
Enabling Hybrid Parallel Runtimes

Through Kernel and Virtualization Support

Kyle C. Hale Peter A. Dinda

Department of Electrical Engineering and Computer Science

Northwestern University

{k-hale, pdinda}@northwestern.edu

Abstract

In our hybrid runtime (HRT) model, a parallel runtime sys-

tem and the application are together transformed into a spe-

cialized OS kernel that operates entirely in kernel mode and

can thus implement exactly its desired abstractions on top

of fully privileged hardware access. We describe the design

and implementation of two new tools that support the HRT

model. The first, the Nautilus Aerokernel, is a kernel frame-

work specifically designed to enable HRTs for x64 and Xeon

Phi hardware. Aerokernel primitives are specialized for HRT

creation and thus can operate much faster, up to two orders

of magnitude faster, than related primitives in Linux. Aero-

kernel primitives also exhibit much lower variance in their

performance, an important consideration for some forms of

parallelism. We have realized several prototype HRTs, in-

cluding one based on the Legion runtime, and we provide

application macrobenchmark numbers for our Legion HRT.

The second tool, the hybrid virtual machine (HVM), is an ex-

tension to the Palacios virtual machine monitor that allows

a single virtual machine to simultaneously support a tradi-

tional OS and software stack alongside an HRT with spe-

cialized hardware access. The HRT can be booted in a time

comparable to a Linux user process startup, and functions in

the HRT, which operate over the user process’s memory, can

be invoked by the process with latencies not much higher

than those of a function call.

This project is made possible by support from the United States National

Science Foundation through grant CCF-1533560 and from Sandia National

Laboratories through the Hobbes Project, which is funded by the 2013

Exascale Operating and Runtime Systems Program under the Office of

Advanced Scientific Computing Research in the United States Department

of Energy’s Office of Science. We also thank Madhav Suresh and Conor

Hetland for their help with NESL and NDPC.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to

lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.

VEE ’16, April 02 - 03, 2016, Atlanta, GA, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3947-6/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2892242.2892255

1. Introduction

Considerable innovation in parallelism is occurring today,

targeting a wide range of scales from mobile devices to ex-

ascale computing. How to execute parallel languages with

high performance and efficiency is a question of wide inter-

est. Our focus is on parallel runtime systems, the medium

through which these languages interact with the operating

system and the hardware. Many interaction models are pos-

sible, and the innovation and change driven by parallelism

itself makes feasible the adoption of other models. We are

studying one such model in depth.

A hybrid runtime (HRT) is a parallel runtime system,

along with its application, that runs entirely in kernel mode

on the target hardware. That is, an HRT is a parallel runtime

stack that has either been developed as an operating system

kernel or has been ported to become an OS kernel—it is a

hybrid of a kernel and a parallel runtime. Because an HRT

has fully privileged access to the machine, it can use all

hardware features available on the machine, it can create

whatever OS level abstractions are suitable to it, and it can

use those abstractions without any system call overheads.

In contrast, in today’s common model of a parallel runtime

running in user mode on top of a general purpose or even

lightweight kernel, the parallel runtime cannot use privileged

features of the hardware, it is limited to the abstractions

exposed through the system call interface, and even those

abstractions come at the cost of a system call.

We previously argued the case for HRTs [37], and we

now describe the design, implementation, and evaluation of

two tools we have developed to support the creation and

execution of HRTs, and evaluate the HRT model. The first

tool, the Nautilus Aerokernel (we usually just write “Aero-

kernel”), is a kernel framework specifically designed to sup-

port the creation of HRTs. It provides a basic kernel that can

be booted within milliseconds after boot loader execution

on a multicore, multisocket machine, accelerator, or virtual

machine. Aerokernel includes basic building blocks such as

simple memory management, threads, synchronization, IPIs

and other in-kernel abstractions that a parallel runtime can

be ported to or be built on top of to become an HRT. While

ture, showing the functionality provided by Aerokernel in

the context of the runtime and application. Note that Aero-

kernel is a thin layer in the HRT model, and that in this model

there is no user space. The runtime and the application have

full access to hardware and can pick and choose which Aero-

kernel functionality to use. The entire assemblage of the fig-

ure is compiled into a multiboot2-compliant kernel.

We focus the following discussion on functionality where

Aerokernel differs most from other kernels. In general, the

defaults for Aerokernel functionality strive to be simple and

easy to reason about from the HRT developer’s viewpoint.

Threads In designing a threading model for Aerokernel,

we considered the experiences of others, including work

on high-performance user-level threading techniques like

scheduler activations [2] and Qthreads [67]. Ultimately, we

designed our threads to be lightweight in order to provide

an efficient starting point for HRTs. Aerokernel threads

are kernel threads. A context switch between Aerokernel

threads never involves a change of address spaces. Aeroker-

nel threads can be configured to operate either preemptively

or cooperatively, the latter allowing for the elimination of

timer interrupts and scheduling of threads exactly as deter-

mined by the runtime.

The nature of the threads in Aerokernel is determined by

how the runtime uses them. This means that we can directly

map the logical view of the machine from a runtime’s point

of view (see Section 4.1) to the physical machine. This is not

typically possible to do with any kind of guarantees when

running in userspace. In fact, this is one of the concerns

that the Legion runtime developers expressed with running

Legion on Linux. The default scheduler and mapper binds

a thread to a specific hardware thread as selected by thread

creator, and schedules round-robin. The runtime developer

can easily change these policies.

Another distinctive aspect of Aerokernel threads is that

a thread fork (and join) mechanism is provided in addition

to the common interface of starting a new thread with a

clean new stack in a function. A forked thread has a limited

lifetime and will terminate when it returns from the current

function. It is incumbent upon the runtime to manage the

parent and child stacks correctly. This capability is leveraged

in our ports of NESL and NDPC.

Thread creation, context switching, and wakeup are de-

signed to be fast and to leverage runtime knowledge. For ex-

ample, maximum stack sizes and context beyond the GPRs

can be selected at creation time. Because interrupt context

uses the current thread’s stack, it is even possible to create

a single large-stacked idle thread per hardware thread and

then drive computation entirely by inter-processor interrupts

(IPIs), one possible mapping of an event-driven parallel run-

time such as SWARM.

Synchronization and events Aerokernel provides several

variants of low-level spinlocks, including MCS locks and

bakery locks. These are similar to those available in other

kernels, and comparable in performance.

Aerokernel focuses to a large extent on asynchronous

events, which are a common abstraction that runtime sys-

tems often use to distribute work to execution units, or

workers. For example, the Legion runtime makes heavy

use of them to notify logical processors (Legion threads)

when there are Legion tasks that are ready to be executed.

Userspace events require costly user/kernel interactions,

which we eliminate in Aerokernel.

Aerokernel provides two implementations of condition

variables that are compatible with those in pthreads. These

implementations are tightly coupled with the scheduler,

eliminating unnecessary software interactions. When a con-

dition is signaled, the default Aerokernel condition variable

implementation will simply put the target thread on its re-

spective hardware thread’s ready queue. This, of course, is

not possible from a user-mode thread.

When a thread is signaled in Aerokernel it will not run un-

til the scheduler starts it. For preemptive threads, this means

waiting until the next timer tick, or an explicit yield from

the currently running thread. Our second implementation of

condition variables mitigates this delay by having the signal-

ing thread “kick” the appropriate core with an IPI after it has

woken up the waiting thread. The scheduler recognizes this

condition on returning from the interrupt and switches to the

awakened thread.

The runtime can also make direct use of IPIs, giving it

the ability to force immediate execution of a function of

its choosing on a remote destination core. Note that the IPI

mechanism is unavailable when running in user-space.

