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ABSTRACT
In virtualized large-scale parallel systems scientific workloads con-
sist of numerous processes running across many virtual nodes. Their
memory footprint is massive, and this has consequences for ser-
vices that enhance performance, reliability, or power. We argue
that a service that dynamically tracks the sharing of memory con-
tent, both within individual nodes, and across nodes, can simplify
and enhance the implementation of such services. For example,
leveraging content sharing could significantly reduce the size of a
checkpoint of a group of nodes. As another example, it could speed
VM migration by allowing the reconstruction of a VM’s memory
from multiple source VMs. Finally, a service that improves relia-
bility by introducing memory redundancy could leverage existing
content sharing to minimize the memory costs of any particular
level of redundancy. We argue that both intra- and inter-node mem-
ory content sharing is common in parallel applications, supporting
this claim by a detailed study of both kinds of sharing, at different
scales, different granularities, and different times for a range of ap-
plications and application benchmarks. We then describe the high
level approach we are taking to design and implement a distributed,
VMM-based system that can efficiently and scalably identify and
track such sharing with low overhead.
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1. INTRODUCTION
Virtualization has the potential to dramatically increase the us-

ability and reliability of high performance computing (HPC) sys-
tems by maximizing system flexibility and utility to a wide range
of users [16, 21, 18]. We argue here that the virtualization infras-
tructure of a large-scale HPC system should include a facility that
continuously tracks memory content sharing across the machine.
To support this claim, we consider the impact that such a facility
would have, the opportunity that it could unveil, and the feasibility
of creating it.

The impact of a memory content sharing tracking system would
accrue from the services that it would enable or simplify. Our think-
ing in this regard, and the drives behind our design and our studies
of sharing is driven by three examples: migration, checkpointing,
and redundancy, on which we elaborate in Section 2. If our pro-
posed facility existed, and significant memory content sharing ex-
isted at run time, each of these services could be transformed.

The core of this paper focuses on the question of opportunity:
does significant inter-node and intra-node content sharing actually
exist in parallel workloads? In Section 3, we describe a detailed
experimental study of memory content sharing we have conducted
on a range of parallel applications and application benchmarks.
The study considers both forms of sharing, at different scales, and
across time. We believe that the results support our case; both intra-
and inter-node memory content sharing are common in parallel ap-
plications. Hence, there is significant opportunity.

It is important to point that we focus on inter-node sharing, which
is the core contribution of our work. As we elaborate on in Sec-
tion 6, there is considerable previous work on deduplicating mem-
ory content sharing within individual nodes (e.g., [28, 10, 11]) but
little work that considers the opportunities of tracking and leverag-
ing inter-node memory content sharing, and none that we are aware
of does so in a parallel computing context. As we will demonstrate
in the paper, there is substantial additional sharing across nodes
beyond that of sharing within individual nodes, and capturing this
sharing drives our proposed design.

We next consider the feasibility of building a facility that tracks
memory content sharing across an HPC system with minimal per-
formance impact. Based on our driving services and our study,
we have begun the design and implementation of such a facility.
We discuss the many challenges in Section 4, and then describe
the envisioned interface of our system, its overall architecture, and
our approach to building it in Section 5. Our discussion includes
promising initial performance results for parts of the proposed sys-
tem.



2. DRIVING SERVICES
We now describe how three services could leverage a facility

that tracked intra-node and inter-node memory content sharing in
an HPC system.

2.1 VM migration
VM migration [12, 26], our first driving service, is a useful fea-

ture provided by most virtualization systems. This capability is
being increasingly employed in today’s HPC systems to help pro-
vide fault tolerance [21]. Current VM migration services are mostly
focused on migrating single virtual machine across hosts. A facil-
ity that tracked content sharing could speed single VM migrations
by allowing the reconstruction of the VM’s memory from multiple
source VMs. Furthermore, there are many cases in which migrat-
ing a set of VMs that runs a parallel application has been found
useful [23]. By leveraging intra-node and inter-node memory con-
tent sharing, each distinct memory page in the group of migrating
VMs could be copied only once during migration, and each destina-
tion VM could reconstruct its memory from multiple source VMs
to make its migration process faster. The total amount of data to be
transfered could also be reduced.

