
SymCall: Symbiotic Virtualization
Through VMM-to-Guest Upcalls

John R. Lange
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260
jacklange@cs.pitt.edu

Peter A. Dinda
Department of EECS

Northwestern University
Evanston, IL 60208

pdinda@northwestern.edu

Abstract
Symbiotic virtualization is a new approach to system virtualization
in which a guest OS targets the native hardware interface as in full
system virtualization, but also optionally exposes a software inter-
face that can be used by a VMM, if present, to increase performance
and functionality. Neither the VMM nor the OS needs to support the
symbiotic virtualization interface to function together, but if both
do, both benefit. We describe the design and implementation of
the SymCall symbiotic virtualization interface in our publicly avail-
able Palacios VMM for modern x86 machines. SymCall makes it
possible for Palacios to make clean upcalls into a symbiotic guest,
much like system calls. One use of symcalls is to collect seman-
tically rich guest data to enable new VMM features. We describe
the implementation of SwapBypass, a VMM-based service based
on SymCall that reconsiders swap decisions made by a symbiotic
Linux guest, adapting to guest memory pressure given current con-
straints. Finally, we present a detailed performance evaluation of
both SwapBypass and SymCall.

Categories and Subject Descriptors D.4.7 [Operating Systems]:
Organization and Design

General Terms Design, Experimentation, Measurement, Perfor-
mance

Keywords virtual machine monitors, operating systems

1. Introduction
Virtualization is rapidly becoming ubiquitous, especially in large-
scale data centers. Significant inroads have also been made into
high performance computing and adaptive systems [14]. The rapid
adoption of virtualization in all of these areas is in no small part
due to the ability of virtualization to adapt existing OSes to virtual
environments with few or no OS implementation changes.

A consequence of this compatibility is that current virtualiza-
tion interfaces are largely designed to be purely unidirectional. A

This effort was funded by the United States National Science Foundation
(NSF) via grant CNS-0709168, and the Department of Energy (DOE) via
grant DE-SC0005343.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’11, March 9–11, 2011, Newport Beach, California, USA.
Copyright c© 2011 ACM 978-1-4503-0501-3/11/03. . . $10.00

guest OS is only able to interact with a VMM through a virtualized
hardware interface (e.g., VMware [26], KVM [21]) or via paravir-
tualized hypercalls (e.g. Xen [3]). The only way a VMM can sig-
nal a guest OS is through interrupts or interfaces built on top of a
hardware device abstraction. Despite being easy to implement and
widely compatible, such interfaces can be very restrictive.

This has led to considerable effort being put into bridging the
semantic gap [4] of the VMM/OS interface [7, 10, 11]. The ad-
vantage of the approaches proposed in previous efforts is that they
operate without guest modifications and do not require guest coop-
eration. However, the information gleaned from such black-box or
grey-box approaches is semantically poor, which restricts the kinds
of decision making that the VMM can do, or services it can offer.
Furthermore, even when these tools can reconstruct needed guest
state, the reconstruction effort can be a significant burden on the
VMM or service developer, especially given that it is probably al-
ready readily available inside the guest environment.

We propose symbiotic virtualization, a new approach to design-
ing VMMs and guest OSes to work better together. In symbiotic
virtualization, a cooperative symbiotic guest kernel can detect that
it is running on a symbiotic VMM, synchronize with it, and then
offer it access to semantically rich information, and, more gener-
ally, to what amounts to a system call interface that the VMM can
use to interact with the guest kernel. This interface can then be used
by the VMM and its associated services. If no symbiotic VMM, or
no VMM, is available, a symbiotic guest kernel behaves normally.
Symbiotic virtualization preserves the benefits of full system virtu-
alization, while providing a standard interface for VMM/OS inter-
actions. A symbiotic interface is not a required mechanism for OS
functionality, nor is a VMM required to use it if it is present.

In this paper, we focus on the SymCall symbiotic interface.
SymCall allows the VMM to make upcalls into the guest kernel,
making it possible for a guest to easily provide an efficient and safe
system call interface to the VMM. These calls can then be used
during the handling of a guest exit. That is, the VMM can invoke
the guest during the handling of a guest exit. We describe the design
and implementation of SymCall in Palacios in considerable detail,
and we evaluate the latency of SymCall.

Using the SymCall interface, we designed, implemented, and
evaluated a proof-of-concept symbiotic service in Palacios. This
service, SwapBypass, uses shadow paging to reconsider swapping
decisions made by a symbiotic Linux guest running in a VM. If the
guest is experiencing high memory pressure relative to its memory
partition, it may decide to swap a page out. However, if the VMM
has available physical memory, this is unnecessary. Although a
page may be swapped out and marked unavailable in the guest page
table, SwapBypass can also keep the page in memory and mark it
available in the shadow page table. The effect is that access to the

“swapped” page is at main memory speeds, and that the guest is
using more physical memory than initially allotted, even if it is
incapable of dynamically adapting to changing physical memory
size.

Implementing SwapBypass requires information about the map-
ping of swap IDs to swap devices, which is readily provided via
a SymCall, but extremely challenging to glean otherwise. We
evaluate SwapBypass both through performance benchmarks, and
through an examination of its implementation complexity.

The contributions of this paper include:

• The definition of symbiotic virtualization.
• The design and implementation of the SymCall framework to

support symbiotic virtualization in the Palacios VMM.
• An evaluation of the performance of SymCall.
• The design and implementation of a proof-of-concept VMM

feature that leverages SymCall: SwapBypass, a service that
reconsiders Linux kernel swap decisions.

• An evaluation of SwapBypass, considering both performance
and implementation complexity.

Palacios VMM: Our implementation is in the context of the Pala-
cios VMM. Palacios is an OS-independent, open source, BSD-
licensed, publicly available type-I VMM whose details can be
found elsewhere [13, 14]. Palacios achieves full system virtual-
ization for x86 and x86 64 hosts and guests using either the AMD
SVM or Intel VT hardware virtualization extensions and either
shadow or nested paging. The entire VMM, including the default
set of virtual devices is on the order of 47 thousand lines of C and
assembly. When embedded into Kitten, a lightweight kernel avail-
able from Sandia National Labs, as done in this work, the total code
size is on the order of 108 thousand lines. Palacios is capable of
running on environments ranging from commodity Ethernet-based
servers to large scale supercomputers, specifically the Red Storm
Cray XT supercomputer located at Sandia National Labs.

2. Symbiotic virtualization
Symbiotic virtualization is an approach to designing VMMs and
OSes such that both support, but neither requires, the other. A sym-
biotic OS targets a native hardware interface, but also exposes a
software interface, usable by a symbiotic VMM, if present, to opti-
mize performance and increase functionality. The goal of symbiotic
virtualization is to introduce a virtualization interface that provides
access to high level semantic information while still retaining the
universal compatibility of a virtual hardware interface. Symbiotic
virtualization is neither full system virtualization nor paravirtual-
ization, however it can be used with either approach.

A symbiotic OS exposes two types of interfaces. The first is a
passive interface, called SymSpy, that allows a symbiotic VMM to
simply read out structured information that the OS places in mem-
ory. This interface has extremely low overhead, as the VMM can
readily read guest memory during an exit or from a different core.
However, the information is necessarily provided asynchronously
with respect to exits or other VMM events. Because of this, guest
information that may be useful in handling the exit may not be
available at the time of the exit.

The second is a functional interface, SymCall, that allows a
symbiotic VMM to invoke the guest synchronously, during exit
handling or from a separate core. However, these invocations have
considerably higher costs compared to the passive interface. Fur-
thermore, the implementation complexity may be much higher for
two reasons. First, the VMM must be able to correctly support re-
entry into the guest in the process of handling a guest exit. Second,
from the guest’s perspective, the functional interface provides an

additional source of concurrency that is not under guest control.
The VMM and guest must be carefully designed so this concur-
rency does not cause surprise race conditions or deadlocks.

