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ABSTRACT 
We describe and evaluate WatchTower, a set of library routines 
that simplifies the collection of performance data for the 
monitoring of Windows NT/2000. WatchTower has an overhead 
similar to that of existing tools but is more easily embedded into 
other applications. More important, we show how data reduction 
techniques can be used to diminish the volume of performance 
data gathered to only that which is useful; while still capturing the 
overall behavior of the computer. 
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1. INTRODUCTION 
There is a growing need for systems that can automatically detect 
performance bottlenecks or more serious problems and then 
dynamically adapt their execution to fix themselves. The first step 
toward this kind of fault-tolerant and adaptive computing is 
performance monitoring. While the many UNIX variants have 
been studied extensively in this respect, Windows research in this 
area remains in its infancy. For the Windows operating systems to 
become viable options in autonomic computing, we must begin 
with the subject of performance monitoring. 

To this end we have developed WatchTower, a set of library 
routines that simplifies the collection of Windows performance 
data. WatchTower provides easy access to the performance 
counters that the Windows NT/2000 operating systems manage 
and is easily embedded into monitoring software. Our application 
based on WatchTower has comparable overhead to Microsoft’s 
Perfmon [11] running in background mode. 

Arguably, the amount of Windows NT/2000 performance data 
that is available can be overwhelming. Blindly monitoring all the 
performance counters  Windows  makes accessible could  result in 
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over 170 Mb of data per day per machine (monitoring at a rate of 
1 Hz). Our experiments indicate that only a fraction of the entire 
collection of counters needs to be examined, while still retaining 
most of the useful performance information about the machine 
being monitored. To show this, we have employed a data 
reduction technique to create a subset of counters that preserves 
the machine’s behavior. The reduction in the volume of 
information benefits both the archiving of performance data and 
its real-time analysis. As the number of machines being monitored 
increases, the benefits of data reduction become more apparent. 

The performance data gathered by WatchTower allows us to 
study user and machine activity over time across any number of 
computers running Windows NT/2000. We envision a variety of 
scenarios for using this data: 

Adaptive Computing: Traces gathered can serve as the 
starting point for real-time adaptive components for building 
resilient, distributed, and parallel applications [14]. 

Fault Tolerance: The traces can be used in the diagnosis and 
healing process for autonomic computing solutions where the 
complexity of the system is too great for user troubleshooting 
[7]. 

Intrusion Detection: What can be classified as unusual or 
insecure behavior can be detected by using our data analysis 
[8]. 

Scheduling: These traces are an accessible form of variability 
information for cluster scheduling techniques [18], real-time 
scheduling [2], adaptation [3], or resource management [12]. 

Platform Profiling: We can compare logs of UNIX system 
usage with those created under Windows to determine 
whether the same theories of UNIX user/application habits 
apply to Windows. Likewise, these logs can be used for 
building machine signatures [16] to characterize machine 
performance against standard benchmarks. 

The remainder of this paper is structured as follows: In the next 
section we describe performance monitoring in Windows and 
WatchTower. Section 3 explains the data reduction technique we 
used on the logs gathered by WatchTower, and Section 4 
discusses the results of that technique. Section 5 reviews related 
work. Finally, in Section 6 we draw conclusions and describe 
future work. 



 
Figure 1: Windows performance monitoring structure. 

 

2. WATCHTOWER 
WatchTower is a set of C++ classes that greatly simplifies the 
collection of performance data for the Windows NT/2000 
operating systems. The routines allow monitoring to be done 
unobtrusively (as a service, no user interaction needed) or at the 
command line and have several options for logging (to console, 
file, or streaming). We have created applications based on the 
WatchTower library, including a service that logs to a local disk 
and a command-line implementation for RPS [4]. The 
WatchTower library code had many influences [10][19][20] and 
has been used in functioning applications for the past year. 

2.1 Performance Monitoring in Windows 
Windows NT and 2000 contain a measurement infrastructure that 
is made visible to applications by means of performance counters 
that together reflect the current state of the system. The exact 
number of counters varies depending on the system's 
configuration; for a computer with a complex arrangement, this 
number is roughly one thousand counters. Counters are arranged 
in a simple two-level hierarchy. The first level of the hierarchy is 
the physical or system performance object, while the second is the 
performance counter, which is an attribute of the object. 
Examples of objects include Processor and Memory, example 
counters of those objects include %User Time and 
Available Bytes, respectively. Some objects, such as 
Processor or PhysicalDisk, may have multiple instances, 
like a dual-processor node or a computer with many hard drives. 