2.2 Checkpointing
Harnessing peta- and exascale computational power presents a

challenge as system reliability deteriorates with scale. Our sec-
ond driving service, checkpointing [8, 20] with rollback, is a well-
known technique for fault-tolerance in which the application save
it state in stable storage, usually in a parallel file system (PFS), and
rolls back in the event of a node failure.

Checkpointing results in high overheads due to often simultane-
ous writes of all nodes to the PFS, which reduces the productivity
of such systems. For example, when a large parallel application is
checkpointed, tens of thousands of nodes may write their memory
content to the PFS, producing many terabytes of data. Furthermore,
the I/O bandwidth of HPC systems generally does not increase at
the same rate that computational capabilities and physical memory
do. And the larger the system is, the more frequently checkpoints
may be needed due to the lower mean time to failure. Even assum-
ing storage is cheap, ever larger checkpoints at every higher rates
will lead to an I/O bottleneck. This appears to be already occurring
on petascale systems, and will certainly occur in exascale systems.

A facility that dynamically tracked the sharing of memory con-
tent could address this checkpointing problem. First, leveraging
sharing would allow us to significantly reduce the size of a check-
point by saving only a single copy of each distinct memory page.
Second, it would reduce the total time and the I/O bandwidth needed
to transfer and store the checkpoints.

2.3 Redundant computation
Our third driving service would improve reliability through re-

dundancy. Redundant computation and process replication [22, 14]
are employed to enhance the availability and reliability of high per-
formance computing and mission critical systems. In these sys-
tems, a process’s state is replicated and stored in its partner nodes.
If the process fails, these available replicas can recover and assume
the original process’s role quickly. Process replication offers a dif-
ferent set of tradeoffs compared to rollback recovery techniques.
It completely masks a large percentage of system faults, prevent-
ing them from causing application failures without the need for
rollback. However, process replication can be costly in terms of
the large amount of extra memory that is needed, which is a large
budgetary and power consumption item. By leveraging memory
content sharing, there is a potential to reduce these costs by avoid-

ing explicitly creating memory page replicas when memory pages
with the same content already exist elsewhere. That is, we can po-
tentially use the applications’ own redundancy instead of making
more.

3. EXPERIMENTAL STUDY
The goal of our experimental study is to determine how much

memory content sharing is likely to occur in practice and to char-
acterize where and when it does occur. The study focuses on a set
of parallel applications and benchmarks. We describe our method-
ology, the benchmarks, and our results.

The key observation from our experimental study is that intra-
and inter-node memory content sharing is common in parallel ap-
plications. This suggests that there is opportunity for exploiting this
memory content sharing to benefit many services in HPC systems
as we have discussed before.

3.1 Methodology
We have investigated the memory content sharing in scientific

applications by running a set of applications and benchmarks. For
each application or benchmark, a number of processes are initiated
across physical nodes by MPI, with one process running on each
physical node. During the execution of the application, all pro-
cesses are periodically1 paused synchronously and their memory
contents are dumped. An MD5 hash value is generated to describe
the content of each dumped memory block. A hash table is thus
generated for each process to hold all these different hash values.
Hash collisions indicate intra-node sharing. The hash tables are
then compared to find inter-node sharing.

In our study, we are interested in both intra-node memory content
sharing and inter-node memory content sharing. We use intra-node
and inter-node distinct memory block ratio to represent the level of
memory content sharing. The metrics we use are defined here:

• Total memory blocks shows the total number of memory blocks
of all processes.

• Intra-node distinct blocks gives the summation of the number
of distinct memory blocks in each process.

• Inter-node distinct blocks gives the number of distinct mem-
ory blocks across all processes.

