne, IL 60439

Workshop on Self-Healing, Adaptive and self-MANaged Systems
(SHAMAN), New York City, June 23, 2002.

over 170 Mb of data per day per machine (monitoring at a rate of
1 Hz). Our experiments indicate that only a fraction of the entire
collection of counters needs to be examined, while still retaining
most of the useful performance information about the machine
being monitored. To show this, we have employed a data
reduction technique to create a subset of counters that preserves
the machine’s behavior. The reduction in the volume of
information benefits both the archiving of performance data and
its real-time analysis. As the number of machines being monitored
increases, the benefits of data reduction become more apparent.

The performance data gathered by WatchTower allows us to
study user and machine activity over time across any number of
computers running Windows NT/2000. We envision a variety of
scenarios for using this data:

Adaptive Computing: Traces gathered can serve as the
starting point for real-time adaptive components for building
resilient, distributed, and parallel applications [14].

Fault Tolerance: The traces can be used in the diagnosis and
healing process for autonomic computing solutions where the
complexity of the system is too great for user troubleshooting
[7].

Intrusion Detection: What can be classified as unusual or
insecure behavior can be detected by using our data analysis
[8].

Scheduling: These traces are an accessible form of variability
information for cluster scheduling techniques [18], real-time
scheduling [2], adaptation [3], or resource management [12].

Platform Profiling: We can compare logs of UNIX system
usage with those created under Windows to determine
whether the same theories of UNIX user/application habits
apply to Windows. Likewise, these logs can be used for
building machine signatures [16] to characterize machine
performance against standard benchmarks.

The remainder of this paper is structured as follows: In the next
section we describe performance monitoring in Windows and
WatchTower. Section 3 explains the data reduction technique we
used on the logs gathered by WatchTower, and Section 4
discusses the results of that technique. Section 5 reviews related
work. Finally, in Section 6 we draw conclusions and describe
future work.

Figure 1: Windows performance monitoring structure.

2. WATCHTOWER
WatchTower is a set of C++ classes that greatly simplifies the
collection of performance data for the Windows NT/2000
operating systems. The routines allow monitoring to be done
unobtrusively (as a service, no user interaction needed) or at the
command line and have several options for logging (to console,
file, or streaming). We have created applications based on the
WatchTower library, including a service that logs to a local disk
and a command-line implementation for RPS [4]. The
WatchTower library code had many influences [10][19][20] and
has been used in functioning applications for the past year.

2.1 Performance Monitoring in Windows
Windows NT and 2000 contain a measurement infrastructure that
is made visible to applications by means of performance counters
that together reflect the current state of the system. The exact
number of counters varies depending on the system's
configuration; for a computer with a complex arrangement, this
number is roughly one thousand counters. Counters are arranged
in a simple two-level hierarchy. The first level of the hierarchy is
the physical or system performance object, while the second is the
performance counter, which is an attribute of the object.
Examples of objects include Processor and Memory, example
counters of those objects include %User Time and
Available Bytes, respectively. Some objects, such as
Processor or PhysicalDisk, may have multiple instances,
like a dual-processor node or a computer with many hard drives.

Performance counters are stored and updated in the Windows
registry and can be accessed by a registry API. Working directly
with the registry is complex, however, so Microsoft provides a
more abstract API called the Performance Data Helper (PDH)
[10]. This higher-level API handles the accessing of the counters
in the registry and converting their raw values into numbers with
appropriate units and scale. PDH is the basis for both Perfmon
(discussed in the next section) and WatchTower. Figure 1 shows
an overview of how these parts interact.

The first layer in the figure is the operating system kernel. The
second layer is a system tool layer, meaning the registry is
separate from the kernel yet tightly coupled to it. The platform
library layer (PDH) is next, followed by the application library
(WatchTower), and finally the application layer. The main source
of performance counters is the kernel (gathered from the OS and
running processes), but counters can also be specially built into
applications. The kernel gathers performance data from its various
sources and updates the registry periodically, which in turn makes
the counters available to applications using the registry API and
Performance Data Helper API.

We emphasize that Windows performance counters should not be
confused with hardware counters, such as those found in most
major microprocessors. Our focus is on the performance data
provided by the Windows NT/2000 operating systems, not the
hardware. Thus our approach is most similar to the HPVM
performance monitor [17], rather than PAPI [1].