Performance counters are stored and updated in the Windows 
registry and can be accessed by a registry API. Working directly 
with the registry is complex, however, so Microsoft provides a 
more abstract API called the Performance Data Helper (PDH) 
[10]. This higher-level API handles the accessing of the counters 
in the registry and converting their raw values into numbers with 
appropriate units and scale. PDH is the basis for both Perfmon 
(discussed in the next section) and WatchTower. Figure 1 shows 
an overview of how these parts interact. 

The first layer in the figure is the operating system kernel. The 
second layer is a system tool layer, meaning the registry is 
separate from the kernel yet tightly coupled to it. The platform 
library layer (PDH) is next, followed by the application library 
(WatchTower), and finally the application layer. The main source 
of performance counters is the kernel (gathered from the OS and 
running processes), but counters can also be specially built into 
applications. The kernel gathers performance data from its various 
sources and updates the registry periodically, which in turn makes 
the counters available to applications using the registry API and 
Performance Data Helper API. 

We emphasize that Windows performance counters should not be 
confused with hardware counters, such as those found in most 
major microprocessors. Our focus is on the performance data 
provided by the Windows NT/2000 operating systems, not the 
hardware. Thus our approach is most similar to the HPVM 
performance monitor [17], rather than PAPI [1]. 

2.2 PDH and Perfmon 
Using PDH in an application is easier than using the registry API, 
as mentioned above. But there is still a good deal of overhead in 
setting up a trace in PDH. One must get the counters into a query, 
collect the data in a periodic fashion, correlate the data, and so 
forth, all while checking for numerous possible errors. Moreover, 
the only output function given writes to a file on disk without 
buffering. WatchTower, on the other hand, has been written to 
automate the common groundwork to start a trace. The only input 
needed is a list of counters (which it will verify exist), a 
measurement rate, and where to send the output. Simple output 
functions are provided (for example, streaming to console), and 
hooks are available to add application-specific output functions. 
Thus, programmers do not need to concern themselves with the 
dense PDH API; instead they need work only within the 
straightforward WatchTower interface. 

The most identifiable PDH-based application is Microsoft's 
Performance Monitor, also referred to as Perfmon [11]. Perfmon 
can operate entirely in the background, hidden from the 
interactive user. It is configured through an HTML-like script. 
However, Perfmon has several deficiencies that limit its long-term 
logging capability and usefulness, namely granularity, over-
writing of files, and adaptability. These significantly affect its 
ability to provide adequate logging in a high performance cluster 
environment. 

The finest measurement granularity Perfmon supports is one 
second, which is inadequate for many uses of logging data in a 
high performance system. In contrast, WatchTower supports a 
granularity of 10 ms (limited by the Windows timer granularity) 
and a peak rate of approximately 16 Hz (depending on how many 
counters are being monitored). Perfmon also overwrites the last 
log file after (even graceful) reboots. This drawback makes 
Perfmon undesirable for collecting long-term traces of machine 
behavior. WatchTower avoids this problem (when writing to a 
file) by starting a new log file every hour and after system startup. 
Finally, Perfmon is difficult to incorporate into other systems or 
to extend with new functionality (for example, streaming output). 
WatchTower is a simple set of C++ routines and thus can be 
embedded into other programs trivially. 
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 Figure 2: Overhead vs. counters at 1 Hz for Perfmon 

and WatchTower. 
  Figure 3: Overhead vs. rate with 256 counters for 

Perfmon and WatchTower. Note that the Perfmon line 
does not extend beyond 1 Hz. 
 

2.3 Overhead 
WatchTower's overhead is similar to that of Perfmon. Figure 2 
shows the overhead (as a percentage of CPU time in use while the 
machine was idle) of Perfmon and a WatchTower application as a 
function of the number of counters, while Figure 3 shows the 
overhead as a function of the measurement rate. In this example, 
both tools are logging to disk in exactly the same way (a function 
of PDH). One can see that WatchTower taxes the CPU in a 
similar fashion as Perfmon. While Perfmon cannot function at 
rates greater than 1 Hz, however, WatchTower can monitor at a 
peak rate of 16 Hz (on a dual 500 MHz Pentium III machine) 
when charged with 256 counters. Further, the memory footprint of 
WatchTower is 15% smaller than Perfmon. 

3. DATA REDUCTION 
The volume of data WatchTower is capable of accumulating can 
be daunting. Logging all possible counters on a typical machine at 
1 Hz generates between 43 and 86 million values in a single day. 
In the worst case, one machine could log over 2 Gb in a week, 
assuming a 64-bit representation for each counter value. This 
value would grow two to three times larger if logged in ASCII 
text (as is standard for PDH). A cluster of machines being 
monitored in this way would generate data that would make 
storage and analysis difficult, especially real-time analysis. 