Topology and memory allocation Modern NUMA ma-

chines organize memory into separate domains according

to physical distance from a physical CPU socket, core, or

hardware thread. This results in variable latency when ac-

cessing memory in the different domains and also means

achieving high memory bandwidth requires leveraging mul-

tiple domains simultaneously. Platform firmware typically

enumerates these NUMA domains and exposes their sizes

and topology to the operating system in a way that supports

both modern and legacy OSes.

Aerokernel captures this topology information on boot

and exposes it to the runtime. The page and heap allocators

in Aerokernel allow the runtime to select which domains

to allocate from, with the default being that allocations are

satisfied from the domain closest to the current location of

the thread requesting the allocation. All allocations are done

immediately. This is in contrast to the policy of deferred

allocations whose domains are determined on first touch,

the typical default policy for general purpose kernels. A

consequence is that a runtime that implements a specific

execution policy, for example the owner-computes rule (e.g.,

as in HPF [39]) or inspector-executor [26], can more easily

reason about how to efficiently map a parallel operation to

the memory hardware.

A thread’s stack is allocated using identity-mapped ad-

dresses based on the initial binding of the thread to a hard-

ware thread, again to the closest domain. Since threads do

not by default migrate, stack accesses are low latency, even

across a large stack. If the runtime is designed so that it does

not allow or can fix pointers into the stack, even the stack can

be moved to the most friendly domain if the runtime decides

to move the thread to a different hardware thread.

We saw NUMA effects that would double the execution

time of a long-running parallel application on the Legion

runtime. While user-space processes do typically have ac-

cess to NUMA information and policies, runtimes executing

in the Aerokernel framework have full control over the place-

ment of threads and memory and can thus enjoy guarantees

about what can affect runtime performance.

Paging Aerokernel has a simple, yet high-performance

paging model aimed at high-performance parallel applica-

tions. When the machine boots up, each hardware thread

identity-maps the entire physical address space using large

pages (2MB and 1 GB pages currently, 512 GB pages when

available in hardware) to create a single unified address

space. Optionally, the identity map can be offset into the

“higher half” of the x64 address space (Section 5.3). An

Aerokernel-based kernel can also be linked to load anywhere

in the physical address space.

The static identity map eliminates expensive page faults

and TLB shootdowns, and reduces TLB misses. These

events not only reduce performance, but also introduce un-

predictable OS noise [31] from the perspective of the run-

time developer. OS noise is well known to introduce timing

variance that becomes a serious obstacle in large-scale dis-

tributed machines running parallel applications. The same

will hold true for single nodes as core counts continue to

scale up. The introduction of variance by OS noise (not just

by asynchronous paging events) not only limits the perfor-

mance and predictability of existing runtimes, but also limits

the kinds of runtimes that can take advantage of the ma-

chine. For example, runtimes that need tasks to execute in

synchrony (e.g., in order to support a bulk-synchronous par-

allel [35] application or a runtime that uses an abstract vec-

tor model) will experience serious degradation if OS noise

comes into play.

The use of a single unified address space also allows fast

communication between threads, and eliminates much of the

overhead of context switches. The only context switches are

between kernel threads, so no page table switch or kernel-

triggered TLB flush ever occurs. This is especially useful

when Aerokernel runs virtualized, as a large portion of VM

exits come from paging related faults and dynamic mappings

initiated by the OS, particularly using shadow paging. A

shadow-paged Aerokernel exhibits the minimum possible

shadow page faults, and shadow paging can be more efficient

that nested paging, except when shadow page faults are

common [3].

Timers Aerokernel optionally enables a per-hardware thread

scheduler tick mechanism based on the Advanced Pro-

grammable Interrupt Controller (APIC) timer. This is only

needed when preemption is configured.

For high resolution time measurement across hardware

threads, Aerokernel provides a driver for the high-precision

event timer (HPET) available on most modern x64 ma-

chines. This is a good mapping for real-time measurement

in the runtimes we examined. Within per-hardware thread

timing, the cycle counter is typically used.

Interrupts External interrupts in Aerokernel work just like

any other operating system, with the exception that by de-

fault only the APIC timer interrupt is enabled at bootup (and

only when preemption is configured). The runtime has com-

plete control over interrupts, including their mapping, as-

signment, and priority ordering.

2.2 Implementation

The process of building Aerokernel as a minimal kernel layer

with support for modern x64 NUMA machines took six

person-months of effort on the part of seasoned OS/VMM

kernel developers. Aerokernel, which was developed from

scratch, comprises about 25,000 lines of code: about 23,000

lines of C, 1000 lines of assembly, 200 lines of C++, and the

rest in various scripting languages. Building a kernel, how-

ever, was not our main goal. Our main focus was supporting

the porting and construction of runtimes for the HRT model.

The Legion runtime was the most challenging and com-

plex of the three runtimes to bring up in Aerokernel. Legion

is almost twice the size of Aerokernel, consisting of about

43,000 lines of C++. Porting Legion and the other runtimes

took a total of about four person-months of effort—three

person-months as described in Section 4, and one person-

month in extensions to Aerokernel. In the end a modest 800

lines of additional code (650 C, 150 C++) needed to be

added to Aerokernel, primarily to support C++.

This suggests that exploring the HRT model for existing

or new parallel runtimes, especially with a small kernel

like Aerokernel designed with this in mind, is a perfectly

manageable task for an experienced systems developer.

2.3 Xeon Phi

We have ported Aerokernel to the Intel Xeon Phi. Although

the Phi is technically an x64 machine, it has differences

that make porting a kernel to it challenging. These include

the lack of much PC legacy hardware, a distinctive APIC

addressing model, a distinctive frequency/power/thermal

model, and a bootstrap and I/O model that is closely tied

to Intel’s MPSS stack. Our port consists of two elements.

Philix is a set of tools to support booting and commu-

nicating with a third-party kernel on the Phi in compliance

with Intel’s stack, while at the same time not requiring the

kernel to itself support the full functionality demanded of

MPSS. Philix also includes basic driver support for the Phi

that can be incorporated into the third-party kernel. This in-

cludes console support on both the host and Phi sides to

make debugging a new Phi kernel easier. Philix comprises

1150 lines of C.

Our changes to add Phi support to Aerokernel comprised

about 1350 lines of C. This required about 1.5 person months

of kernel developer effort, mostly spent in ferreting out the

idiosyncrasies of the Phi.

3. Microbenchmarks

We now evaluate the performance of the basic primitives

in Aerokernel that are particularly salient to HRT creation,

comparing them to Linux user-level and kernel-level primi-

tives. The performance of basic primitives is important be-

cause runtimes build on these mechanisms. Although they

can use the mechanisms cleverly (Legion’s task model is

effectively a thread pool model, for example), making the

underlying primitives and environment faster can make run-

times faster, as we shall see.

Experimental setup We measure performance on an x64

NUMA machine and on an Intel Xeon Phi. The x64 config-

uration is a 2.1GHz AMD Opteron 6272 (Interlagos) server

machine with 64 cores and 128 GB of memory. The cores

are spread across 4 sockets, and each socket comprises two

NUMA domains. All CPUs within one of these NUMA do-

mains share an L3 cache. Within the domain, CPUs are or-

ganized into 4 groups of 2 hardware threads. The hardware

threads share an L1 instruction cache and a unified L2 cache.

Hardware threads have their own L1 data cache. We config-

ured the BIOS for this machine to “Maximum performance”

to eliminate the effects of power management. This machine

also has a “freerunning‘ TSC, which means that the TSC

will tick at a constant rate regardless of the operating fre-

quency of the processor core. For Linux tests, it runs Red

Hat 6.5 (1.5 years old at the time of this writing) with the

stock Linux kernel binary version 2.6.32. It is important to

note that this kernel has been highly optimized by Red Hat.

For example, it uses the transparent huge page mechanism.