2.2 PDH and Perfmon
Using PDH in an application is easier than using the registry API,
as mentioned above. But there is still a good deal of overhead in
setting up a trace in PDH. One must get the counters into a query,
collect the data in a periodic fashion, correlate the data, and so
forth, all while checking for numerous possible errors. Moreover,
the only output function given writes to a file on disk without
buffering. WatchTower, on the other hand, has been written to
automate the common groundwork to start a trace. The only input
needed is a list of counters (which it will verify exist), a
measurement rate, and where to send the output. Simple output
functions are provided (for example, streaming to console), and
hooks are available to add application-specific output functions.
Thus, programmers do not need to concern themselves with the
dense PDH API; instead they need work only within the
straightforward WatchTower interface.

The most identifiable PDH-based application is Microsoft's
Performance Monitor, also referred to as Perfmon [11]. Perfmon
can operate entirely in the background, hidden from the
interactive user. It is configured through an HTML-like script.
However, Perfmon has several deficiencies that limit its long-term
logging capability and usefulness, namely granularity, over-
writing of files, and adaptability. These significantly affect its
ability to provide adequate logging in a high performance cluster
environment.

The finest measurement granularity Perfmon supports is one
second, which is inadequate for many uses of logging data in a
high performance system. In contrast, WatchTower supports a
granularity of 10 ms (limited by the Windows timer granularity)
and a peak rate of approximately 16 Hz (depending on how many
counters are being monitored). Perfmon also overwrites the last
log file after (even graceful) reboots. This drawback makes
Perfmon undesirable for collecting long-term traces of machine
behavior. WatchTower avoids this problem (when writing to a
file) by starting a new log file every hour and after system startup.
Finally, Perfmon is difficult to incorporate into other systems or
to extend with new functionality (for example, streaming output).
WatchTower is a simple set of C++ routines and thus can be
embedded into other programs trivially.

Overhead vs. Counters

0

0.2

0.4

0.6

0.8

1

1.2

2 4 8 16 32 64 128 256 512

Number of Counters

C
PU

 U
sa

ge
 (%

)

Perfmon

WatchTower

Overhead vs. Rate

0

2

4

6

8

10

12

0.25 0.5 1 2 4 8 16

Measurement Rate (Hz)

C
PU

 U
sa

ge
 (%

)

Perfmon

WatchTower

 Figure 2: Overhead vs. counters at 1 Hz for Perfmon

and WatchTower.
 Figure 3: Overhead vs. rate with 256 counters for

Perfmon and WatchTower. Note that the Perfmon line
does not extend beyond 1 Hz.

2.3 Overhead
WatchTower's overhead is similar to that of Perfmon. Figure 2
shows the overhead (as a percentage of CPU time in use while the
machine was idle) of Perfmon and a WatchTower application as a
function of the number of counters, while Figure 3 shows the
overhead as a function of the measurement rate. In this example,
both tools are logging to disk in exactly the same way (a function
of PDH). One can see that WatchTower taxes the CPU in a
similar fashion as Perfmon. While Perfmon cannot function at
rates greater than 1 Hz, however, WatchTower can monitor at a
peak rate of 16 Hz (on a dual 500 MHz Pentium III machine)
when charged with 256 counters. Further, the memory footprint of
WatchTower is 15% smaller than Perfmon.

3. DATA REDUCTION
The volume of data WatchTower is capable of accumulating can
be daunting. Logging all possible counters on a typical machine at
1 Hz generates between 43 and 86 million values in a single day.
In the worst case, one machine could log over 2 Gb in a week,
assuming a 64-bit representation for each counter value. This
value would grow two to three times larger if logged in ASCII
text (as is standard for PDH). A cluster of machines being
monitored in this way would generate data that would make
storage and analysis difficult, especially real-time analysis.

Our approach to making sense of this large amount of data is to
treat it as a dimensionality reduction (DR) problem, where each
counter corresponds to a dimension. DR techniques, of which
many exist in statistics and machine learning literature [13],
reduce high-dimensionality data into a smaller number of
dimensions, while retaining a majority of the information. We
focus on the question of which subset of the counters captures the
interesting dynamics of the system. To find a compact
representation, we currently employ correlation elimination.