In addition to the functional and passive interfaces, symbi-
otic virtualization requires a discovery protocol that the guest and
VMM can run to determine which, if any, of the interfaces are
available, and what data forms and entry points are available.

3. Discovery and configuration
One of the principal goals of symbiotic virtualization is to provide
an enhanced interface between a VMM and an OS while still al-
lowing compatibility with real hardware. In contrast to paravirtu-
alization, symbiotic virtualization is designed to be enabled and
configured at run time without requiring any changes to the OS.
As such, symbiotic upcalls are implemented using existing hard-
ware features, such as CPUID values and Model Specific Registers
(MSRs). A guest is able to detect a symbiotic VMM at boot time
and selectively enable symbiotic features that it supports. The dis-
covery and configuration process is shown in Figure 1.

In order to indicate the presence of a symbiotic VMM we have
created a virtualized CPUID value. The virtualized CPUID returns
a value denoting a symbiotic VMM, an interface version number,
as well as machine specific interface values to specify hypercall
parameters. This maintains hardware compatibility because on real
hardware the CPUID instruction simply returns an empty value
indicating the non-presence of a symbiotic OS which will cause
the OS to abort further symbiotic configurations1. If the guest
does detect a symbiotic VMM then it proceeds to configure the
symbiotic environment using a set of virtualized MSRs.

4. SymSpy passive interface
The SymSpy interface provides a mechanism for the sharing of
structured information between the VMM and the guest OS. This
information is stored in a memory region that is mapped into the
guest’s physical address space. The guest indicates to the VMM a
guest physical address at which to map the SymSpy page. After
this is completed the guest can read/write to this memory location
without an exit. The VMM can also directly access the page during
its execution.

SymSpy is used to enumerate what structured data types are
available as well as which symbiotic services, such as specific
symcalls, are supported by the guest OS. The SymSpy interface is
also useful for sharing VMM state information with the guest OS.
For example, Palacios uses the interface to expose the identities of
PCI devices that the guest has direct access to. This allows the guest
to explicitly modify its DMA addresses to account for the location
of guest memory inside physical memory.

Configuring SymSpy is the second step in the symbiotic con-
figuration process shown in Figure 1. After a guest has detected
the presence of a symbiotic VMM it chooses an available guest
physical memory address that is not currently in use. This address
does not have to be inside the guest’s currently allocated memory,
and can instead be mapped into any guest physical address range
that the guest OS has available. Once an address has been found
the guest writes it to the SymSpy MSR, which is a special virtual
MSR implemented by the VMM. The symbiotic VMM intercepts
this operation, allocates a new page, and maps it into the guest at
the location specified in the MSR.

1 We use CPUID instead of a virtual MSR because accesses to non-present
MSRs generate a General Protection Fault

CPUID

Check for
Symbiotic VMM

Write to SymSpy MSR:

Write to SymCall MSRs:
SYMCALL_RIP_MSR (SymCall Entry Point)

SYMCALL RSP MSR (SymCall Stack)

Configure
SymSpy

Configure SymCall

Guest
VMM VMExit

VMEntry

CPUID
RAX: V3_SYM_CPUID

y py
SYMBIOTIC_MSR

(Desired GPA of SymSpy Page)

SYMCALL_RSP_MSR (SymCall Stack)
SYMCALL_CS_MSR (SymCall CS)
SYMCALL_FS_MSR (SymCall FS)
SYMCALL_GS_MSR (SymCall GS)

VMExit
VMEntry

VMExit
VMEntry

CPUID Handler
RBX: V3_MAGIC_ID
RCX: VMX or SVM
RDX: VERSION

WRMSR Handler
Allocates Page

and Maps to GPA

WRMSR Handler
Stores Value In
SymCall Context

Figure 1. Symbiotic VMM discovery/configuration.

5. SymCall functional interface
SymCalls are a new VMM/guest interface by which a VMM can
make synchronous upcalls into a running guest OS. In a guest OS,
this interface is designed to resemble the existing system call inter-
face as much as possible, both in terms of the hardware interface
presented to the guest, as well as the internal upcall implementa-
tions. Based on the similarity to system calls we refer to symbiotic
upcalls as symcalls.

5.1 Alternative upcall mechanisms
The utility of upcalls in layered architectures is well understood [6],
and most existing virtualization architectures include interfaces that
allow guest environments to react to requests made from the VMM
layer. For example, balloon drivers are a common interface that
allows a VMM to request that a guest release memory pages. These
interfaces are built on top of the virtual device abstraction which
is implemented using standard device I/O mechanisms: interrupts
and DMA. As such, these interfaces are fundamentally different
from upcalls as defined in [6], and instead rely on asynchronous
signals (interrupts) to request that a VM take a guest defined action
(I/O to/from a virtual device). In contrast, SymCall provides an
interface that enables a VMM to directly execute a specific upcall
synchronously as part of an exit handling operation.

This synchronous behavior allows a VMM to easily modify
exit handler behavior based on complex information gleaned from
internal guest state queries that are executed as upcalls inside the
guest’s context. This functionality is not possible when using a
virtual device abstraction due to the asynchronous nature of the
interface. Even if an exit handler were to raise an interrupt inside
the guest context it would have no guarantee of when the associated
interrupt handler would actually be executed. This prevents the
virtual device interface from being used inside exit handlers or
anywhere else where synchronous behavior is required.

5.2 SymCall architecture
The x86 architecture has a several well defined frameworks for
supporting OS system calls. These interfaces allow a system call to
be executed via a special instruction that instantiates a system call
context defined at initialization time by the OS. When a System
call instruction is executed, the context variables are copied out of
a set of MSRs and instantiated on the hardware. When execution
resumes the CPU is running a special OS code path that dispatches
to the correct system call handler. When a system call returns
it executes the corresponding exit instructions that reverse this
procedure.

Due to the conceptual similarity between symcalls and system
calls we designed our implementation to be architecturally similar
as well. Just as with system calls, the guest OS is responsible for
enabling and configuring the environment which the symcalls will
execute in. It does this using a set of virtualized MSRs that are
based on the actual MSRs used for the SYSCALL and SYSRET
interface. When the VMM makes a symbiotic upcall, it configures
the guest environment according to the values given by the guest
OS. The next time the guest executes it will be running in the
SymCall dispatch routine that invokes the handler for the specific
symcall.

5.3 Virtual hardware support
The SymCall virtual hardware interface consists of a set of MSRs
that are a union of the MSRs used for the SYSENTER and
SYSCALL frameworks2. We combine both the MSR sets to pro-
vide a single interface that is compatible for both the Protected (32
bit) and Long (64 bit) operating modes. The set of symbiotic MSRs
are:

• SYMCALL RIP: The value to be loaded into the guest’s RIP/EIP
register. This is the address of the entry point for symcalls in the
guest kernel

• SYMCALL RSP: The value to be loaded into the guest’s RSP/ESP
register. This is the address of the top of the stack that will be
used when entering a symcall.

• SYMCALL CS: The location of the code segment to be loaded
during a symcall. This is the code segment that will be used
during the symcall. The stack segment is required to immedi-
ately follow the code segment, and so can be referenced via this
MSR.

• SYMCALL GS: The GS segment base address to be loaded
during a symcall.

• SYMCALL FS: The FS segment base address to be loaded dur-
ing a symcall. The GS or FS segments are used to point to
kernel-level context for the symcall.

The RIP, RSP, and CS(+SS) MSRs are needed to create the
execution context for the symbiotic upcall. The FS and GS MSRs
typically hold the address of the local storage on a given CPU core.
FS or GS is typically used based on the operating mode of the
processor.