• Intra-node distinct ratio represents the ratio of intra-node
distinct blocks over total memory blocks, The smaller of this
ratio, the more intra-node memory content sharing. This ra-
tio is labeled as intra% in the following graphs.

• Inter-node distinct ratio represents the level of both intra-
node and inter-node content sharing, which is the ratio of
inter-node distinct blocks over total memory blocks. The
smaller of this ratio, the more memory content sharing ex-
ists across all nodes. This ratio is labeled as inter% in the
graphs.

We report mainly the intra-node and inter-node distinct ratios
of the tested parallel applications and benchmarks here. All the
results are averaged from these numbers that are got periodically
during the entire application execution. The memory block size we
use is a single x86 page (4096 bytes), unless otherwise specified.

We performed our tests on a cluster with 12 nodes. Each node
is equipped with two Dual Core Intel(R) Xeon(TM) 2.00GHz CPU,
1.5GBytes RAM and 32GB disk, a Broadcom NetXtreme BCM5703X
1At 0.5 Hz in this work.



Benchmark Memory Benchmark Memory
(MB) (MB)

bt.C.9 4364 cg.C.8 1292
ep.C.8 245 is.C.8 2377
lu.C.8 864 mg.C.8 3567
sp.C.9 2734 Moldy.8 5324

pHPCCG.8 3986 HPCCG.8 3987
miniFE.x.8 4350 miniMD.8 6313
Lammps.4 4265 HPCC.8 2778

Figure 1: Memory footprint size of tested applications. This
shows that most of tested applications are memory-intensive.

1Gbps Ethernet card. The nodes are connected through a 1Gbps
Ethernet switch.

Note that our measurement study is done using only the appli-
cation portion of the address space. If we also considered the ker-
nel memory contents, there will be more memory content sharing
both inside and across nodes. Our measurement underestimates the
amount of both kinds of memory content sharing that is available.
That is, if we considered kernel memory, the opportunity would
grow.

3.2 Benchmarks
We have run a set of applications and application benchmarks

that are designed to run on large parallel systems to study their
memory content sharing. These applications include:

• Moldy [5] is a general-purpose molecular dynamics simu-
lation program. It is sufficiently flexible that it ought to be
useful for a wide range of simulation calculations of atomic,
ionic and molecular systems. We used MPI-based Moldy
version in the experimental study.

• The NAS Parallel benchmarks (NPB) [6] is a set of bench-
marks targeting performance evaluation of highly parallel su-
percomputers. In our test, NPB 2.4 version is used, which is
MPI-based. 7 benchmarks from NPB are tested, which are
BT, EP, LU, SP, CG, IS and MG.

• The HPC Challenge benchmarks (HPCC) [1] is a set of bench-
marks targeting to test multiple attributes that can contribute
substantially to the real-world performance of HPC systems.
Version 1.4.1 is used in the test.

• The Sandia Miniapps [4], part of Sandia National Labs’ Man-
tevo Project, is a set of small, self-contained programs that
embody essential performance characteristics of key appli-
cations. We used miniFE, HPCCG, pHPCCG and miniMD
in our test.

• Lammps [2] is a molecular dynamics simulator and an acronym
for Large-scale Atomic/Molecular Massively Parallel Simu-
lator, which is also distributed by Sandia National Laborato-
ries.

3.3 Results
Most of the tested application benchmarks have significant mem-

ory footprints, as can be seen from Figure 1.
The intra-node and inter-node distinct ratio for all of the appli-

cations and benchmarks are shown in Figures 2 (where inter-node
sharing is dominant) and 3 (where intra-node sharing is dominant).
Each application and benchmark is run with at least two different
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Figure 2: Parallel applications that have more inter-node shar-
ing but less intra-node sharing.
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Figure 3: Parallel applications which have more intra-node
sharing but less inter-node sharing.

problem sizes, on different numbers of nodes, where both are en-
coded in the name. For example, bt.C.9 means the bt benchmark
with problem size C on 9 nodes.