For the Xeon Phi tests, we use a Xeon Phi 3120A PCI

accelerator along with the Intel MPSS 3.4.2 toolchain, which

uses a modified 2.6.38 Linux kernel. It is important to point

out that this is the current kernel binary shipped by Intel for

use with Intel Xeon Phi hardware.

We use the rdtscp instruction to enforce proper serial-

ization of instructions when timing using the cycle counter.

Measurements are taken over at least 1000 runs with results

shown as box plots or CDFs.

Threads Figure 2 compares thread creation latency be-

tween Linux userspace (pthreads), Linux kernel threads, and

Aerokernel threads. We compare with pthreads because run-

times (such as Legion) build on these mechanisms. While

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

Linux (
pth

re
ads)

Linux (
ke

rn
el th

re
ads)

Aero
ke

rn
el th

re
ads

µ = 586819

min = 571355
max = 616929

σ = 8224.09

µ = 635028

min = 619251
max = 756106

σ = 19142.2

µ = 5297.4

min = 4357
max = 13251

σ = 896.781

C
y
c
le

s

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

Linux (
pth

re
ads)

Linux (
ke

rn
el th

re
ads)

Aero
ke

rn
el th

re
ads

µ = 103759

min = 88605
max = 340683

σ = 27845.4

µ = 96970.9

min = 88228
max = 190092

σ = 12768.7

µ = 1345.41

min = 1140
max = 2915

σ = 203.799

C
y
c
le

s

(a) x64 (b) phi

Figure 2: Thread creation latency. Aerokernel thread cre-

ations are on average two orders of magnitude faster that

Linux userspace (pthreads) or kernel thread creations and

have at least an order of magnitude lower variance.

thread creation may or may not be on the performance crit-

ical path for a particular runtime the comparison demon-

strates the lightweight capabilities of Aerokernel. The cost

measured is the time for the thread creation function to re-

turn to the creator thread. For Aerokernel, this includes plac-

ing the new thread in the run queue of its hardware thread. A

thread fork in Aerokernel has similar latency since the pri-

mary difference compared to ordinary thread creation has to

do the content of the initial stack for the new thread. The

time for the new thread to begin executing is bounded by the

context switch time, which we measure below.

On both platforms, thread creation in Aerokernel has two

orders of magnitude lower latency on average than both

Linux options, and, equally important, the latency has lit-

tle variance. Thread creation in Aerokernel also scales well,

as, like the others, it involves constant work. From an HRT

developer’s point of view, these performance characteristics

potentially makes the creation of smaller units of work fea-

sible, allows for tighter synchronization of their execution,

and allows for large numbers of threads.

Figure 3 illustrates the latencies of context switches be-

tween threads on the two platforms, comparing Linux and

Aerokernel. In both cases, no floating point or vector state is

involved—the cost of handling such state is identical across

Linux and Aerokernel. The average cost of an Aerokernel

context switch on the x64 is about 10% lower than that of

Linux, but Aerokernel exhibits a variance that’s lower by a

factor of two. On the Phi, Aerokernel exhibits two orders

of magnitude lower variance in latency and more than fac-

tor of two lower average latency. The instruction count for

a thread context switch in Aerokernel is much lower than

that for Linux. On the x64, this does not have much effect

because the hardware thread is superscalar. On the other

hand, the hardware thread on the Phi is not only not su-

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Linux (pthreads) Aerokernel threads

µ = 4896.09

min = 3166
max = 6918

σ = 685.126

µ = 1760.58

min = 1749
max = 1773

σ = 3.75548
C

y
c
le

s

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Linux (pthreads) Aerokernel threads

µ = 1412.67

min = 1352
max = 2438

σ = 114.377

µ = 1269.52

min = 1176
max = 1391

σ = 48.3902

C
y
c
le

s

(a) x64 (b) phi

Figure 3: Thread context switch latency. Aerokernel thread

context switches similar in average performance to Linux

on x64 and over two times faster on Phi. In both cases, the

variance is considerably lower.

perscalar, but four hardware threads round-robin instruction-

by-instruction for the execution core. As a consequence, the

lower instruction count translates into a much lower average

latency on the Phi.

The lower average context switch costs on the Phi trans-

late directly into benefits for an HRT developer because it

makes it feasible to more finely partition work. On both plat-

forms, the lower variance makes more fine grain cooperation

feasible. The default policies described in Section 2.1, com-

bined with the performance characteristics shown here are

intended to provide a predictable substrate for HRT devel-

opment. The HRT developer can also readily override the

default scheduling and binding model while still leveraging

the fast thread creation/fork and context switch capabilities.

Events Figure 4 compares the event wakeup performance

for the mechanisms discussed in Section 2.1 on the two

platforms. We measure the latency from when an event is

signaled to when the waiting thread executes. We compare

the cost of condition variable wakeup in user mode in Linux

with our two implementations of them (with and without IPI)

in Aerokernel. We also show the performance of the Linux

fast user space mutex (“futex”) primitive, and of a oneway

IPI, which is the hardware limit for an event wakeup.

For condition variables, the latency measured is from the

call to pthread_cond_signal (or equivalent) and the sub-

sequent wakeup from pthread_cond_wait (or equivalent).

The IPI measurement is the time from when the IPI is initi-

ated until when its interrupt handler on the destination hard-

ware thread has written a memory location being monitored

by the source hardware thread.

The average latency for Aerokernel’s condition variables

(with IPI) is five times lower than that of Linux user level

on both platforms. It is also three to five times lower than the

futex. Equally important, the variance in this latency is much

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1200 1400 1600 1800 2000 2200 2400

C
D

F

Cycles mesaured from BSP (core 0)

95
th

 percentile = 1728 cycles

(a) x64

 0

 0.2

 0.4

 0.6

 0.8

 1

 710 720 730 740 750 760 770 780 790 800

C
D

F

Cycles mesaured from BSP (core 224)

95
th

 percentile = 746 cycles

(b) phi

Figure 5: CDF of IPI one-way latencies, the hardware limit

of asynchronous signaling that is available to HRTs.

lower on both platforms, by a factor of three to ten. From

an HRT developer’s perspective, these performance results

mean that much “smaller” events or smaller units of work

can feasibly be managed, and that these events and work can

be more tightly synchronized in time.

Because they operate in kernel mode, HRTs can make di-

rect use of IPIs and thus operate at the hardware limit of

asynchronous event notification, which is one to three thou-

sand cycles on our hardware. Figure 5 illustrates the latency

of IPIs, as described earlier, on our two platforms. The spe-

cific latency depends on which two cores are involved and

the machine topology. This is reflected in the notches in

the CDF curve. Note however that there is little variation

overall—the 5
th and 95

th percentile are within hundreds of

cycles.

4. Experiences in creating HRTs

We now describe our experience in using Aerokernel to

transform parallel runtime systems into HRTs—to convert

these user-level systems and their applications into kernels.