2 The execution model however more closely resembles the SYSCALL
behavior

Convert Calling
Convention

Dispatch SymCall
via SymCall Table

Symcall Exit

Guest
VMM VMExit

Save Guest
C t t ll Instantiate Symcall

VMEntry

SymCall Entry Point
Execute

SymFunc(args…)

VMExits
VMEntries

Symcall Exit
Return code
and values

Unmarshall

Return from
SymFunc to
O i i l E it

VMEntry

Marshall
ArgumentsContext

Invoke Exit
Handler

Call
SymFunc(ID,args…)

(function call) Checkpoint
Guest Context

Instantiate Symcall
Context from MSRs
(ARGS in GPRs) Normal VMM

Exit Handling
(no nested
SymCalls)

Unmarshall
Return Values

Restore Guest
Context From
Original Exit

Original Exit
Handler

Finish Exit Handler

Restore Guest
Context

Arguments

Figure 2. The execution path of the SymCall functional interface in the Palacios VMM. Symcalls execute synchronously with respect to
VM exits, and allow exit handlers to optimize their behavior based on complex state information collected from queries executed inside the
guest context.

Component Lines of code
VMM infrastructure 300(C)
Guest infrastructure 211(C) + 129(ASM)
Total 511(C) + 129(ASM)

Figure 3. Lines of code needed to implement the SymCall infras-
tructure as measured by SLOCcount

As we stated earlier the execution model for a symbiotic upcall
is based on system calls. The one notable difference is that symbi-
otic upcalls always store the guest state before the call is executed
and reload it when the symcall returns. Furthermore the state is
saved inside the VMM’s address space and so is inaccessible to the
guest OS. This is largely a safety precaution due to the fact that
the guest OS has much less control over when a symbiotic call is
executed. For example, a system call can only be executed when a
process is running, but a symcall can also occur when the guest is
executing in the kernel.

As we mentioned earlier, the system call return process copies
back the context that existed before the system call was made (but
possibly modified afterward). Returning from a symbiotic upcall is
the same with the exception being that the symbiotic call always
returns to the context immediately before the symcall was made.
This is because the calling state is not saved in the guest environ-
ment, but instead stored by the VMM. Because there is no special
instruction to return from a symcall the guest instead executes a
special hypercall indicating a return from a symcall.

The virtual hardware interface we have developed follows the
system call design to minimize the behavioral changes of a guest
OS. Our other objective was to create an interface that would be im-
plementable in physical hardware. Existing hardware implementa-
tions could be extended to provide hardware versions of the MSRs
that would only be accessible while the CPU is executing in a
VM context. A second type of VM entry could be defined which
launches into the state defined by the MSRs and automatically
saves the previous guest state in the virtual machine control struc-
tures. And finally a new instruction could be implemented to return
from a symbiotic upcall and reload the saved guest state. In our im-
plementation we use a special hypercall to return from a symcall.

5.4 Symbiotic upcall interface
Using the virtual hardware support, we have implemented a sym-
biotic upcall facility in the Palacios VMM. Furthermore we have
implemented symbiotic upcall support for two guest OSes: 32 bit
Linux and the 64 bit Kitten OS. Our SymCall framework supports
both the Intel VMX and AMD SVM virtualization architectures.
The symcalls are designed to resemble the Linux system call in-

terface as closely as possible. We will focus our description on the
Linux implementation.

Implementing the SymCall interface required modifications to
both the Palacios VMM as well as the Linux kernel running as a
guest. The scale of the changes is shown in Figure 3. The modifi-
cations to the guest OS consisted of 211 lines of C and 129 lines of
assembly as measured by SLOCcount. This code consisted of the
generic SymCall infrastructure and did not include the implementa-
tion of any symcall handlers. The VMM infrastructure consisted of
an additional 300 lines of C implemented as a compile time mod-
ule.

5.4.1 Guest OS support
The Linux guest implementation of the symbiotic upcall interface
shares much commonality with the system call infrastructure. Sym-
biotic upcalls are designed to be implemented in much the same
manner as a normal system call. Each symbiotic upcall is associ-
ated with a given call index number that is used to look up the
appropriate call handler inside a global array. The OS loads the
SYMCALL RIP MSR with a pointer to the SymCall handler, which
uses the value of the RAX General Purpose Register (GPR) as the
call number. The arguments to the symcall are supplied in the re-
maining GPRs, which limits each symbiotic upcall to at most 5
arguments. Our current implementation does not support any form
of argument overflow, though there is no inherent reason why this
would not be possible. The arguments are passed by value. Return
values are passed in the same way, with the error code passed in
RAX and additional return values in the remaining GPRs. Any ker-
nel component can register a symbiotic upcall in exactly the same
way as it would register a system call.

One notable difference between symcalls and normal system
calls is the location of the stack during execution. Normal system
calls execute on what is known as the kernel mode stack. Every
process on the system has its own copy of a kernel mode stack to
handle its own system calls and possibly also interrupts. Among
other things this allows context switching and kernel preemption,
because each execution path running in the kernel is guaranteed to
have its own dedicated stack space. This assurance is possible be-
cause processes are unable to make multiple simultaneous system
calls. Symbiotic upcalls on the other hand can occur at any time,
and so cannot use the current process’ kernel stack. In our imple-
mentation the guest OS allocates a symbiotic stack at initialization.
Every symbiotic upcall that is made then begins its execution with
RSP loaded with the last address of the stack frame. Furthermore
we mandate that symbiotic upcalls cannot nest, that is the VMM
cannot perform a symcall while another symcall is running. This
also means that symbiotic upcalls are an independent thread of ex-

ecution inside the OS. This decision has ramifications that place a
number of restrictions on symcall behavior, which we will elabo-
rate on in Section 5.5.

5.4.2 VMM support
From the VMM perspective symbiotic upcalls are accessed as stan-
dard function calls, but are executed inside the guest context. This
requires modifications to the standard behavior of a conventional
VMM. The modifications to the Palacios VMM required not only
additional functionality but also changes and new requirements to
the low level guest entry/exit implementation.

As we stated earlier the VMM is responsible for saving and
restoring the guest execution state before and after a symbiotic
upcall is executed. Only a single instance of the guest state is saved,
which means that only one symcall can be active at any given time.
This means that symbiotic upcalls cannot nest. Our design does not
perform a full checkpoint of the guest state but rather only saves
the minimal amount of state needed. This allows symbiotic upcalls
some leeway in modifying the current guest context. For example
the guest OS is not prevented from modifying the contents of the
control registers. In general the saved state corresponds to the state
that is overwritten by values specified in the symcall MSRs.

The guest state that is saved by the VMM includes:

• RIP: The instruction pointer that the guest was executing before
the exit that led to the symbiotic upcall.

• Flags Register: The system flags register
• GPRs: The full set of available General Purpose registers, in-

cluding the Stack Pointer (RSP) used for argument passing.
• Code Segment Descriptor/Selector: The selector and cached

descriptor of the code segment
• Stack Segment Descriptor/Selector: The selector and cached

descriptor of the Stack segment
• FS and GS Segment Bases: The base addresses for both the FS

and GS segments. These are used by the guest OS to store the
address of the local processor data area.

• CPU Privilege Level: The AMD virtualization architecture re-
quires the CPU Privilege level be saved as a separate entity,
even though it is specified by the lower bits of the CS and SS
segment selectors. For simplicity we save it separately when
running on SVM.

Because symbiotic upcalls are executed in guest context we had
to modify the VMM to perform a nested VM entry when a symcall
is executed. VMM architectures are based on an event model. The
VMM executes a guest in a special CPU operating mode until an
exceptional event occurs, a special action is taken or an external
event occurs. This causes the CPU to perform a VM exit that
resumes inside the VMM context at a given instruction address.
The VMM is then responsible for determining what caused the exit
event and taking the appropriate action. This generally entails either
emulating a certain instruction, handling an interrupt, modifying
the guest state to address the exception, or servicing a request.
This leads most VMMs to be implemented as event-dispatch loops
where VM entries are made implicitly. That is a VM entry occurs
automatically as part of a loop, and exit handlers do not need to be
written to explicitly re-enter the guest.