Our approach to making sense of this large amount of data is to 
treat it as a dimensionality reduction (DR) problem, where each 
counter corresponds to a dimension. DR techniques, of which 
many exist in statistics and machine learning literature [13], 
reduce high-dimensionality data into a smaller number of 
dimensions, while retaining a majority of the information. We 
focus on the question of which subset of the counters captures the 
interesting dynamics of the system. To find a compact 
representation, we currently employ correlation elimination. 

We use correlation elimination (CE) to select a relevant, 
statistically interesting subset of counters. CE begins by 
computing a correlation coefficient matrix. For such a matrix M 
of size nxn, M(i,j) corresponds to the correlation coefficient 
between counters i and j. A correlation coefficient is a gauge of 
the strength of the linear relationship between two variables, 

where uncorrelated variables have a value near zero, and highly 
correlated variables have a value near one (thus, M(i,i) will be 
exactly one). Next, CE applies a K-Nearest Neighbors (KNN) 
clustering algorithm, using as input the correlation coefficient 
matrix computed previously. This groups the counters into 
clusters where all members have a certain positive threshold 
correlation coefficient or higher to every other counter in the 
cluster. 

Data reduction happens when we choose to keep only one counter 
from each KNN cluster, discarding the rest. The reasoning behind 
this trimming is that since all the counters in a particular cluster 
are all capturing similar information, only one needs to be kept to 
describe the phenomenon. In this manner, redundant counters are 
identified and no longer have to be monitored to accurately 
describe the behavior of a machine. 

4. EVALUATION 
Our evaluation of the data gathered using a WatchTower 
application is based on applying the technique described above, 
offline, to sets of logs from six desktop PCs over a three-day time 
span. Each set represents between 26 and 115 hours of data 
collection (depending on work habits and whether the machine 
was shut down while not being actively used) of 12 performance 
objects (206 counters) at a rate of 1 Hz on a Windows 2000 
machine, where no two machines had the exact same 
configuration. These computers were used by a diverse (in terms 
of activities engaged in during the experiment) group of graduate 
students as well as a professor and an administrative assistant. 

The logs were preprocessed and broken up into a directory-file 
structure to better facilitate analysis. That statistical analysis 
consisted of three steps, each step being applied to each of the six 
machines’ 12 performance objects. The steps are presented 
graphically in Figure 4. To more easily explain each step, we will 
use the example of the Cache performance object from the 
computer Oaklodge. 

4.1 Explanation by Example 
The Cache performance object has 27 counters, and for 
Oaklodge we collected 263,003 samples (per counter). In the first 



 
 

Figure 4: Graphical representation of the current correlation elimination data reduction process. 
 

step of our analysis, we calculated the variance of each counter. 
Those counters with a variance of zero were set aside because 
their values did not change throughout the experiment. 

In this example, Oaklodge’s Cache had 9 counters with a 
variance of zero. The next step of the analysis consisted of 
applying CE to the performance object’s remaining counters. We 
used a threshold correlation coefficient of 0.8 and for Oaklodge 
came up with 12 clusters for Cache’s 18 remaining counters. 
Before throwing out any counters though, we applied the first two 
steps of this process to the Cache objects of the other machines 
in the experiment. In the final step, for each counter in Cache, 
we took the intersection of the clusters from each machine that 
contained the counter. Also in this step, we took the intersection 
of the zero variance counters of each machine from the first stage. 

The results of the above steps are classes of counters within their 
performance objects. We note that these classes hold across all the 
machines since strict intersections were used. We have identified 
four classes: zero variance, loner, group of one, and group of 

many. Zero variances are, of course, those counters that have a 
variance of zero. They represent an immediate data reduction 
because their presence has no statistical significance in the 
behavior of the machine. Counters that never had a correlation of 
0.8 or greater to any other counter are classified as loners. These 
counters are interesting because they characterize some function 
of the machine that no other counter is tracking. For a counter to 
be classified as a group of one, it must have had correlations of 
0.8 or greater to other counters, but these correlations did not hold 
between all the machines. 

The last category a counter can be in is a group of many. This 
category consists of groups of counters that survived the cluster 
intersections. These counters also represent data reduction. If all 
the counters in a group have correlations of 0.8 or greater to each 
other, CE states that only one counter from that group is needed to 
describe the behavior of the entire group. Thus, we can throw out 
all but one of the counters from a group of many. The total 
reduction of data is the combination of those counters thrown out 
by CE and the zero variance counters. 



Figure 5: Performance reduction results. The Lose column is the number of counters that can be thrown out from the total. The last 
column, Reduction, is the percentage that the Lose number represents of the total. The bottom three rows show the breakdown of 
reduction across the non-networking objects and the only-networking objects, as well as the total reduction across all objects. 