4.1 Legion

The Legion runtime system is designed to provide applica-

tions with a parallel programming model that maps well to

 0

 5000

 10000

 15000

 20000

 25000

 30000

pthread condvar

futex w
akeup

Aerokernel c
ondvar

Aerokernel c
ondvar +

 IP
I

oneway IP
I

µ = 25176.5

min = 1145
max = 29955

σ = 3698.93

µ = 24640.5

min = 81
max = 29996

σ = 3750.51

µ = 9128.78

min = 4195
max = 29990

σ = 3025.12

min = 4730
max = 6392
µ = 5348.51
σ = 290.006

min = 1150
max = 17397
µ = 1572.68
σ = 523.279

C
y
c
le

s
 t

o
 W

a
k
e

u
p

(a) x64

 0

 5000

 10000

 15000

 20000

 25000

 30000

pthread condvar

futex w
akeup

Aerokernel c
ondvar

Aerokernel c
ondvar +

 IP
I

oneway IP
I

µ = 25722.7

min = 24333
max = 27834

σ = 618.407

µ = 15637.4

min = 13311
max = 22343

σ = 1173.37

µ = 9014.73

min = 5528
max = 14074

σ = 2507.14

min = 5953
max = 7305
µ = 6483.89
σ = 213.517

min = 732
max = 761
µ = 740.85
σ = 5.71205

C
y
c
le

s
 t

o
 W

a
k
e

u
p

(b) phi

Figure 4: Event wakeup latency. Aerokernel conditional variable wakeup latency is on average five times faster than Linux

(pthreads), and has 3–10 times less variation.

heterogeneous architectures [4, 66]. Whether the application

runs on a single node or across nodes—even with GPUs—

the Legion runtime can manage the underlying resources so

that the application does not have to. Legion is of particular

interest as an HRT because the primary focus of the Legion

developers is on the design of the runtime system. This not

only allows us to leverage their experience in designing run-

times, but also gives us access to a system designed with

experimentation in mind. Further, the codebase has reached

the point where the developers’ ability to rapidly prototype

new ideas is hindered by abstractions imposed by the OS.

Under the covers, Legion bears similarities to an operat-

ing system and concerns itself with issues that an OS must

deal with, including task scheduling, isolation, multiplexing

of hardware resources, and synchronization. The way that

a complex runtime like Legion attempts to manage the ma-

chine to suit its own needs can often conflict with the ser-

vices and abstractions provided by the OS.

As Legion is intended for heterogeneous hardware it is

designed with a multi-layer architecture. It is split up into

the high-level runtime and the low-level runtime. The high-

level runtime is portable across machines, and the low-level

runtime contains all of the machine-specific code. There

is a separate low-level implementation called the shared

low-level runtime. This is the low-level layer implemented

for shared memory machines. All of our modifications to

Legion when porting it to Aerokernel were made to this

component. Outside of optimizations using hardware access,

and understanding the needs of the runtime, the port was

straight-forward.

Legion, in its default user-level implementation, uses

pthreads as representations of logical processors, so the low-

level runtime makes heavy use of the pthreads interface. We

 1

 1.1

 1.2

 1.3

 1.4

 1.5

1 2 4 8 16 32 64 128 200 220

S
p

e
e

d
u

p
 o

v
e

r
L

in
u

x

Legion Processors (threads)

x64
phi

Figure 6: Aerokernel speedup of Legion HPCG (x64+phi).

created a variant that made use of the Aerokernel interface,

particularly for threads and events. Our port is based on

Legion as of October 2014 (commit e22962d), which can

be found on legion.stanford.edu. The port to Aerokernel in-

volved 1.5 person-months of effort, and approximately 200

lines of C/C++ code were added to Legion to support it.

Probably the most complex part of the effort involved en-

hancing the building and linking logic so that the result was

compatible with the Aerokernel model. The Legion distribu-

tion includes numerous test codes which we used to evaluate

the correctness of our work.

To evaluate the performance benefits of applying the

HRT model to Legion using Aerokernel, we used the HPCG

(High Performance Conjugate Gradients) macrobenchmark.

HPCG is an application benchmark effort from Sandia Na-

tional Labs that is designed to help rank top-500 supercom-

puters for suitability to scalable applications of national in-

terest [27, 38]. Los Alamos National Laboratory has ported

HPCG to Legion, and we used this port to further evalu-

ate our Aerokernel variant of Legion. HPCG is a complex

benchmark (∼5100 lines of C++) that exercises many Le-

gion features. Recall that Legion itself comprises another

∼43,000 lines of C++.

Figure 6 shows the speedup of the HPCG/Legion in Aero-

kernel over HPCG/Legion on Linux as a function of the

number of Legion processors being used. Each Legion pro-

cessor is bound to a distinct hardware thread. On the Phi,

Aerokernel is able to speed up HPCG by up to 20%. On

x64, Aerokernel increases its performance by almost 40%.

We configured HPCG for a medium problem size which, on

a standard Linux setup, runs for roughly 2 seconds. We see

similar results for other HPCG configurations.

There are many contributors to the increased performance

of HPCG in Aerokernel, particularly fast condition vari-

ables. An interesting one is simply due to the simplified pag-

ing model. On x64 the Linux version exhibited almost 1.6

million TLB misses during execution. In comparison, the

Aerokernel version exhibited about 100.

4.2 NESL

NESL [12] is a highly influential implementation of nested

data parallelism developed at CMU in the ’90s. Recently, it

has influenced the design of parallelism in Manticore [34,

33], Data Parallel Haskell [20, 21], and arguably the nested

call extensions to CUDA [56]. NESL is a functional pro-

gramming language that allows the implementation of com-

plex parallel algorithms in a compact and high-level way.

NESL programs are compiled into abstract vector opera-

tions known as VCODE through a process known as flatten-

ing. An abstract VCODE interpreter then executes these pro-

grams on physical hardware. Flattening transformations and

their ability to transform nested (recursive) data parallelism

into “flat” vector operations while preserving the asymptotic

complexity of programs is a key contribution of NESL [13]

and recent work on using NESL-like nested data parallelism

for GPUs [9] and multicore [8] has focused on extending

flattening approaches to better match such hardware.

As a proof of concept, we ported NESL’s existing VCODE

interpreter to Aerokernel, allowing us to run any program

compiled by the out-of-the-box NESL compiler. We also

ported NESL’s sequential implementation of the vector op-

eration library CVL, which we have started parallelizing.

Currently, vector operations with the exception of scans ex-

ecute in parallel. The combination of the core VCODE in-

terpreter and a CVL library form the VCODE interpreter for

a system in the NESL model.

While this effort is a work in progress, it gives some

insights into the challenges of porting this kind of paral-

lel runtime to become an HRT. In summary, such a port

is quite tractable. Our modifications to the NESL source

code release1 currently comprise about 100 lines of Make-

1 Available from www.cs.cmu.edu/~scandal/nesl/nesl3.1.html

file changes and 360 lines of C source code changes. About

220 lines of the C changes are in CVL macros that imple-

ment the point-wise vector operations we have parallelized

using Aerokernel’s thread fork/join facilities. The remainder

(100 Makefile lines, 140 C lines) reflect the amount of glue

logic that was needed to bring the VCODE interpreter and

the serial CVL implementation into Aerokernel. The hardest

part of this glue logic is assuring that the compilation and

linking model match that of Aerokernel, which is reflected

in the Makefile changes. The effort took about one person-

month to bring to this point.

4.3 NDPC

We are creating a different implementation of a subset of the

NESL language which we refer to as “Nested Data Paral-

lelism in C/C++” (NDPC). This is implemented as a source-

to-source translator whose input is the NESL subset and

whose output is C++ code (with C bindings) that uses recur-

sive fork/join parallelism instead of NESL’s flattened vec-

tor parallelism. The C++ code is compiled directly to ob-

ject code and executes without any interpreter or JIT. Be-

cause C/C++ is the target language, the resulting compiled

NDPC program can easily be directly linked into and called

from C/C++ codebases. NDPC’s collection type is defined as

an abstract C++ class, which makes it feasible for the gen-

erated code to execute over any C/C++ data structure pro-

vided it exposes or is wrapped with the suitable interface.

We made this design decision to further facilitate “dropping

into NDPC” from C/C++ when parallelism is needed. In the

context of Figure 7, our intent is that the runtime process-

ing of a call to an NDPC function will include crossing the

boundary between the general purpose and specialized por-

tions of the hybrid virtual machine.

The generated code uses a runtime that is written in C,

C++, and assembly that provides preemptive threads and

simple work stealing. Code generation is greatly simplified

because the runtime supports a thread fork primitive. The

runtime guarantees that a forked thread will terminate at

the point it attempts to return from the current function.