For symbiotic upcalls we had to make VM entries available as
an explicit function while also retaining their implicit nature. To do
this we had to make the main event loop as well as the exit handlers
reentrant. Reentrancy is necessary because it is not only possible
but entirely likely that the guest will generate additional exits in the
course of executing a symbiotic upcall. We found that it was fairly

straightforward to modify the exit handlers to be reentrant, however
the dispatch function was considerably more complicated.

Implementing reentrancy centered around ensuring safe access
to two global data structures: The guest state structure which con-
tains the state needed by the VMM to operate on a given guest envi-
ronment and the virtualization control structures that store the hard-
ware representation of the guest context. The guest state needed by
the VMM is unserialized and serialized atomically before and af-
ter a VM entry/exit. This structure is reentrant because the VMM
checkpoints the necessary state before and after a symbiotic call is
made. This ensures that the guest will safely be able to re-enter the
guest after the symbiotic upcall returns, because the guest state is
copied back to the hardware structures before every entry. However
it does not store the hardware state containing the exit information.
In practice the exit information is small enough to store on the stack
and pass as arguments to the dispatch function.

5.5 Current restrictions
In our design, symbiotic upcalls are meant to be used for relatively
short synchronous state queries. Using symcalls to modify internal
guest state is much more complicated and potentially dangerous.
Since our current implementation is based on this fairly narrow
focus, we made a number of design choices that limit the behavior
of the symcall handler in the guest OS. These requirements ensure
that only a single symcall will be executed at any given time and it
will run to completion with no interruptions, i.e. it will not block.

The reasoning behind restricting the symcall behavior is to
allow a simplified implementation as well as provide behavioral
guarantees to the VMM executing a symbiotic upcall. If symbiotic
upcalls were permitted to block the synchronous model would
essentially be broken, because a guest OS would be able to defer
the upcall’s execution indefinitely. Furthermore it would increase
the likelihood that when a symbiotic upcall did return, the original
reasons for making the upcall would no longer be valid. This is in
contrast to system calls where blocking is a necessary feature that
allows the appearance of synchrony to applications.

In order to ensure this behavior, a symcall handler in the guest
OS is not allowed to sleep, invoke the OS scheduler, or take any
other action that results in a context switch. Furthermore while the
guest is executing a symbiotic upcall the VMM actively prevents
the injection of any external interrupts such as those generated by
hardware clocks. Our implementation also blocks the injection of
hardware exceptions, and mandates that symcall handlers do not
take any action that generates a processor exception that must be
handled by the guest OS. While this might seem restrictive, we
note that, in general, exceptions generated in a kernel code path are
considered fatal.

The requirement that symcall handlers not block has further
ramifications in how they deal with atomic data structures. This is
particularly true because, as we stated earlier, a VMM can execute a
symbiotic upcall at any point in the guest’s execution. This means
that it is possible for a symcall to occur while other kernel code
paths are holding locks. This, and the fact that symcalls cannot
block, mean that symcalls must be very careful to avoid deadlocks.
For example, if a kernel control path is holding a spinlock while it
modifies internal state it can be pre-empted by a symbiotic upcall
that tries to read that same state. If the symcall ignores the lock it
will end up reading inconsistent state, however if it tries to acquire
the spinlock it will deadlock the system. This is because the symcall
will never complete which in turn means the process holding the
lock will never run because symcalls must run to completion and
cannot be interrupted.

In order to avoid deadlock scenarios while still ensuring data
integrity, special care must be taken when dealing with protected
data structures. Currently our implementation allows symbiotic

upcalls to acquire locks, however they cannot wait on that lock if it
is not available. If a symcall attempts to acquire a lock and detects
that it is unavailable, it must immediately return an error code
similar to the POSIX error EWOULDBLOCK. In multiprocessor
environments we relax the locking requirements in that symbiotic
upcall handlers can wait for a lock as long as it is held by a thread
on another CPU.

6. SwapBypass example service
We will now show how symcalls make possible optimizations
that would be intractable given existing approaches, by examin-
ing SwapBypass, a VMM extension designed to bypass the Linux
swap subsystem. SwapBypass allows a VMM to give a VM di-
rect access to memory that has been swapped out to disk, without
requiring it be swapped in by the guest OS.

SwapBypass uses a modified disk cache that intercepts the I/O
operations to a swap disk and caches swapped out pages in the
VMM. SwapBypass then leverages a VM’s shadow page tables to
redirect swapped out guest virtual addresses to the versions in the
VMM’s cache. SwapBypass uses a single symcall to determine the
internal state and permissions of a virtual memory address. The
information returned by the symcall is necessary to correctly map
the page and would be extremely difficult to gather with existing
approaches.

We will now give a brief overview of the Linux swap architec-
ture, and describe the SwapBypass architecture.

6.1 Swap operation
The Linux swap subsystem is responsible for reducing memory
pressure by moving memory pages out of main memory and onto
secondary storage that is generally on disk. The swap architecture
is only designed to handle pages that are assigned to anonymous
memory regions in the process address space, as opposed to mem-
ory used for memory mapped files. The swap architecture consists
of a number of components such as the collection of swap disks,
the swap cache, and a special page fault handler that is invoked
by faults to a swapped out memory page. The swap subsystem
is driven by two scenarios: low memory conditions that drive the
system to swap out pages, and page faults that force pages to be
swapped back into main memory.

6.1.1 Swap storage
The components that make up the swap storage architecture include
the collection of swap devices as well as the swap cache. The swap
devices consist of storage locations that are segmented into an array
of page sized storage locations. This allows them to be accessed
using a simple index value that specifies the location in the storage
array where a given page is located. In Linux this index is called
the Swap Offset. The swap devices themselves are registered as
members of a global array, and are themselves identified by another
index value, which Linux calls the Swap Type. This means that a
tuple consisting of the Swap Offset and Swap Type is sufficient for
determining the storage location for any swapped out page.

As pages are swapped out, the kernel writes them to available
swap locations and records their location. As a side effect of swap-
ping out the page, any virtual address that refers to that page is no
longer valid and furthermore the physical memory location is most
likely being used by something else. To prevent accesses to the old
virtual address from operating on incorrect data, Linux marks the
page table entries pointing to the swapped out page as not present.
This is accomplished by clearing the Present bit in the page table
entry (PTE). Because marking a page invalid only requires a sin-
gle bit, the rest of the page table entry is ignored by the hardware.
Linux takes advantage of this fact and stores the swap location tu-

ple into the available PTE bits. We refer to PTEs that are marked
not present and store the swap location tuple as Swapped PTEs.

As a performance optimization Linux also incorporates a spe-
cial cache that stores memory pages while they are waiting to be
swapped out. Because anonymous memory is capable of being
shared between processes and thus referenced by multiple virtual
addresses, Linux must wait until all the PTEs that refer to the page
are marked as swapped PTEs before it can safely move the page out
of main memory and onto the appropriate swap device. Tracking
down all the references to the page and changing them to Swapped
PTEs is typically done in the background to minimize the impact
swapping has on overall system performance. Thus it is possible for
pages to remain resident in the cache for a relatively long period of
time, and furthermore it is possible that one set of PTEs will point
to a page in the swap cache while another set will be marked as
Swapped PTEs. This means that just because a PTE is a Swapped
PTE does not mean the page it refers to is actually located at the
location indicated by the Swapped PTE. It is important to note that
every page in the swap cache has a reserved location on a swap
device, this means that every page in the swap cache can be refer-
enced by its Swapped PTE. The swap cache itself is implemented
as a special substructure in the kernel’s general page cache, this is
a complex internal kernel data structure organized as a radix tree.