The most important observation on Figures 2 and 3 is that mem-
ory content sharing of some form is common. This is the opportu-
nity that we seek to take advantage of. Some VMM systems already
employ memory-deduplication techniques to reduce memory pres-
sure on a single node. We were hopeful that further deduplication
is possible across nodes, and we have found the evidence to support
that.

Figure 2 shows the applications that have a significant amount
of inter-node memory content sharing. For example, Moldy can
have up to a 10% inter-node distinct ratio, comparing to only a
78% intra-node distinct ratio. Also note that its inter-node distinct
ratio keeps decreasing as the problem size and number of nodes
increases.

If significant inter-node sharing exists, it could potentially be
used to reduce the actual memory footprint by deduplicating pages
based on this sharing. Figure 4 illustrates the potential memory
footprint reductions for the Moldy application as a function of the
problem size. The last column in the figure shows the size of mem-
ory the system could saved if all inter-node duplicated memory
contents are removed. We can see for this application, (a) cap-



Problem Number Total Intra- Inter- Reduction (Intra) Reduction (Inter)
Size of Nodes Distinct Distinct

128x128x256 2 29 MB 19 MB 11 MB 10 MB (34%) 18 MB (62%)
256x256x256 4 161 MB 131 MB 41 MB 30 MB (19%) 121 MB (75%)
512x512x256 6 489 MB 417 MB 91 MB 72 MB (15%) 398 MB (81%)

1024x1024x256 8 1337 MB 1161 MB 220 MB 176 MB (13%) 1116 MB (83%)
2048x2048x256 10 3057 MB 2706 MB 426 MB 351 MB (11%) 2631 MB (86%)
4096x4096x256 12 5324 MB 4753 MB 612 MB 571 MB (11%) 4713 MB (89%)

Figure 4: Memory that could potentially be reduced when memory contents are deduplicated using intra- and inter-node content
sharing in the Moldy application (with quartz as input).
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Figure 5: Memory content sharing using various memory block
sizes.

turing inter-node sharing is critical, and (b) the size of saved space
scales well with problem size. This behavior also occurs for the
benchmarks of Figure 2.

Figure 3 shows applications that have some degree of intra-node
content sharing but only very little inter-node sharing. A natural
question to ask is whether the latter is due to the block size in use.
Will a finer granularity expose more sharing? Figure 5 shows re-
sults in which the block size was varied down to 128 bytes. At least
down to this level, granularity has little effect. This is unfortunate,
but there is also a bright side to these results (and the results for the
benchmarks that do have significant inter-node sharing): they sug-
gest that page granularity is sufficient. This is important because we
expect to implement our system in a virtualization context, where
the page granularity is readily accessible, including with hardware
assistance, while sub-page granularity is much more challenging to
handle.

For some benchmarks, such as HPCC, miniFE and miniMD, the
memory tracing results show that on average there are some but
not much memory content sharing. However, if we look at sharing
over time during execution, we find that there are phases in which
the inter-node memory content sharing is considerable, as can be
seen in Figure 6. This suggests that a facility for tracking memory
content sharing must act dynamically.

4. CHALLENGES AND ASSUMPTIONS
The preceding sections have shown the opportunity and poten-

tial impact of a facility for detecting and tracking memory content
sharing. We now consider the challenges that creating such a facil-
ity would face, and our assumptions.
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Figure 6: Applications which have different level of inter-node
content sharing over the execution time.

4.1 Challenges
The detection system must be designed to fit into large-scale par-

allel systems. Scalability is one of the critical features. It should be
able to scale from small clusters with hundreds of nodes to large-
scale parallel systems with hundreds of thousands of nodes. The
system should work effectively and maintain low overheads as the
system size grows. A centralized model could not only prevent the
system from being scalable but also present a single point of fail-
ure. Thus, there should be no central control node in the system
which collects all content sharing status is allowed. Instead, the
nodes must collectively form the system without any central coor-
dination, while each node could has only partial knowledge of the
entire system.