The NDPC compiler in turn guarantees the code it generates

for the current function will only use the current caller and

callee stack frames, that it will not place pointers to the

stack on the stack, and that the parent will join with any

forked children before it returns from the current function.

The runtime’s implementation of the thread fork primitive

can thus avoid complex stack management. Furthermore, it

can potentially provide fast thread creation, despite the fork

semantics, because it can avoid most stack copying as only

data on the caller and callee stack frames may be referenced

by the child. In some cases, the compiler can determine the

maximum stack size (e.g., for a leaf function), and supply

this to the runtime, further speeding up thread creation.

The runtime supports being compiled to operate in user

level, using pthreads or an internal fibers implementation, or

to operate in kernel level using Aerokernel. The Aerokernel

between the VMM and the HRT. For a function call request,

the page essentially contains a pointer to the function and its

arguments at the start and the return code at completion. For

an address space merger, the page contains the CR3 of the

calling process. The HRT indicates to the VMM when it is

finished with the current request via a hypercall.

After an address space merger, the user-level code in the

ROS can also use a single hypercall to initiate synchronous

operation with the HRT. This hypercall ultimately indicates

to the HRT a virtual address which will be used for fu-

ture synchronization between the HRT and ROS. A simple

memory-based protocol can then be used between the two to

communicate, for example for the ROS to invoke functions

in the HRT, without VMM intervention.

Figure 9 shows the measured latency of each of these

operations, using Aerokernel as the HRT.

5.5 Boot and reboot

The ROS cores follow the traditional PC bootstrap model

with the exception that the ACPI and MP tables built in

memory show only the hardware deemed visible to the ROS

by the HVM configuration.

Boot on an HRT core differs from both the ROS boot

sequence and from the multiboot2 specification [58], which

we leverage. Multiboot2 for x86 allows for bootstrap of

a kernel into 32-bit protected mode on the first core (the

BSP) of a machine. Our extension allows for bootstrap of

a kernel in full 64-bit mode. There are two elements to HRT

boot—memory setup and core bootstrap. These elements

combine to allow us to simultaneously start all HRT cores

immediately at the entry point of the HRT. At the time

of this startup, each core is running in long mode (64-bit

mode) with paging and interrupt control enabled. The HRT

thus does not have much bootstrap to do itself. A special

multiboot tag within the kernel indicates compatibility with

this mode of operation and includes requests for how the

VMM should set up the kernel environment.

In memory setup, which is done only once in the life-

time of the HRT portion of the VM, we select an HRT-only

portion of the guest physical address space and lay out the

basic machine data structures needed: an interrupt descriptor

table (IDT) along with dummy interrupt and exception han-

dlers, a global descriptor table (GDT), a task state segment

(TSS), and a page table hierarchy that identity-maps physical

addresses (including the higher-half offset as shown in Fig-

ure 8, if desired) using the largest feasible page table entries.

We also select an initial stack location for each HRT core. A

simple ELF loader then copies the HRT ELF into memory at

its desired target location. Finally, we build a multiboot2 in-

formation structure in memory. This structure is augmented

with headers that indicate our variant of multiboot2 is in use,

and provide fundamental information about the VM, such as

the number of cores, the APIC IDs, interrupt vectoring, and

the memory map, including the areas containing the memory

Item Cycles (and exits) Time

HRT core boot of ∼135 K

Aerokernel to main() (7 exits) 61 µs

Linux fork() ∼320 K 145 µs

Linux exec() ∼1 M 476 µs

Linux fork() + exec() ∼1.5 M 714 µs

HRT core boot of ∼37 M

Aerokernel to idle thread (∼2300 exits) 17 ms

Figure 10: HRT reboot latencies in context (x64).

setup. Because bootstrap occurs on virtual hardware this in-

formation can be much simpler than that supplied via ACPI.

In core bootstrap, which may be done repeatedly over

the lifetime of the HRT portion of the HVM, the registers

of the core are set. The registers that must be set include

the control registers (IDTR, GDTR, LDTR, TR, CR0, CR3,

CR4, EFER), the six segment registers including their de-

scriptor components, and the general purpose registers RSP,

RBP, RDI, and RAX. The point is that core bootstrap sim-

ply involves setting about 20 register values. The instruction

pointer (RIP) is set to the entry point of the HRT, while RSP

and RBP are set to the initial stack for the core, and RDI

points to the multiboot2 header information and RAX con-

tains the multiboot2 cookie.

Unlike a ROS boot, all HRT cores are booted together

simultaneously. The HRT is expected to synchronize these

internally. In practice this is easy as a core can quickly find

its rank by consulting its APIC ID and looking at the APIC

ID list given in the extended multiboot2 information.

Fast HRT Reboot Because core bootstrap involves chang-

ing a small set of registers and then reentering the guest, the

set of HRT cores can be rebooted very quickly. An HRT re-

boot is also independent of the execution of the ROS, and an

HRT can be therefore be rebooted many times over the life-

time of the HVM. We allow an HRT reboot to be initiated

from the HRT itself, from a userspace utility running on the

host operating system, and via a hypercall from the ROS, as

described above.

Figure 10 illustrates the costs of rebooting an HRT core,

and compares it with the cost of typical process operations

on a Linux 2.6.32 kernel running on the same hardware. An

HRT core can be booted and execute to the first instruc-

tion of Aerokernel’s main() in ∼50% of the time it takes

to do a Linux process fork(), ∼13% of the time to do a

Linux process exec() and ∼8% of the time to do a com-

bined fork() and exec(). The latter is the closest analog

in Linux to what the HRT reboot accomplishes. Note also

that timings on Linux were done “hot”—executables were

already memory resident.

A complete reboot of Aerokernel on the HRT core to the

point where the idle thread is executing takes 17 ms. This

time is also blindingly fast compared to the familiar norm

of booting a physical or virtual machine. We anticipate that

this time will further improve for two reasons. First, we can

in principle skip much of the general purpose startup code

in Aerokernel, which is currently executed, given that we

know exactly what the virtual hardware looks like. Second,

by starting the core from a memory and register snapshot,

specifically at the point of execution we desire to start from,

we should be able to even further short-circuit startup code.

It is important to note that even at 17 ms, a complete

Aerokernel reboot is 60 to 300 times faster than a typical

1-5 minute node or server boot time. It should be thought

of in those terms, similar to the MicroReboot concept [18]

for cheap recovery from software failures. We can use HRT

reboots to address many issues and, in the limit, treat them

as being on par with process creation in a traditional OS.

6. Related work

The design of Aerokernel was influenced by early research

on microkernels [51, 11, 10] and even more by Engler and

others’ work on exokernels [29, 30]. Using exokernel termi-

nology, Aerokernel can be thought of as a kind of library OS

for a parallel runtime, but we shed the notion of privilege lev-

els for the sake of functionality and performance. Other im-

portant OS projects in the vain of thin kernel layers include

KeyKOS [14], ADEOS [69], and the Stanford Cache Ker-

nel [25]. More recently there has been a resurgence of ideas

from exokernel in the context of virtualization. Dune uses

hardware virtualization support to allow applications to have

access to a certain protected hardware features [7]. Arrakis

leverages virtualized I/O devices in a similar vain in order to

allow hardware access [59]. OSv [45], Unikernels [53], and

the Drawbridge and Bascule libOSes [60, 6] are other ex-

amples. OSv, for example, does not eliminate the user/ker-

nel distinction. Aerokernel is unique in that it is designed to

support the hybrid runtime model, giving parallel runtimes

unfettered access to the full feature set of the machine. Aero-

kernel is conceptually similar to Libra [1], but Libra does not

provide a notion of a large shared address space between Li-

bra/J9 and the Linux support VM. Furthermore, Aerokernel

does not require HVM capability in order to run. That is, it

does not rely on Palacios as an exokernel layer. For exam-

ple, we can quickly boot a hybrid runtime instance on raw

Xeon Phi hardware. Aerokernel’s fast bootstrap capability

exists independent of the HVM environment. Linux contain-

ers [54] provide fast-launching virtual instances as well, but

they still maintain a user/kernel distinction and do not allow

the use of a specialized kernel.