6.1.2 Swapped page faults
As we mentioned earlier Linux marks the page table entries of
swapped out pages as invalid and stores the swap location of the
page into the remaining bits. This causes any attempted access to
a swapped out virtual address to result in a page fault. Linux uses
these page faults to determine when to swap pages back into main
memory. When a page fault occurs the kernel exception handler
checks if the faulting virtual address corresponds to a Swapped
PTE. If so it first checks if the page is resident in the swap cache. If
the page is found in the page cache then the handler simply updates
the PTE with the physical memory address of the page in the swap
cache and indicates that there is a new reference to the page. If the
page is not found in the swap cache then the Swapped PTE contains
the location of the page in the collection of swap devices. This
triggers a swap in event, where the swap subsystem reads the page
from the swap device and copies it to an available physical memory
location. This operation could itself trigger additional swap out
events in order to make a location in main memory available for
the swapped in page. Once the page is copied into main memory it
is added to the swap cache, because its possible that other Swapped
PTEs reference that page and have not been updated with its new
physical address. Once all references have been updated the page
is removed from the swap cache.

Finally it should be noted that after a page has been swapped
in a copy of the page remains on the swap device. This means that
if a process swaps in a page only in order to read it, the page can
simply be deleted from the swap cache without writing it to the
swap device. The next time the page is referenced it will simply
be copied back into the swap cache. Also note that a page can
be swapped in from disk and written to while still in the swap
cache, and then swapped out again. In this case the version in the
swap cache must be written back to the swap device. This makes
it possible for a swapped out page to be de-synchronized from
its copy on the swap device. This behavior is important and has
ramifications for SwapBypass that we will discuss later.

6.2 SwapBypass implementation
SwapBypass uses shadow page tables to redirect the swapped PTEs
in a guest’s page table to pages that are stored in a special cache
located in the VMM. This allows a guest application to directly
reference memory that has been swapped out to disk by its OS. An

Guest Page Tables Shadow Page Tables

PDE PTE
Physical
Memory PDE PTE

Physical
Memory

Swap
Disk
Cache

Swapped out page Swap Bypass Page

Figure 4. The guest and shadow page table configuration needed
to provide a guest access to memory it has swapped out.

Component Lines of Code
Swap disk cache 373(C)
Page fault handler 47(C)
SwapBypass core 182(C)
Guest SymCall functions 53(C)
Total 655(C)

Figure 5. Lines of code needed to implement SwapBypass as
measured by SLOCcount

example set of page table hierarchies are shown in Figure 4. In this
case the guest OS has swapped out 3 pages that are referenced by
the current set of page tables. As we described earlier it has marked
the Swapped PTEs as not present in order to force a page fault when
they are accessed. However, when a VMM is using shadow paging
all page faults cause VMExits, which allows a VMM to handle page
faults before the guest OS. In many cases the VMM updates its
shadow page tables to reflect the guest page tables and continues
execution in the guest, other times the VMM must forward the
page fault exception to the VM so it can be handled by the guest
OS. Without SwapBypass the VMM would only see that the guest
marked its page table entries as invalid, and thus forward the page
fault to the guest OS. However when SwapBypass is active it is
able to detect that the guest’s PTE is in fact a Swapped PTE3, and
set the shadow PTE to point at the page in the cache. SwapBypass
uses a special symcall to inspect the internal swap state of the guest
Linux kernel as well as to determine the access permissions of the
virtual address containing the swapped PTE.

SwapBypass is implemented with several components. A single
symcall that returns the state of a guest virtual address, a special
swap device cache that intercepts I/O operations to a swap disk,
a new edge case that is added to the shadow page fault handler,
and the SwapBypass core that provides the interface between the
symcall, swap disk cache, and shadow page table hierarchy.

Figure 5 shows the implementation complexity of the different
components in lines of code as measured by SLOCCount. All
together SwapBypass consists of 655 lines of code.

3 A Swapped PTE contains a set of flags to indicate a swapped page without
any additional information

6.2.1 Swap disk cache
The first component of SwapBypass is a cache that is located inside
the VMM between a guest and its swap disk. This cache intercepts
all I/O operations and caches swapped out pages as they are written
to disk. As swapped pages are written to disk they are first inserted
into the cache, if the cache is full then victim pages are chosen and
flushed to disk according to a Least Recently Used (LRU) policy.
When pages are read from disk they are copied from cache if found,
otherwise the pages are read directly from disk and not inserted into
the cache.

During initialization the swap disk cache registers itself with
SwapBypass, and supplies its Swap Type identifier as well as a
special function that SwapBypass uses to query the cache contents.
This function takes as an argument the Swap Offset of a page
located on disk and returns the physical address of the page if it is
present in the cache. In order for the swap disk cache to determine
its Swap Type identifier we had to modify Linux to add the Swap
Type to the swap header that is written to the first page entry of
every swap device. The swap disk cache intercepts this write and
parses the header to determine its Swap Type.

The swap disk cache is also responsible for notifying SwapBy-
pass of disk reads which correspond to swap in events. These events
drive invalidations that we will discuss in more detail later.

6.2.2 SwapBypass symcall
Implementing SwapBypass requires knowledge of the state of a
swapped out page and the permissions that the current process has
on the virtual address referring to that page. This information is
extremely difficult to determine from outside the guest context.
Furthermore this information cannot be collected asynchronously.
The reason for this is that if the VMM does not immediately
modify the shadow page tables to point to a page in the cache
then it must inject a page fault into the guest. The page fault
would then cause the guest to swap the page back into its memory
space, and modify the Swapped PTE to point at the new location.
By the time the asynchronous upcall completed the reason for
calling it would no longer exist. Furthermore, because symcalls
are executed synchronously they execute in the process context
that existed when the exit leading to the symcall occurred. In the
case of SwapBypass this means that the symcall executes as the
process that generated the page fault on the swapped PTE. An
asynchronous approach could not provide this guarantee, which
would greatly complicate the implementation.

The symcall takes two arguments: a guest virtual address and
a Swapped PTE. The guest virtual address is the virtual address
that caused the page fault while the Swapped PTE is the guest
PTE for that virtual address. The symcall returns a set of three
flags that mirror the permission bits in the hardware PTEs (Present,
Read/Write, and User/System). These bits indicate whether the
virtual address is valid, whether the page is writable, and finally
whether it can be accessed by user processes.

The first action taken by the symcall is to find the task descriptor
of the process which generated the page fault. Linux stores the
current task descriptor in a per-CPU data area whose location
is stored in the FS segment selector. This means that the task
descriptor is found by simply calling get_current(), because the
FS segment is loaded as part of the symcall entry.

Next, the symcall determines if the page referenced by the
Swapped PTE is in fact swapped out or if it is present in the ker-
nel’s swap cache. As we stated before, Linux does not immediately
update all the Swapped PTEs referencing a given page, so it is pos-
sible for the PTEs to be out of date. In this case the guest’s page
fault handler would simply redirect the PTE to the page’s location
in the swap cache and return. Therefore, if the symcall detects that
the page is present in the swap cache, it immediately returns with

a value indicating that the VMM should not use the on disk ver-
sion of the page. This will cause SwapBypass to abort and continue
the normal VMM execution path by injecting a page fault into the
guest, thus invoking the guest’s swap subsystem. SwapBypass can-
not operate on pages in the swap cache, even if they are available in
the SwapBypass cache because of the synchronization issues men-
tioned earlier.

If the swapped PTE does not refer to a page in the swap cache,
then it can be redirected by SwapBypass. In this case it is necessary
to determine what access permissions the current process has for
the virtual address used to access the page. Linux does not cache
the page table access permissions for swapped out pages, so it is
necessary to query the process’ virtual memory map. The memory
map is stored as a list of virtual memory areas that make up
the process’ address space. The symcall scans the memory map
searching for a virtual memory area that contains the virtual address
passed as an argument to the symcall. Once the region is located, it
checks if the region is writable and if so sets the writable flag in the
return value.