We use correlation elimination (CE) to select a relevant,
statistically interesting subset of counters. CE begins by
computing a correlation coefficient matrix. For such a matrix M
of size nxn, M(i,j) corresponds to the correlation coefficient
between counters i and j. A correlation coefficient is a gauge of
the strength of the linear relationship between two variables,

where uncorrelated variables have a value near zero, and highly
correlated variables have a value near one (thus, M(i,i) will be
exactly one). Next, CE applies a K-Nearest Neighbors (KNN)
clustering algorithm, using as input the correlation coefficient
matrix computed previously. This groups the counters into
clusters where all members have a certain positive threshold
correlation coefficient or higher to every other counter in the
cluster.

Data reduction happens when we choose to keep only one counter
from each KNN cluster, discarding the rest. The reasoning behind
this trimming is that since all the counters in a particular cluster
are all capturing similar information, only one needs to be kept to
describe the phenomenon. In this manner, redundant counters are
identified and no longer have to be monitored to accurately
describe the behavior of a machine.

4. EVALUATION
Our evaluation of the data gathered using a WatchTower
application is based on applying the technique described above,
offline, to sets of logs from six desktop PCs over a three-day time
span. Each set represents between 26 and 115 hours of data
collection (depending on work habits and whether the machine
was shut down while not being actively used) of 12 performance
objects (206 counters) at a rate of 1 Hz on a Windows 2000
machine, where no two machines had the exact same
configuration. These computers were used by a diverse (in terms
of activities engaged in during the experiment) group of graduate
students as well as a professor and an administrative assistant.

The logs were preprocessed and broken up into a directory-file
structure to better facilitate analysis. That statistical analysis
consisted of three steps, each step being applied to each of the six
machines’ 12 performance objects. The steps are presented
graphically in Figure 4. To more easily explain each step, we will
use the example of the Cache performance object from the
computer Oaklodge.

4.1 Explanation by Example
The Cache performance object has 27 counters, and for
Oaklodge we collected 263,003 samples (per counter). In the first

Figure 4: Graphical representation of the current correlation elimination data reduction process.

step of our analysis, we calculated the variance of each counter.
Those counters with a variance of zero were set aside because
their values did not change throughout the experiment.

In this example, Oaklodge’s Cache had 9 counters with a
variance of zero. The next step of the analysis consisted of
applying CE to the performance object’s remaining counters. We
used a threshold correlation coefficient of 0.8 and for Oaklodge
came up with 12 clusters for Cache’s 18 remaining counters.
Before throwing out any counters though, we applied the first two
steps of this process to the Cache objects of the other machines
in the experiment. In the final step, for each counter in Cache,
we took the intersection of the clusters from each machine that
contained the counter. Also in this step, we took the intersection
of the zero variance counters of each machine from the first stage.

The results of the above steps are classes of counters within their
performance objects. We note that these classes hold across all the
machines since strict intersections were used. We have identified
four classes: zero variance, loner, group of one, and group of

many. Zero variances are, of course, those counters that have a
variance of zero. They represent an immediate data reduction
because their presence has no statistical significance in the
behavior of the machine. Counters that never had a correlation of
0.8 or greater to any other counter are classified as loners. These
counters are interesting because they characterize some function
of the machine that no other counter is tracking. For a counter to
be classified as a group of one, it must have had correlations of
0.8 or greater to other counters, but these correlations did not hold
between all the machines.

The last category a counter can be in is a group of many. This
category consists of groups of counters that survived the cluster
intersections. These counters also represent data reduction. If all
the counters in a group have correlations of 0.8 or greater to each
other, CE states that only one counter from that group is needed to
describe the behavior of the entire group. Thus, we can throw out
all but one of the counters from a group of many. The total
reduction of data is the combination of those counters thrown out
by CE and the zero variance counters.

Figure 5: Performance reduction results. The Lose column is the number of counters that can be thrown out from the total. The last
column, Reduction, is the percentage that the Lose number represents of the total. The bottom three rows show the breakdown of
reduction across the non-networking objects and the only-networking objects, as well as the total reduction across all objects.