Aerokernel bears some similarity to other single ad-

dress space OSes (SASOSes), including Opal [24], Singu-

larity [42], Scout [55], and Nemesis [61]. Aerokernel tar-

gets single-node performance, particularly for many-core

machines. We therefore drew inspiration from some notable

projects with similar goals, including Barrelfish [5], Tessela-

tion OS [52], Corey [15], K42 [47], and, of course, work on

scaling Linux [16]. PTask [62] provides kernel-level abstrac-

tions for GPUs, including a data flow abstraction that can be

used by the kernel itself. None of this work explicitly shapes

an OS around the needs of parallel runtime systems. As far

as we are aware, this is a unique property of Aerokernel.

The HPC community has long felt that OSes “get in

the way”. Ferreira and Hoefler both explored the perfor-

mance impact of OS noise on large-scale parallel applica-

tions [31, 32, 40]. Lightweight kernels such as Kitten [48]

and mOS [68] attempt to mitigate the problem, but granting

runtimes fully privileged access is not one of the solutions

explored. There has been a decades-long interest in bridg-

ing the gap between complex hardware and the program-

mer through languages and runtime systems which is now

seeing a resurgence in the exascale space. Languages and

language implementations coming from the HPC commu-

nity, such as OpenARC [50], Chapel [22], UPC [19], CoAr-

ray Fortran [28], and X10 [23] could be users of the hybrid

runtime concept. Swift [46]’s model of many tiny tasks is

of particular resonance. Another common thread in bridging

the gap between complex hardware and the programmer is

to enhance program and runtime execution by manipulating

the system from user level. COSMIC [17] targets the Intel

Phi, while Juggle [41] targets NUMA machines. The HRT

model allows direct control of decisions that such systems

can only encourage.

Other approaches to realizing the split-machine model

shown in Figure 7 exist. Dune, described above, provides

one alternative. Guarded modules [36] could be used to

give portions of a general-purpose virtualization model se-

lective privileged access to hardware, including I/O devices.

Pisces [57] would enable an approach that could eschew vir-

tualization altogether by partitioning the hardware and boot-

ing multiple kernels simultaneously without virtualization.

7. Conclusion

We introduced the hybrid runtime (HRT) model, in which a

parallel runtime system and its application are transformed

into a specialized OS kernel that can take direct advantage

of all hardware features. Two core tools, the Nautilus Aero-

kernel and HVM, enable the model. Aerokernel provides a

suite of functionality specialized to HRT development that

can perform up to two orders of magnitude faster than the

general purpose functionality in the Linux kernel while also

providing much less variation in performance. Aerokernel

functionality leads to 20-40% performance gains in an ap-

plication benchmark for the Legion runtime system on x64

and Xeon Phi. HVM is VMM functionality that allows us

to simultaneously run two kernels, an HRT and a traditional

kernel, within the same VM, allowing a runtime to benefit

from the performance and capabilities provided by the HRT

model while not losing the performance non-critical func-

tionality of the traditional kernel.

References

[1] AMMONS, G., APPAVOO, J., BUTRICO, M., DA SILVA, D.,

GROVE, D., KAWACHIYA, K., KRIEGER, O., ROSENBURG,

B., HENSBERGEN, E. V., AND WISNIEWSKI, R. W. Libra:

A library operating system for a jvm in a virtualized execu-

tion environment. In Proceedings of the 3
rd International

Conference on Virtual Execution Environments (VEE 2007)

(June 2007), pp. 44–54.

[2] ANDERSON, T. E., BERSHAD, B. N., LAZOWSKA, E. D.,

AND LEVY, H. M. Scheduler activations: Effective kernel

support for the user-level management of parallelism. In Pro-

ceedings of the 13
th ACM Symposium on Operating Systems

Principles (SOSP 1991) (Oct. 1991), pp. 95–109.

[3] BAE, C., LANGE, J., AND DINDA, P. Enhancing virtualized

application performance through dynamic adaptive paging

mode selection. In Proceedings of the 8th International Con-

ference on Autonomic Computing (ICAC 2011) (June 2011).

[4] BAUER, M., TREICHLER, S., SLAUGHTER, E., AND AIKEN,

A. Legion: Expressing locality and independence with log-

ical regions. In Proceedings of Supercomputing (SC 2012)

(Nov. 2012).

[5] BAUMANN, A., BARHAM, P., DAGAND, P. E., HARRIS,

T., ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A.,

AND SINGHANIA, A. The Multikernel: A new OS archi-

tecture for scalable multicore systems. In Proceedings of

the 22
nd ACM Symposium on Operating Systems Principles

(SOSP 2009) (Oct. 2009), pp. 29–44.

[6] BAUMANN, A., LEE, D., FONSECA, P., GLENDENNING,

L., LORCH, J. R., BOND, B., OLINSKY, R., AND HUNT,

G. C. Composing OS extensions safely and efficiently with

Bascule. In Proceedings of the 8
th ACM European Con-

ference on Computer Systems (EuroSys 2013) (Apr. 2013),

pp. 239–252.

[7] BELAY, A., BITTAU, A., MASHTIZADEH, A., TEREI, D.,

MAZIÈRES, D., AND KOZYRAKIS, C. Dune: Safe user-

level access to privileged CPU features. In Proceedings of

the 10
th USENIX Conference on Operating Systems Design

and Implementation (OSDI 2012) (Oct. 2012), pp. 335–348.

[8] BERGSTROM, L., FLUET, M., RAINEY, M., REPPY, J.,

ROSEN, S., AND SHAW, A. Data-only flattening for nested

data parallelism. In Proceedings of the 18
th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Program-

ming (PPoPP 2013) (Feb. 2013), pp. 81–92.

[9] BERGSTROM, L., AND REPPY, J. Nested data-parallelism

on the GPU. In Proceedings of the 17
th ACM SIGPLAN

International Conference on Functional Programming (ICFP

2012) (Sept. 2012), pp. 247–258.

[10] BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G.,

FIUCZYNSKI, M. E., BECKER, D., CHAMBERS, C., AND

EGGERS, S. Extensibility, safety and performance in the

SPIN operating system. In Proceedings of the 15
th ACM

Symposium on Operating Systems Principles (SOSP 1995)

(Dec. 1995), pp. 267–283.

[11] BLACK, D. L., GOLUB, D. B., JULIN, D. P., RASHID,

R. F., DRAVES, R. P., DEAN, R. W., FORIN, A., BARRERA,
J., TOKUDA, H., MALAN, G., AND BOHMAN, D. Microker-

nel operating system architecture and Mach. In Proceedings

of the USENIX Workshop on Micro-Kernels and Other Kernel

Architectures (Apr. 1992), pp. 11–30.

[12] BLELLOCH, G. E., CHATTERJEE, S., HARDWICK, J.,

SIPELSTEIN, J., AND ZAGHA, M. Implementation of a

portable nested data-parallel language. Journal of Parallel

and Distributed Computing 21, 1 (Apr. 1994), 4–14.

[13] BLELLOCH, G. E., AND GREINER, J. A provable time and

space efficient implementation of NESL. In Proceedings of

the 1
st ACM SIGPLAN International Conference on Func-

tional Programming (ICFP 1996) (May 1996), pp. 213–225.

[14] BOMBERGER, A. C., FRANTZ, W. S., HARDY, A. C.,

HARDY, N., LANDAU, C. R., AND SHAPIRO, J. S. The

KeyKOS nanokernel architecture. In Proceedings of the

USENIX Workshop on Micro-kernels and Other Kernel Ar-

chitectures (Apr. 1992), pp. 95–112.