Finally the symcall checks if the virtual address is below the
3GB boundary, and if so sets the user flag in the return value.

6.2.3 Shadow page fault handler
Similar to the Linux swap subsystem, SwapBypass is driven by
page faults that occur when a guest tries to access a swapped out
page. When operating normally, the shadow page fault handler
parses the guest page tables in order to create a shadow page table
hierarchy. If the shadow handler determines that the guest page
tables are invalid, then it simply injects a page fault into the guest.

For SwapBypass to function correctly the shadow page fault
handler must be able to detect when a guest page fault was gener-
ated by a swapped PTE. This can be determined by simply check-
ing several bits in the swapped PTE. If this check succeeds, then the
shadow page fault handler invokes SwapBypass. Otherwise it con-
tinues normally and injects a page fault. The important take away
here is that the shadow page fault handler can determine if a fault
is caused by a swapped PTE by simply checking a couple of bits
that are already available to it. This means that there is essentially
no additional overhead added to the shadow paging system in the
normal case.

When the shadow page fault handler invokes SwapBypass it
supplies the virtual address and the swapped PTE from the guest
page tables. SwapBypass returns to the shadow page fault handler
the physical address where the swapped page is located and a set
of page permissions. The shadow page fault handler then uses this
information to construct a shadow PTE that points to the swapped
out page. This allows the guest to continue execution and operate
on the swapped out page as if it was resident in the guest’s address
space. If the swapped page is unavailable to SwapBypass then the
shadow page fault handler falls back to the default operation and
injects a page fault into the guest.

6.2.4 SwapBypass core
The SwapBypass core interfaces with the swap disk cache, the
symcall, and the Shadow page fault handler and tracks the swapped
PTEs that have been successfully redirected to the swap disk cache.
SwapBypass is driven by two guest events: page faults to swapped
PTEs and I/O read operations to the swap disk cache. Page faults
create mappings of swapped pages in the shadow page tables,
while read operations drive the invalidation of those mappings. The
execution path resulting from a page fault is shown in Figure 6, and
the execution path for disk reads is shown in Figure 7.

Page faults When a guest page fault occurs and the shadow
page fault handler determines that it was caused by an access to
a swapped PTE, SwapBypass is invoked and passed the faulting

virtual address and guest PTE. First SwapBypass determines which
swap device the swapped PTE refers to and the location of the page
on that device. Next, it queries the swap disk cache to determine
if that page is present in the memory cache. If the page is present,
SwapBypass makes a symcall into the guest passing in the virtual
address and swapped PTE value. The symcall returns whether the
swapped page is in fact located on disk, and the permissions of the
virtual address.

If the page is present in the swap disk cache and the symcall
indicates that the page on disk is valid, then SwapBypass adds the
virtual address onto a linked list that is stored in a hash table keyed
to the swapped PTE value. This allows SwapBypass to quickly
determine all the shadow page table mappings currently active for
a swapped page. Finally SwapBypass returns the permissions and
physical address of the swapped page to the shadow page fault
handler.

Disk reads Read operations from a swap disk result in the guest
OS copying a page from the swap device and storing it in the swap
cache. When this operation completes the OS will begin updating
the swapped PTEs to reference the page in memory. When this
occurs SwapBypass must remove any existing shadow page table
entries that reference the page. If the shadow page table entries
were not invalidated, then the guest could see two different versions
of the same memory page. One version would be in the guest’s
swap cache and be referenced by any new page table entries created
by the guest, while any old swapped PTEs would still only see the
version on disk.

When the swap disk cache detects a read operation occurring, it
combines its Swap Type with the page index being read to generate
the swapped PTE that would be used to reference that page. The
swap disk cache then notifies SwapBypass that the page referenced
by the swapped PTE has been read. SwapBypass then locates the
list of shadow page table mappings for that swapped PTE in the
previously mentioned hash table. Each shadow page table entry is
invalidated and the swapped PTE is deleted from the hash table.
SwapBypass then returns to the swap disk cache which completes
the I/O operation.

6.3 Alternatives
We believe that SwapBypass is a compelling example that argues
for symbiotic virtualization in general, and SymCall in particular,
when considered in comparison with the two current alternatives.
The first alternative, the graybox/introspection approach, would re-
quire that the VMM read and parse the internal guest state to de-
termine whether a page was capable of being remapped by Swap-
Bypass. Even if the guest was modified to include the read/write
and user/system bits in the swapped PTE format, the VMM would
still have to access the swap cache directly. This would be a very
complex procedure that would need to locate and access a number
of nested data structures.

The second alternative approach would be to use the current
upcall implementations that are based on hardware interrupts and
guest device drivers. This approach has two problems: interrupts
are asynchronous by nature and Linux uses a return from an in-
terrupt handler as an opportunity to reschedule the current task.
Asynchrony could potentially be handled within the VMM by first
ensuring that the guest context was configured to immediately han-
dle the interrupt if it was injected. However, this would be complex
and might result in some upcalls being aborted. It would also re-
quire changes to the Linux interrupt handling architecture to forbid
context switches for certain classes of interrupts.

Finally, a simple disk cache might be used in place of a
SwapBypass-like service in order to speed up accesses to swapped
pages. While this would indeed benefit performance, SwapBypass
is further capable of completely eliminating the overhead of the

G t

Guest Page
Fault

Page fault on a Swapped PTE

Check page not in
swap cache

find_get_page()

Find VMA
permissions
find_vma()

Resume
Execution

Guest
VMM VMExit

Invoke Shadow
Page Fault
Handler

VMEntry

Invoke
SwapBypass

Invoke SymCall
Store Shadow

PTE
in hash table

VMExit

Update
Shadow PTE

VMEntry

Handler

Check for
Swapped PTE

Locate page in
Swap Disk Cache

Return to
Shadow Page
Fault Handler

Figure 6. The execution path of SwapBypass in response to a guest page fault on a swapped PTE

G t

Read from Swap Disk Swap Disk Read

Guest
VMM VMExit

Intercept IO
operation

VMEntry
Notify

SwapBypass Invalidate
Shadow PTEs

d d l t

Raise IO
Interrupt

Generate
Swapped PTE for
requested Page

Locate shadow
PTEs mapping

the
Swapped PTE

and delete
mapping

Complete
Disk IO

p

Flush Guest
TLB

Figure 7. The execution path of SwapBypass in response to an I/O read operation to a swap device

Latency for echo() SymCall
First (“cold”) 5 VMExits 63455 cycles 35 µs
Next (“warm”) 0 VMExits 15771 cycles 9 µs

Figure 8. SymCall latency for a simple echo() symcall

swap system in the Linux kernel. As our evaluation shows, this dra-
matically improves performance, even over an ideal swap device
with no I/O penalty.

7. Evaluation
We evaluated both the performance of our SymCall implementation
as well as our implementation of SwapBypass. These tests were run
on a Dell SC440 server with a 1.8GHz Intel Core 2 Duo Processor
and 4GB of RAM. The guest OS implementation was based on
Linux 2.6.30.4.

7.1 SymCall latency
The first test we ran measured the latency in making a symcall. For
this test we implemented an echo() symcall, that simply returned
the arguments as return values. First, we measured the latency of a
symcall made for the first time. When a symcall is first executed, or
“cold”, it will access a number of locations in kernel memory that
are not present in the shadow page tables. The guest will generate
shadow page faults until all the memory locations are accessible.
For a simple symcall with no external references this requires 5
shadow page faults. We also ran a second test of a symcall after

its memory regions have been added to the shadow page tables.
In this “warm” case the symcall generated no exits. The results
shown in Figure 8 are an average of 10 test calls. The latency for
a “cold” symcall is 64 thousand CPU cycles, which on our test
machine equates to around 35 microseconds. The “warm” symcall
completed in ∼16 thousand cycles or 9 microseconds.

