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ABSTRACT
In this paper, we present a comprehensive analysis of real
smartphone usage during a 6-month study of real user activ-
ity on the Android G1 smartphone. Our goal is to study the
high-level characteristics of smartphone usage, and to un-
derstand the implications on optimizing smartphones, and
their networks. Overall, we present 11 findings that cover
general usage behavior, interaction with the battery, power
consumption, network activity, frequently-run applications,
and modeling usage states.

Categories and Subject Descriptors: C.3 [Special-Purpose
and Application-Based Systems]: Real-Time and Embedded
Systems; C.0 [Computer Systems Organization]: General-
Modeling of Computer Architecture; H.1.2 [Models and Prin-
ciples]: User/Machine Systems-Human Factors

General Terms: Measurement, Human Factors

Keywords: Human Factors, Embedded Systems

1. INTRODUCTION
We present a comprehensive analysis of real smartphone

usage from a 6-month study, involving 25 users, and one
specific smartphone, the Android G1. The main goal of our
study is to observe the high-level workload characteristics of
real smartphone users in the wild and understand the impli-
cations of these characteristics for optimizing smartphones.
Specifically, we are interested in the following questions:

• What does typical user activity look like? How does it
vary across users?

• What are the most energy consuming hardware com-
ponents? What are the execution characteristics of the
most power hungry components?

• What are the network connectivity characteristics on
a smartphone?

• Can we detect high-level patterns in user activity?

For reference, a more detailed presentation of this work is
available elsewhere [4].

2. METHODOLOGY
Target Architecture. Our target smartphone in this

paper is the HTC Dream, marketed as the Android G1, a
cellular phone platform built by HTC that supports the open
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Figure 1: High-level diagram of our target mobile
architecture, the Android G1 smartphone.

source Google Android mobile device platform. A high-level
diagram of the G1 is shown in Figure 1. The G1 has a
3.2inch HVGA 65K color capacitive touch screen, uses a
Qualcomm MSM7201A chipset, and a 1150mAh lithium-
ion battery. The Qualcomm MSM7201A chipset contains
a 528MHz ARM 11 apps processor, a ARM 9 modem pro-
cessor, QDSP4000 and QDSP5000 high-performance digi-
tal signal processors, 528MHz ARM 11 Jazelle Java hard-
ware acceleration, quadband GPRS and EDGE network, in-
tegrated bluetooth, and wifi support.

Logging User Activity. To study the real usage of the
G1, we have developed a logger application that logs user
activity events, as well as system-level performance mea-
surements. The logger is developed as a normal Dalvik ex-
ecutable using the Java standard libraries available in the
Android framework. It runs on the G1 without any special
hardware or OS support.

Obtaining users. We posted online advertisements and
physical flyers for anonymous volunteers on various univer-
sity campuses, technical news web sites, and Android-related
forums. Overall, we collect logs from 52 users from April–
November 2009. For this paper, we use the logs from the 25
users with the longest total recorded time. The data from
these 25 users represents approximately 1329 days (∼ 3.6
years) of real user activity, with an average of approximately
∼ 53 days of logged user activity per user.

Power estimation. We use a regression-based power
estimation model for the Android G1 that has been proposed
and validated in prior literature [3].

3. OVERVIEW OF FINDINGS
We summarize our findings in Table 1. The table includes

our 11 main observations, split into several categories: gen-



General Observations Implications
1. Users recharge their phones on a daily basis, and use their
phones until the battery is low in ∼ 20% of the cases when
it is unplugged for over 4 hours.

Battery management is a significant part of the smartphone
user experience, including daily charging and frequent low
battery indicators.

Improving Energy Efficiency Implications
2. There is significant variation in the usage behavior of our
users. For example, some users are heavy phone users, while
others may be heavy wifi users.

It is critical to perform real user studies when studying
smartphones. In addition, the large variations in usage ac-
tivity may represent optimization opportunity [1, 2].

3. Active phone use consumes 53.7% of the total system
power and 11% of the usage time. Of the hardware com-
ponents, the screen and the CPU consume the most power,
19.5% and 7.3% of the total power, respectively.

Active phone use consumes the majority of the power, even
though it accounts for a small fraction of the total use time.
The screen and CPU require the most attention with respect
to energy efficiency.

4. On average, the phone is in the idle state 89% of the time
and accounts for 46.3% of the total system power.

Reducing the power consumption of the idle state should also
be a high priority for improving battery life.

5. Most users do not switch between multiple brightness
levels, nor do they install power management software.

Automatic brightness adjusting optimizations (as well os
other power optimizations) should be included with smart-
phones.

6. The CPU utilization is typically either at 100%, or under
10%.

Dynamic CPU scale-down optimizations should be used for
saving power.

Networking Implications
7. EDGE network session durations follow a power-law dis-
tribution.

Session durations can be modeled with a General Pareto Dis-
tribution, with a a shape parameter of 2.7454 and a scale
parameter of 2.4732.

8. Wifi network session durations appear to be the sum of
several distributions and the wifi network traffic is highly
dependent on daily usage modes.

Modeling wifi session durations warrants more investigation
and shows promise of revealing trends in user behavior. Ses-
sion durations can be modeled with a MMPP.

Application Usage Implications
9. A significant portion of CPU utilization is attributable to
OS-level processes.

From the perspective of mobile computing, OS developers
must be aware of the broader impacts of frequently-run
code (e.g., on power consumption due to the CPU).

Usage Patterns Implications
10. From a large space of possible states, only a few sig-
nificant states and transitions are required to meaningfully
represent smartphone usage patterns.

Building a useful state-transition graph to model smartphone
user behavior from a large dataset is tractable.

11. Automatic clustering of usage logs closely matches man-
ually selected states of interest.

Meaningful states may be extracted automatically from in-
put data to build a state-based model of user behavior.

Table 1: Summary of the 11 main findings in this paper.

eral, energy-related, networking, application, and usage pat-
terns. Each observation includes a description of the impli-
cations on energy-efficient design and/or optimization for
the Android G1 smartphone.

In general, we see that studying real user activity yields
many interesting findings. Our user activity traces show that
(1) battery life is a significant part of the user experience,
(2) there exists large variation in usage patterns across our
users, (3) the screen and CPU are good targets for power
optimization, (4) clear differences in EDGE and wifi net-
work traffic can be seen in usage behavior, (5) OS activity
plays a large role in execution, and (7) user activity can
be automatically clustered to produce Markov decision pro-
cesses for modeling individual users (an example shown in
Figure 2). The last of these findings is particularly signifi-
cant as it points towards automatic generation of models for
various aspects of smartphone usage (e.g., modeling EDGE
network traffic from individual devices).
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Figure 2: Example of a user activity model derived
from clustering real user activity traces.
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