[15] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y.,

KAASHOEK, F., MORRIS, R., PESTEREV, A., STEIN, L.,

WU, M., DAI, Y., ZHANG, Y., AND ZHANG, Z. Corey:

An operating system for many cores. In Proceedings of the

8
th USENIX Conference on Operating Systems Design and

Implementation (OSDI 2008) (Dec. 2008), pp. 43–57.

[16] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y., PESTEREV,

A., KAASHOEK, M. F., MORRIS, R., AND ZELDOVICH, N.

An analysis of Linux scalability to many cores. In Proceed-

ings of the 9
th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 2010) (Oct. 2010).

[17] CADAMB, S., COVIELLO, G., LI, C.-H., PHULL, R., RAO,

K., SANKARADASS, M., AND CHAKRADHAR, S. COS-

MIC: Middleware for high performance and reliable multi-

processing on xeon phi coprocessors. In Proceedings of the

22
nd ACM Symposium on High-performance Parallel and

Distributed Computing (HPDC 2013) (June 2013), pp. 215–

226.

[18] CANDEA, G., KAWAMOTO, S., FUJIKI, Y., FRIEDMAN, G.,

AND FOX, A. Microreboot: A technique for cheap recovery.

In Proceedings of the 6
th USENIX Symposium on Operat-

ing Systems Design and Implementation (OSDI 2004) (Dec.

2004), pp. 31–44.

[19] CARLSON, W., DRAPER, J., CULLER, D., YELICK, K.,

BROOKS, E., AND WARREN, K. Introduction to upc and

language specification. Tech. Rep. CCS-TR-99-157, IDA

Center for Computing Sciences, May 1999.

[20] CHAKRAVARTY, M., KELLER, G., LESHCHINSKIY, R.,

AND PFANNENSTIEL, W. Nepal—nested data-parallelism

in haskell. In Proceedings of the 7
th International Euro-Par

Conference (EUROPAR 2001) (Aug. 2001).

[21] CHAKRAVARTY, M., LESHCHINSKIY, R., JONES, S. P.,

KELLER, G., AND MARLOW, S. Data parallel haskell: A

status report. In Proceedings of the Workshop on Declarative

Aspects of Multicore Programming (Jan. 2007).

[22] CHAMBERLAIN, B., CALLAHAN, D., AND ZIMA, H. Par-

allel programmability and the chapel langauge. International

Journal of High Performance Computing Applications 21, 3

(Aug. 2007), 291–312.

[23] CHARLES, P., DONAWA, C., EBICIOGLU, K., GROTHOFF,

C., KIELSTRA, A., VON PRAUN, C., SARASWAT, V., AND

SARKAR, V. X10: An object-oriented approach to non-

uniform cluster computing. In Proceedings of the 20
th ACM

SIGPLAN Conference on Object-oriented Programming, Sys-

tems, Languages, and Applications (OOPSLA 2005) (Oct.

2005), pp. 519–538.

[24] CHASE, J. S., LEVY, H. M., LEVY, H. M., FEELEY, M. J.,

FEELEY, M. J., LAZOWSKA, E. D., AND LAZOWSKA, E. D.

Sharing and protection in a single address space operating

system. ACM Transactions on Computer Systems 12, 4 (Nov.

1994), 271–307.

[25] CHERITON, D. R., AND DUDA, K. J. A caching model of

operating system kernel functionality. In Proceedings of the

1
st USENIX Symposium on Operating Systems Design and

Implementation (OSDI 2004) (Nov. 1994).

[26] DAS, R., UYSAL, M., SALTZ, J., AND HWANG, Y.-S.

Communication optimizations for irregular scientific com-

putations on distributed memory architectures. Journal of

Parallel and Distributed Computing 22, 3 (September 1994),

462–478.

[27] DONGARRA, J., AND HEROUX, M. A. Toward a new metric

for ranking high performance computing systems. Tech. Rep.

SAND2013-4744, Sandia National Laboratories, June 2013.

[28] DOTSENKO, Y., COARFA, C., AND MELLOR-CRUMMEY, J.

A multi-platform co-array fortran compiler. In Proceedings

of the 13
th International Conference on Parallel Architec-

tures and Compilation Techniques (PACT 2004) (Sept. 2004),

pp. 29–40.

[29] ENGLER, D. R., AND KAASHOEK, M. F. Exterminate all

operating system abstractions. In Proceedings of the 5
th

Workshop on Hot Topics in Operating Systems (HotOS 1995)

(May 1995), pp. 78–83.

[30] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE, JR., J.

Exokernel: An operating system architecture for application-

level resource management. In Proceedings of the 15th ACM

Symposium on Operating Systems Principles (SOSP 1995)

(Dec. 1995), pp. 251–266.

[31] FERREIRA, K. B., BRIDGES, P., AND BRIGHTWELL, R.

Characterizing application sensitivity to OS interference us-

ing kernel-level noise injection. In Proceedings of Supercom-

puting (SC 2008) (Nov. 2008).

[32] FERREIRA, K. B., BRIDGES, P. G., BRIGHTWELL, R., AND

PEDRETTI, K. T. Impact of system design parameters on

application noise sensitivity. Journal of Cluster Computing

16, 1 (Mar. 2013).

[33] FLUET, M., RAINEY, M., REPPY, J., AND SHAW, A. Im-

plicitly threaded parallelism in manticore. In Proceedings of

the 13
th ACM SIGPLAN International Conference on Func-

tional Programming (ICFP 2008) (Sept. 2008), pp. 119–130.

[34] FLUET, M., RAINEY, M., REPPY, J., SHAW, A., AND XIAO,

Y. Manticore: A heterogeneous parallel language. In Pro-

ceedings of the Workshop on Declarative Aspects of Multi-

core Programming (DAMP 2007) (Jan. 2007), pp. 37–44.

[35] GOERBESSIOTIS, A. V., AND VALIANT, L. G. Direct bulk-

synchronous parallel algorithms. Journal of Parallel and

Distributed Computing 22, 2 (1994), 251–267.

[36] HALE, K. C., AND DINDA, P. A. Guarded modules: Adap-

tively extending the VMM’s privilege into the guest. In Pro-

ceedings of the 11
th International Conference on Autonomic

Computing (ICAC 2014) (June 2014), pp. 85–96.

[37] HALE, K. C., AND DINDA, P. A. A case for transform-

ing parallel runtimes into operating system kernels. In Pro-

ceedings of the 24
th International Symposium on High-

performance Parallel and Distributed Computing (HPDC

2015) (June 2015), pp. 27–32.

[38] HEROUX, M. A., DONGARRA, J., AND LUSZCZEK, P.

HPCG technical specification. Tech. Rep. SAND2013-8752,

Sandia National Laboratories, October 2013.

[39] HIGH PERFORMANCE FORTRAN FORUM. High Perfor-

mance Fortran language specification, version 2.0. Tech.

rep., Center for Research on Parallel Computation, Rice Uni-

versity, January 1996.

[40] HOEFLER, T., SCHNEIDER, T., AND LUMSDAINE, A. Char-

acterizing the influence of system noise on large-scale appli-

cations by simulation. In Proceedings of Supercomputing (SC

2010) (Nov. 2010).

[41] HOFMEYR, S., COLMENARES, J. A., IANCU, C., AND KU-

BIATOWICZ, J. Juggle: Proactive load balancing on multi-

core computers. In Proceedings of the 20
th ACM Sympo-

sium on High-performance Parallel and Distributed Comput-

ing (HPDC 2011) (June 2011), pp. 3–14.

[42] HUNT, G. C., AND LARUS, J. R. Singularity: Rethinking

the software stack. SIGOPS Operating Systems Review 41, 2

(Apr. 2007), 37–49.