7.2 SwapBypass performance
We have evaluated the effectiveness of SwapBypass using a set
of memory benchmarks that are implemented to use anonymous
memory regions. These benchmarks include the microbenchmarks
Stream [18] (small vector kernel) configured to use 300MB of
memory and GUPS [20] (random access) configured to use 256MB
of memory. Stream and GUPS are part of the HPC Challenge
benchmark suite. We also used the ECT memperf benchmark [23]
configured to use 256MB of memory. ECT memperf is designed
to characterize a memory system as a function of working set
size, and spatial and temporal locality. Each benchmark was run
in a guest configured with 256MB of memory and a 512MB swap
disk combined with a swap disk cache in the Palacios VMM. We
measured the performance of each benchmark as a function of the
size of the swap disk cache. The benchmarks were timed using an
external time source.

For the Stream benchmark we ran tests using a hardware swap
disk, a virtual swap disk implemented using a simple disk perfor-
mance model, and a pure RAM disk implemented in VMM mem-
ory. The hardware disk was a 7200RPM SATA disk partitioned with
a 512MB swap partition. Our hard disk model used a simple aver-

Hardware
Disk Model
No Model

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

0MB 16MB 32MB 64MB 128MB 256MB 512MB

R
u
n
 t

im
e
 (

se
c
s)

Runtime of Stream (300MB)

(a) Stream (300MB) Performance

 0

 50

 100

 150

 200

0MB 16MB 32MB 64MB 128MB 256MB 512MB

R
u
n
 t

im
e
 (

se
c
s)

Runtime of GUPS (256MB)

(b) GUPS (256MB) Performance

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

 2,000

128MB 256MB 512MB

R
u
n
 t

im
e

(s
ec

s)

Runtime of ECT Memperf (256MB)

(c) Memperf (256) Performance
Figure 9. Performance results for Stream, GUPS, and ECT Mem-
perf benchmarks. The benchmark run time was measured for vari-
able sized swap disk caches.

Pages swapped in
Pages swapped out
Swapped page faults (reads)
Swapped page faults (writes)
Pages mapped by SwapBypass

 1

 10

 100

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

0MB 16MB 32MB 64MB 128MB256MB512MB

(a) Stream (300MB) Swap Statistics
Pages swapped in
Pages swapped out
Swapped page faults (reads)
Swapped page faults (writes)
Pages mapped by SwapBypass

 1

 10

 100

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

0MB 16MB 32MB 64MB 128MB256MB512MB

(b) GUPS (256MB) Swap Statistics
Pages swapped in
Pages swapped out
Swapped page faults (reads)
Swapped page faults (writes)
Pages mapped by SwapBypass

 1

 10

 100

 1,000

 10,000

 100,000

 1,000,000

 10,000,000

128MB 256MB 512MB

(c) Memperf (256) Swap Statistics
Figure 10. Hardware event statistics for Stream, GUPS, and ECT
Memperf benchmarks. Events were counted for each benchmark
run using variable sized swap disk caches.

age seek delay based on the hardware specifications of the SATA
disk. For the other benchmarks we only used the RAM disk with-
out a disk model. Our reason for concentrating our evaluation on
a RAM-based swap disk is to generate ideal I/O conditions for the
Linux swap system. With the RAM-based swap disk all disk I/O is
eliminated and data is transferred at the speed of system memory.
This means that the Linux swap architecture is the sole source of
overhead, assuring that any performance benefits gained by Swap-
Bypass are not simply the result of implementing a disk cache in
RAM. Our inclusion of the hardware swap disk and disk model
evaluations is to help illustrate the effects of SwapBypass with non-
ideal I/O.

Stream Our initial benchmark is Stream, configured to use a
300MB region of memory. Figure 9(a) shows the run time of the
Stream benchmark for exponentially increasing swap disk cache
sizes. We first ran the benchmark using the hardware swap disk
as well as with SwapBypass configured with no swap disk cache.
Without a cache, SwapBypass flushes all swapped pages to disk
and so cannot access them, meaning that SwapBypass will have
no beneficial effect on the performance. As the figures show both
the hardware and disk model configurations performed comparably
with run times of around 450 seconds or 7.5 minutes. The configu-
ration using the RAM disk swap device completed in only around
150 seconds or 2.5 minutes due to the lack of disk I/O.

We then began to scale up the size of the swap disk cache
exponentially to determine the impact SwapBypass would have
on performance. As the cache size increases the run time begins
to decrease until the combined size of the cache and the VM’s
physical memory partition exceeds the working set size of the
benchmark. As soon as this threshold is reached the run time drops
off dramatically and the performance of both disk model and RAM
disk configurations are essentially identical at 14 seconds. At this
point and beyond, SwapBypass is able to satisfy every swapped
page fault by mapping the shadow page tables to the page in the
swap disk cache—the Linux swap system is completely bypassed
and is essentially cut out of the guest’s execution path.

The effectiveness of SwapBypass at bypassing the swap system
is demonstrated in Figure 10(a), which provides a hardware level
view of Linux swap system. For each benchmark run we collected
the number of pages transferred to and from the swap device (Pages
swapped in and Pages swapped out), the number of page faults
generated by swapped out pages (Swapped page faults (reads) and
Swapped page faults (writes)), and also the number of pages that
SwapBypass was able to map into the guest from the swap disk
cache (Pages mapped by SwapBypass). As the swap disk cache
size initially increases the number of page faults and swap I/O
operations does not change much but the number of pages mapped
by SwapBypass increases substantially. However, when the cache
size plus the guest memory partition size reaches the benchmark’s
working set size, all the measurements decrease dramatically. Also,
the number of pages swapped in by the guest OS goes to 0.

GUPS GUPS exhibits behavior similar to that of Stream. The
GUPS results are shown in Figures 9(b) & 10(b)

ECT Memperf ECT Memperf results are shown in Figures 9(c)
& 10(c). The memperf results are limited to swap disk cache sizes
of 128MB and greater because the execution time for lower cache
sizes was too large to measure. The execution time for the 128MB
cache size was around 1800 seconds or 30 minutes, and the test run
for the 64MB cache size was terminated after 6 hours.

Summary of results
A summary of the speedups that SwapBypass can provide for
the different benchmarks is shown in Figure 11. The reason for
the dramatic increase in performance once the working set size

Benchmark speedup
Stream (No model) 11.5
Stream (disk model) 32.4
GUPS 15.4
ECT Memperf 30.9

Figure 11. Performance Speedup factors of SwapBypass. The
speedup of ECT memperf is measured over the 128MB swap disk
cache configuration

threshold is reached is due to a compounding factor. When an
OS is in a low memory situation, swapping in a page necessitates
swapping another page out, which will need to be swapped in at
a later time, which will in turn force a page to be swapped out,
and so on. Therefore when SwapBypass is able to avoid a swap
in operation, it is also avoiding a swap out that would be needed
to make memory available for the swapped in page. SwapBypass
is therefore able to prevent the guest from trashing, which not
surprisingly improves performance dramatically.

Our results show that it is possible to artificially and trans-
parently expand a guest’s physical memory space using a VMM
service. Furthermore, the availability of a symbiotic interface
makes implementing this feature relatively easy, while existing
approaches would require deep guest introspection or substantial
modifications to the guest OS. Being able to easily implement
SwapBypass suggests that there are other extensions and optimiza-
tions that could be built using symbiotic interfaces.

8. Related work
There are currently two approaches taken by existing virtualiza-
tion tools: full system virtualization [19, 25, 26] and paravirtualiza-
tion [1, 3, 17, 27]. In fact it is quickly becoming the case that these
approaches are no longer mutually exclusive. Despite the blurring
of the boundaries between both of these methods there has not been
a significant departure from either. Symbiotic virtualization is a
new virtualization interface that introduces a high level guest in-
terface accessible by a VMM. Furthermore, a guest OS can support
a symbiotic interface without sacrificing hardware compatibility.