Performance Objects Loners 
Groups of 

One 
Groups of 

Many Zero Var Lose (cntrs) Total (cntrs) Reduction 

Cache 33% 30% 22% 15% 7 27 26% 
Memory 7% 59% 31% 3% 6 29 21% 
Objects 17% 50% 33% 0% 1 6 17% 

Paging File 50% 50% 0% 0% 0 4 0% 
PhysicalDisk (total) 14% 57% 29% 0% 3 21 14% 

Processor (total) 30% 40% 20% 10% 2 10 20% 
System 29% 47% 12% 12% 3 17 18% 

ICMP 4% 30% 7% 59% 17 27 63% 
IP 12% 24% 24% 41% 10 17 59% 

Network Interface 12% 21% 29% 38% 20 34 59% 
TCP 22% 44% 33% 0% 2 9 22% 
UDP 40% 0% 60% 0% 2 5 40% 

    non Net 22 114 19% 
    only Net 51 92 55% 
    Total 73 206 35% 
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Figure 6: Percent reduction per performance object presented graphically. 



4.2 Irregularities among Performance Objects 
Unfortunately, not all performance objects were as easy to 
compare as Cache. In particular, three performance objects 
needed special consideration. The Processor and 
PhysicalDisk objects had varying number of instances among 
machines. This is a consequence of single vs. dual processor and 
differing number of disks and disk partitions per computer. In 
these two cases, we used only the counters from the instance 
_Total. These counters represent the total of all the other 
instances of the performance object, normalized if a percentage 
value. 

The other irregularity was in the Network Interface object. 
One of the six computers in the experiment was a laptop, and its 
user swapped a wireless network card in and out several times 
during the experiment, causing the object to have a different 
number of counters across time. Without a _Total instance in 
the Network Interface performance object, we decided to 
exclude this computer from the Network Interface 
analysis. Thus the results for that specific performance object 
comprise only five computers. We believe these irregularities do 
not significantly affect our experimental results. 

4.3 Experimental Results 
The results of applying the process described above to our 
experimental data are summarized in Figures 5 and 6. The 
immediate observation is that 35% of the 206 counters examined 
can be done away with by CE and zero variance. The next 
observation is that the performance objects dealing with 
networking have a much higher rate of reduction than those that 
do not. Network objects have an overall reduction rate of 55%; 
non-network objects have a reduction rate of 19%. While network 
counters represent 45% of the total counters, they make up 70% 
of the total savings. 

Intuitively, the reason for the greater reduction rate for network 
performance objects lies in their built-in redundancy and echoing 
effect. Consider the following three counters from the TCP object 
that survived as a group across all machines: \Segments/sec, 
\Segments Received/sec, and \Segments Sent/sec. 
Since \Segments/sec is just the sum of \Segments
Received/sec and \Segments Sent/sec, it is redundant 
to track. Also, segments sent prompt segments to be received, 
producing an echo and thus a correlation in the counters. Similar 
phenomena appear in objects pertaining to the disk and processor 
but do not generate as strong as an effect as do network 
performance objects. 

5. RELATED WORK 
Several Windows-specific monitoring systems exist. Closest to 
our work is HPVM's monitor [17], which is explicitly targeted at 
Windows NT clusters. Unlike WatchTower, the HPVM monitor 
provides a complete monitoring infrastructure including 
communication and high precision clocks. In contrast, 
WatchTower library routines provide simple sensor capabilities to 
be used in monitoring tools. NSClient [15] exposes Windows 
performance counters as a plug-in to the NetSaint [6] monitoring 
system. None of tools mentioned include a notion of data 
reduction to capture only the important dynamics in the data. 

Performance monitoring and prediction systems such as Remos 
[9], RPS [4][5], and NWS [21] have limited or nonexistent 
Windows support. This is not because the code is difficult to port, 
but rather because of the different nature of sensors on Windows 
verses UNIX, and the lack of the ability to easily embed Perfmon-
like tools. WatchTower provides a simple interface to Windows 
performance data and has been used to create an RPS sensor. 
Additionally, such systems would benefit from a reduction in the 
data sent to them from a sensor. 

6. CONCLUSIONS 
The experimental results presented here are encouraging. They 
show that performance data from Windows NT/2000 machines 
can be reduced while still capturing the overall behavior of the 
computer. This observation can have an important effect on the 
archival and real-time analysis of Windows performance data. 

For future work, we foresee many avenues. During correlation 
elimination, we would like to take into account negative 
correlations during KNN clustering. Currently our algorithm 
groups counters only by positive correlations. We would also like 
to employ principal component analysis (PCA) as another 
statistical technique for data reduction. We have done PCA on 
performance objects from individual machines but have not yet 
come up with combined results across a number of machines. We 
believe PCA may provide better compression, although its results 
are conceptually harder to grasp and possibly harder to use. 
Finally, this data reduction work is a first step toward our ultimate 
goal of state detection.  
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