[43] KAISER, H., BRODOWICZ, M., AND STERLING, T. Par-

alleX: An advanced parallel execution model for scaling-

impaired applications. In Proceedings of the 38
th Interna-

tional Conference on Parallel Processing Workshops (ICPPW

2009) (Sept. 2009), pp. 394–401.

[44] KALÉ, L. V., RAMKUMAR, B., SINHA, A., AND GUR-

SOY, A. The Charm parallel programming language and sys-

tem: Part II–the runtime system. Tech. Rep. 95-03, Parallel

Programming Laboratory, University of Illinois at Urbana-

Champaign, 1994.

[45] KIVITY, A., LAOR, D., COSTA, G., ENBERG, P., HAR’EL,

N., MARTI, D., AND ZOLOTAROV, V. OSv—optimizing the

operating system for virtual machines. In Proceedings of the

2014 USENIX Annual Technical Conference (USENIX ATC

2014) (June 2014).

[46] KRIEDER, S., WOZNIAK, J., ARMSTRONG, T., WILDE,

M., KATZ, D., GRIMMER, B., FOSTER, I., AND RAICU,

I. Design and evaluation of the GeMTC framework for

gpu-enabled many-task computing. In Proceedings of the

23
rd ACM Symposium on High-performance Parallel and

Distributed Computing (HPDC 2014) (June 2014), pp. 153–

164.

[47] KRIEGER, O., AUSLANDER, M., ROSENBURG, B., WIS-

NIEWSKI, R. W., XENIDIS, J., DA SILVA, D., OSTROWSKI,

M., APPAVOO, J., BUTRICO, M., MERGEN, M., WATER-

LAND, A., AND UHLIG, V. K42: Building a complete oper-

ating system. In Proceedings of the 1
st ACM European Con-

ference on Computer Systems (EuroSys 2006) (Apr. 2006),

pp. 133–145.

[48] LANGE, J., PEDRETTI, K., HUDSON, T., DINDA, P., CUI,

Z., XIA, L., BRIDGES, P., GOCKE, A., JACONETTE, S.,

LEVENHAGEN, M., AND BRIGHTWELL, R. Palacios and

kitten: New high performance operating systems for scalable

virtualized and native supercomputing. In Proceedings of the

24
th IEEE International Parallel and Distributed Processing

Symposium (IPDPS 2010) (Apr. 2010).

[49] LAUDERDALE, C., AND KHAN, R. Towards a codelet-based

runtime for exascale computing. In Proceedings of the 2
nd

International Workshop on Adaptive Self-Tuning Computing

Systems for the Exaflop Era (EXADAPT 2012) (Mar. 2012),

pp. 21–26.

[50] LEE, S., AND VETTER, J. OpenARC: Open accelerator

research compiler for directive-based, efficient heterogeneous

computing. In Proceedings of the 23
rd ACM Symposium

on High-performance Parallel and Distributed Computing

(HPDC 2014) (June 2014), pp. 115–120.

[51] LIEDTKE, J. On micro-kernel construction. In Proceedings

of the 15th ACM Symposium on Operating Systems Principles

(SOSP 1995) (Dec. 1995), pp. 237–250.

[52] LIU, R., KLUES, K., BIRD, S., HOFMEYR, S., ASANOVIĆ,

K., AND KUBIATOWICZ, J. Tessellation: Space-time parti-

tioning in a manycore client OS. In Proceedings of the 1
st

USENIX Conference on Hot Topics in Parallelism (HotPar

2009) (Mar. 2009).

[53] MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C., SCOTT,

D., SINGH, B., GAZAGNAIRE, T., SMITH, S., HAND, S.,

AND CROWCROFT, J. Unikernels: Library operating sys-

tems for the cloud. In Proceedings of the 18
th International

Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS 2013) (Mar. 2013),

pp. 461–472.

[54] MENAGE, P. B. Adding generic process containers to the

Linux kernel. In Proceedings of the Linux Symposium (June

2007), pp. 45–58.

[55] MONTZ, A. B., MOSBERGER, D., O’MALLEY, S. W.,

PETERSON, L. L., AND PROEBSTING, T. A. Scout: A

communications-oriented operating system. In Proceedings

of the 5
th Workshop on Hot Topics in Operating Systems

(HotOS 1995) (May 1995), pp. 58–61.

[56] NVIDIA CORPORATION. Dynamic parallelism in CUDA,

Dec. 2012.

[57] OAYANG, J., KOCOLOSKI, B., LANGE, J., AND PEDRETTI,

K. Achieving performance isolation with lightweight co-

kernels. In Proceedings of the 24
th International ACM Sym-

posium on High Performance Parallel and Distributed Com-

puting (HPDC 2015) (June 2015), pp. 149–160.

[58] OKUJI, Y. K., FORD, B., BOLEYN, E. S., AND ISHIGURO,

K. The multiboot specification—version 1.6. Tech. rep., Free

Software Foundation, Inc., 2010.

[59] PETER, S., AND ANDERSON, T. Arrakis: A case for the end
of the empire. In Proceedings of the 14

th Workshop on Hot

Topics in Operating Systems (HotOS 2013) (May 2013).

[60] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J., OLIN-

SKY, R., AND HUNT, G. C. Rethinking the library OS

from the top down. In Proceedings of the 16
th International

Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS 2011) (Mar. 2011),

pp. 291–304.

[61] ROSCOE, T. Linkage in the Nemesis single address space

operating system. ACM SIGOPS Operating Systems Review

28, 4 (Oct. 1994), 48–55.

[62] ROSSBACH, C. J., CURREY, J., SILBERSTEIN, M., RAY,

B., AND WITCHEL, E. Ptask: Operating system abstractions

to manage gpus as compute devices. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Princi-

ples (SOSP 2011) (2011).

[63] SWAINE, J., FETSCHER, B., ST-AMOUR, V., FINDLER,

R. B., AND FLATT, M. Seeing the futures: Profiling shared-

memory parallel Racket. In Proceedings of the 1
st ACM

SIGPLAN Workshop on Functional High-performance Com-

puting (FHPC 2012) (Sept. 2012).

[64] SWAINE, J., TEW, K., DINDA, P., FINDLER, R., AND

FLATT, M. Back to the futures: Incremental paralleliza-

tion of existing sequential runtime systems. In Proceedings

of the ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applica-

tions (OOPSLA 2010) (October 2010).

[65] TEW, K., SWAINE, J., FLATT, M., FINDLER, R., AND

DINDA, P. Places: Adding message passing parallelism to

racket. In Proceedings of the 7
th Dynamic Languages Sym-

posium (DLS 2011) (Oct. 2011), pp. 85–96.

[66] TREICHLER, S., BAUER, M., AND AIKEN, A. Language

support for dynamic, hierarchical data partitioning. In Pro-

ceedings of the 2013 ACM SIGPLAN International Confer-

ence on Object-oriented Programming, Systems, Languages,

and Applications (OOPSLA 2013) (Oct. 2013), pp. 495–514.

[67] WHEELER, K. B., MURPHY, R. C., AND THAIN, D. Qthreads:

An API for programming with millions of lightweight threads.

In Proceedings of the 22
nd International Symposium on Par-

allel and Distributed Processing (IPDPS 2008) (Apr. 2008).

[68] WISNIEWSKI, R. W., INGLETT, T., KEPPEL, P., MURTY,

R., AND RIESEN, R. mOS: An architecture for extreme-scale

operating systems. In Proceedings of the 4
th International

Workshop on Runtime and Operating Systems for Supercom-

puters (ROSS 2014) (June 2014).

[69] YAGHMOUR, K. Adaptive domain environment for operating

systems. http://www.opersys.com/ftp/pub/Adeos/

adeos.pdf.