Performance Objects Loners
Groups of

One
Groups of

Many Zero Var Lose (cntrs) Total (cntrs) Reduction

Cache 33% 30% 22% 15% 7 27 26%
Memory 7% 59% 31% 3% 6 29 21%
Objects 17% 50% 33% 0% 1 6 17%

Paging File 50% 50% 0% 0% 0 4 0%
PhysicalDisk (total) 14% 57% 29% 0% 3 21 14%

Processor (total) 30% 40% 20% 10% 2 10 20%
System 29% 47% 12% 12% 3 17 18%

ICMP 4% 30% 7% 59% 17 27 63%
IP 12% 24% 24% 41% 10 17 59%

Network Interface 12% 21% 29% 38% 20 34 59%
TCP 22% 44% 33% 0% 2 9 22%
UDP 40% 0% 60% 0% 2 5 40%

 non Net 22 114 19%
 only Net 51 92 55%
 Total 73 206 35%

Percent Reduction per Performance Object

0%

10%

20%

30%

40%

50%

60%

70%

Cac
he

Mem
ory

Obje
cts

Pag
ing

 File

Phy
sD

isk

Proc
es

so
r

Sys
tem IC

MP IP
NIC

s
TCP

UDP

no
n N

et

on
ly

Net
Tota

l

Performance Object

Pe
rc

en
t R

ed
uc

tio
n

Figure 6: Percent reduction per performance object presented graphically.

4.2 Irregularities among Performance Objects
Unfortunately, not all performance objects were as easy to
compare as Cache. In particular, three performance objects
needed special consideration. The Processor and
PhysicalDisk objects had varying number of instances among
machines. This is a consequence of single vs. dual processor and
differing number of disks and disk partitions per computer. In
these two cases, we used only the counters from the instance
_Total. These counters represent the total of all the other
instances of the performance object, normalized if a percentage
value.

The other irregularity was in the Network Interface object.
One of the six computers in the experiment was a laptop, and its
user swapped a wireless network card in and out several times
during the experiment, causing the object to have a different
number of counters across time. Without a _Total instance in
the Network Interface performance object, we decided to
exclude this computer from the Network Interface
analysis. Thus the results for that specific performance object
comprise only five computers. We believe these irregularities do
not significantly affect our experimental results.

4.3 Experimental Results
The results of applying the process described above to our
experimental data are summarized in Figures 5 and 6. The
immediate observation is that 35% of the 206 counters examined
can be done away with by CE and zero variance. The next
observation is that the performance objects dealing with
networking have a much higher rate of reduction than those that
do not. Network objects have an overall reduction rate of 55%;
non-network objects have a reduction rate of 19%. While network
counters represent 45% of the total counters, they make up 70%
of the total savings.

Intuitively, the reason for the greater reduction rate for network
performance objects lies in their built-in redundancy and echoing
effect. Consider the following three counters from the TCP object
that survived as a group across all machines: \Segments/sec,
\Segments Received/sec, and \Segments Sent/sec.
Since \Segments/sec is just the sum of \Segments
Received/sec and \Segments Sent/sec, it is redundant
to track. Also, segments sent prompt segments to be received,
producing an echo and thus a correlation in the counters. Similar
phenomena appear in objects pertaining to the disk and processor
but do not generate as strong as an effect as do network
performance objects.

5. RELATED WORK
Several Windows-specific monitoring systems exist. Closest to
our work is HPVM's monitor [17], which is explicitly targeted at
Windows NT clusters. Unlike WatchTower, the HPVM monitor
provides a complete monitoring infrastructure including
communication and high precision clocks. In contrast,
WatchTower library routines provide simple sensor capabilities to
be used in monitoring tools. NSClient [15] exposes Windows
performance counters as a plug-in to the NetSaint [6] monitoring
system. None of tools mentioned include a notion of data
reduction to capture only the important dynamics in the data.

Performance monitoring and prediction systems such as Remos
[9], RPS [4][5], and NWS [21] have limited or nonexistent
Windows support. This is not because the code is difficult to port,
but rather because of the different nature of sensors on Windows
verses UNIX, and the lack of the ability to easily embed Perfmon-
like tools. WatchTower provides a simple interface to Windows
performance data and has been used to create an RPS sensor.
Additionally, such systems would benefit from a reduction in the
data sent to them from a sensor.

6. CONCLUSIONS
The experimental results presented here are encouraging. They
show that performance data from Windows NT/2000 machines
can be reduced while still capturing the overall behavior of the
computer. This observation can have an important effect on the
archival and real-time analysis of Windows performance data.

For future work, we foresee many avenues. During correlation
elimination, we would like to take into account negative
correlations during KNN clustering. Currently our algorithm
groups counters only by positive correlations. We would also like
to employ principal component analysis (PCA) as another
statistical technique for data reduction. We have done PCA on
performance objects from individual machines but have not yet
come up with combined results across a number of machines. We
believe PCA may provide better compression, although its results
are conceptually harder to grasp and possibly harder to use.
Finally, this data reduction work is a first step toward our ultimate
goal of state detection.