There has also been considerable effort put into better bridging
the semantic gap of the VMM↔OS interface and leveraging the
information that flows across it [8–10, 15, 16, 24]. One of the most
compelling uses for this approach is virtual machine introspection,
most commonly used in security applications [2, 5, 7, 11, 12, 22,
28]. However, the information gleaned from such black-box and
gray-box approaches is still semantically poor, and thus constrains
the decision making that the VMM can do. Further, it goes one way;
the OS learns nothing from the VMM. Symbiotic virtualization
allows explicit two way communication at a high semantic level.
Using symbiotic interfaces a VMM can determine guest state by
simply asking the guest for it, instead of reverse engineering the
running OS.

While SymCall is a new interface for invoking upcalls into a
running guest environment, providing upcall support for a guest
OS is not a new concept. However the standard approaches are
generally based on notification signals as opposed to true upcall
interfaces [6]. These notifications usually take the form of hard-
ware interrupts that are assigned to special vectors and injected by
the VMM. Because interrupts can be masked by a guest OS, these
upcall interfaces are typically asynchronous. Furthermore, existing
upcalls consist of only a notification signal and rely on a virtual
device or event queue to supply any arguments. Symcalls in con-
trast are always synchronous and do not need to be disabled with
the same frequency as interrupts. Furthermore they allow argument

passing directly into the upcall, which enables the VMM to expose
them as normal function calls.

9. Conclusion
We have introduced symbiotic virtualization, a new approach to
designing VMMs and OSes such that both support, but neither
requires, the other. Furthermore we presented the design and im-
plementation of a symbiotic framework consisting of the SymCall
functional upcall interface. This framework was implemented in
the Palacios VMM and a Linux guest kernel. Using the symbiotic
interfaces we implemented SwapBypass, a new method of decreas-
ing memory pressure on a guest OS. Furthermore we showed how
SwapBypass is only possible when using a symbiotic interface. Fi-
nally, we evaluated SwapBypass showing it improved swap perfor-
mance by avoiding thrashing scenarios resulting in 11–32x bench-
mark speedups.

References
[1] KVM: Kernel-based virtualization driver. White Paper.
[2] BAIARDI, F., AND SGANDURRA, D. Building trustworthy intrusion

detection through vm introspection. In IAS ’07: Proceedings of the
Third International Symposium on Information Assurance and Secu-
rity (Washington, DC, USA, 2007), IEEE Computer Society, pp. 209–
214.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,
HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen
and the art of virtualization. In 19th ACM Symposium on Operating
Systems Principles (SOSP) (October 2003).

[4] CHEN, P. M., AND NOBLE, B. D. When virtual is better than real. In
The 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII)
(2001).

[5] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM, P.,
WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND PORTS, D.
R. K. Overshadow: A virtualization-based approach to retrofitting
protection in commodity operating systems. In Proceedings of the
13th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’08) (Seattle, WA,
USA, Mar. 2008).

[6] CLARK, D. D. The structuring of systems using upcalls. In Proceed-
ings of the tenth ACM symposium on Operating systems principles
(SOSP) (1985).

[7] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine introspec-
tion based architecture for intrusion detection. In Proc. Network and
Distributed Systems Security Symposium (2003), pp. 191–206.

[8] GUPTA, A. Black Box Methods for Inferring Parallel Applications
Properties in Virtual Environments. PhD thesis, Northwestern Uni-
versity, Department of Electrical Engineering and Computer Science,
March 2008.

[9] JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Antfarm: tracking processes in a virtual machine environment.
In ATEC ’06: Proceedings of the annual conference on USENIX ’06
Annual Technical Conference (Berkeley, CA, USA, 2006), USENIX
Association, pp. 1–1.

[10] JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Geiger: monitoring the buffer cache in a virtual machine
environment. In ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming languages and
operating systems (2006), pp. 14–24.

[11] JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Vmm-based hidden process detection and identification us-
ing lycosid. In VEE ’08: Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution environ-
ments (2008), pp. 91–100.

[12] JOSHI, A., KING, S. T., DUNLAP, G. W., AND CHEN, P. M. De-
tecting past and present intrusions through vulnerability-specific pred-
icates. In SOSP ’05: Proceedings of the twentieth ACM symposium

on Operating systems principles (New York, NY, USA, 2005), ACM,
pp. 91–104.

[13] LANGE, J., PEDRETTI, K., DINDA, P., BRIDGES, P., BAE, C.,
SOLTERO, P., AND MERRITT, A. Minimal-overhead virtualization
of a large scale supercomputer. In Proceedings of the 2011 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE 2011) (March 2011).

[14] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA, P., CUI, Z., XIA,
L., BRIDGES, P., GOCKE, A., JACONETTE, S., LEVENHAGEN, M.,
AND BRIGHTWELL, R. Palacios and Kitten: New high performance
operating systems for scalable virtualized and native supercomput-
ing. In Proceedings of the 24th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS 2010) (April 2010).

[15] LANGE, J. R., AND DINDA, P. A. Transparent network services
via a virtual traffic layer for virtual machines. In In Proceedings of
the 16th International Symposium on High Performance Distributed
Computing (HPDC) (2007).

[16] LANGE, J. R., SUNDARARAJ, A. I., AND DINDA, P. A. Automatic
dynamic run-time optical network reservations. In In Proceedings of
the 14th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC) (2005), pp. 255–264.

[17] LEVASSEUR, J., UHLIG, V., CHAPMAN, M., CHUBB, P., LESLIE,
B., AND HEISER, G. Pre-virtualization: soft layering for virtual ma-
chines. Technical Report 2006-15, Fakultät für Informatik, Universität
Karlsruhe (TH), July 2006.

[18] MCCALPIN, J. D. A survey of memory bandwidth and machine
balance in current high performance computers. In Newsletter of
the IEEE Technical Committee on Computer Architecture (TCCA)
(December 1995).

[19] PARALLELS CORPORATION. http://www.parallels.com.
[20] PLIMPTON, S. J., BRIGHTWELL, R., VAUGHAN, C., UNDERWOOD,

K., AND DAVIS, M. A simple synchronous distributed-memory
algorithm for the hpcc randomaccess benchmark. In Proceedngs of
the IEEE International Conference on Cluster Computing (CLUSTER)
(September 2006).

[21] QUMRANET CORPORATION. Kvm - kernel-based virtual machine.
Tech. rep., 2006. KVM has been incorporated into the mainline Linux
kernel codebase.

[22] QUYNH, N. A., AND TAKEFUJI, Y. Towards a tamper-resistant kernel
rootkit detector. In SAC ’07: Proceedings of the 2007 ACM symposium
on Applied computing (New York, NY, USA, 2007), ACM, pp. 276–
283.

[23] STRICKER, T., AND GROSS, T. Optimizing memory system perfor-
mance for communication in parallel computers. In Proceedings of
the 22nd annual international symposium on Computer architecture
(ISCA) (1995).

[24] SUNDARARAJ, A. I., GUPTA, A., AND DINDA, P. A. Increasing ap-
plication performance in virtual environments through run-time infer-
ence and adaptation. In In Proceedings of the 14th IEEE International
Symposium on High Performance Distributed Computing (HPDC)
(2005).

[25] VIRTUALBOX. http://www.virtualbox.org.
[26] WALDSBURGER, C. Memory resource management in vmware esx

server. In Proceedings of the 2002 Symposium on Operating Systems
Design and Implementation (OSDI) (2002).

[27] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale and perfor-
mance in the denali isolation kernel. SIGOPS Oper. Syst. Rev. 36, SI
(2002), 195–209.

[28] YU, Y., GUO, F., NANDA, S., LAM, L.-C., AND CHIUEH, T.-C. A
feather-weight virtual machine for windows applications. In VEE ’06:
Proceedings of the 2nd international conference on Virtual execution
environments (New York, NY, USA, 2006), ACM, pp. 24–34.