7. ACKNOWLEDGMENTS
We thank Praveen K. Paritosh for his initial work on the
correlation elimination scheme. We would also like to thank Jason
A. Skicewicz for his help with the late-night data analysis. The
submitted manuscript has been created in part by the University
of Chicago as Operator of Argonne National Laboratory
("Argonne") under Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Government.
Additional support for this work came from the Microsoft
Corporation under the Work-for-Others Agreement ACK #853L3,
as well as the National Science Foundation through grants ANI-
0093221, ACI-0112891, and EIA-0130869.

8. REFERENCES
[1] S. Browne, J. Dongarra, N. Garner, G. Ho, P. Mucci, A

Portable Programming Interface for Performance
Evaluation on Modern Processors, The International
Journal of High Performance Computing Applications,
Vol. 14, No. 3, pp. 189-204, Fall 2000.

[2] P. Dinda, Resource Signal Prediction and Its
Application to Real-time Scheduling Advisors (Ph.D.
Dissertation), Technical Report CMU-CS-00-131,
School of Computer Science, Carnegie Mellon
University, February 2000.

[3] P. Dinda, B. Lowekamp, L. Kallivokas, D. O'Hallaron,
The Case for Prediction-Based Best-Effort Real-Time
Systems, Proceedings of the 7th International
Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS99), pp. 309-318, April 1999.

[4] P. Dinda, D. O'Hallaron, An Extensible Toolkit for
Resource Prediction in Distributed Systems, Technical
Report CMU-CS-99-138, Carnegie Mellon University,
1999.

[5] P. Dinda, D. O'Hallaron, Host Load Prediction Using
Linear Models, Cluster Computing, Vol. 3, No. 4,
2000.

[6] E. Galstad, NetSaint Network Monitor,
http://www.netsaint.org, 2002.

[7] IBM, Autonomic Computing,
http://www.research.ibm.com/autonomic, 2002.

[8] K. Ilgun, A. Kemmerer, P. Porras, State Transition
Analysis: A Rule-Based Intrusion Detection Approach,
IEEE Transactions on Software Engineering, Vol. 21,
No. 3, pp. 181-199, March 1995.

[9] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P.
Steenkiste, J. Subhlok, A Resource Query Interface for
Network-Aware Applications, 7th IEEE Symposium on
High-Performance Distributed Computing (HPDC7),
1998.

[10] Microsoft Corporation, Microsoft Platform SDK,
http://www.microsoft.com/msdownload/platformsdk/s
dkupdate/, 2002.

[11] Microsoft Corporation, Perfmon: Performance
Monitor, http://msdn.microsoft.com/library/en-
us/vcsample98/html/vcsmpPerfmon.asp, 2002.

[12] R. Rajkumar, C. Lee, J. Lehozcky, D. Siewiorek, A
Resource Allocation Model for QoS Management,

Proceedings of the 18th IEEE Real-Time Systems
Symposium, December 1997.

[13] A. Rencher, Methods of Multivariate Analysis, Wiley,
New York, 1995.

[14] R. Ribler, J. Vetter, H. Simitci, D. Reed, Autopilot:
Adaptive Control of Distributed Applications, 7th
IEEE Symposium on High-Performance Distributed
Computing (HPDC7), 1998.

[15] Y. Rubin, NSClient Official Site,
http://nsclient.ready2run.nl/, 2002.

[16] R. Saavedra-Barrera, A. Smith, E. Miya, Machine
Characterization Based on an Abstract High-Level
Language Machine, IEEE Transactions on Computers,
Vol. 38, No. 12, pp. 1659-1679, December 1989.

[17] G. Sampemane, S. Pakin, A. Chien, Performance
Monitoring on an HPVM Cluster, Proceedings of the
2000 International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA00), June 2000.

[18] J. Schopf, F. Berman, Stochastic Scheduling, Super
Computing 1999 (SC99), 1999.

[19] N. Thompson, Creating a Simple Win32 Service in
C++, http://msdn.microsoft.com/library/en-
us/dndllpro/html/msdn_ntservic.asp, November 1995.

[20] P. Tomlinson, Windows NT Programming in Practice:
Practical Techniques from Master Programmers,
R&D Books, 1997.

[21] R. Wolski, Dynamically Forecasting Network
Performance to Support Dynamic Scheduling Using
the Network Weather Service, Proceedings of the 6th
High-Performance Distributed Computing Conference
(HPDC6), August 1997.