The system should be an online system that reports the current,
or near-current memory content sharing in the system as the appli-
cation changes its memory contents during its execution. However,
some applications may have a very high memory update rate, and
these applications could produce a huge burden on the system by
requiring a very high update rate.

4.2 Assumptions
We assume that each node in the system fails independently,

which implies that replicating computation and data can provide
fault tolerance. We further assume that the network links between
nodes have high throughput and low latency, which is very common
for cluster network or the interconnect between nodes in supercom-
puters, typically these local area networks that can achieve 1Gbs to
10Gbps throughput with 10 to 100 µs latency. Also, the system
should support efficient collective communication. We expect that



the network’s bisection bandwidth will scale as the system size in-
creases and that its diameter will scale sublinearly as the system
size increases. One example of such a network might be a mesh
network such as is common in modern parallel machines. Overall,
our assumptions boil down to the underlying system being a paral-
lel system, not a distributed system. We expect it to be a carefully,
purpose-built controlled environment.

These assumptions help with the design of the detection system.
For example, the low latency and high bandwidth scalable inter-
connect means that the synchronization between all DHT nodes is
not prohibitively expensive. Independent failure means we can an
rely on data being available in more than one failure boundary (i.e.,
the physical memory of more than one node) while designing the
recovery protocols.

5. TOWARDS A SYSTEM FOR MEMORY
CONTENT SHARING DETECTION

We propose an online memory content sharing detection system
that is able to track sharing and identify the specific shared con-
tent blocks across virtual nodes in large-scale parallel systems with
minimal performance impact. In this section, we present the inter-
face and architecture of our proposed system, then we describe how
such a system can be implemented. We conclude with preliminary
results that illustrate the potential overheads of the system.

5.1 API
The detection system exposes a set of interfaces that allow vir-

tualization tools to easily query memory content sharing across a
number of virtual nodes. The interface could be a set of function
calls, which are integrated into the VMM. The main functions of
the API are:

• double degree_of_sharing(NodeSet nodes, ShareType type):
This returns degree of content sharing of different types across
the given set of nodes. The ShareType could be “intra-node",
“inter-node" or “both".

• NodeSet get_location(hash_value): Returns a list of nodes
which each have at lease one memory block that hashes to
the given hash value.

• int get_copies(hash_value): Returns the number of copies of
the memory blocks that exist in system that hash to the given
hash value.

• HashSet hashList_of_shared(NodeSet nodes, int k): Return
a list of hash values which represent those memory blocks
have at least k replicas across a set of nodes.

5.2 Architecture
Figure 7 presents a high-level overview of the architecture of the

detection system. It comprises two components: a memory tracer
that runs on each node and a distributed memory content synchro-
nizer to collectively maintains the memory content sharing across
nodes in the system. The memory tracer is deployed inside VMM
for each node, which periodically collects the memory content of
the virtual machines and updates them to the Memory Contents
Synchronizer in the system through its Update Interface.

For illustration purposes, we also include the migration/checkpoint
service in the VMM. This service would use the the detection sys-
tem’s Content-sharing Query Interface to issue queries about con-
tent sharing of different kinds.

Virtual Machines (VMs)

VM

Hypervisor (VMM)

Memory 

Tracer

VM Migration

/Checkpoint

Manager

VM VM

Virtual Machines (VMs)

VM

Hypervisor (VMM)

Memory 

Tracer

VM Migration

/Checkpoint

Manager

VM VM

ShareDetect
Memory Content Synchronizer

Update InterfaceContent-Sharing Query Interface

Content-Sharing Detection System             

Figure 7: Architecture of the proposed memory content shar-
ing detection system within virtualized environments

5.3 Implementation
A hash-based approach is used to identify identical memory con-

tent. The memory blocks in each node will be hashed and compared
with memory blocks on other nodes periodically. A system-wide
distributed hash table (DHT) is built to keep track of the contents
of memory blocks in the system and identify the shared content.

System-wide distributed hash table (DHT).
The DHT is partitioned and spread among all nodes. Each node

is responsible for storing and maintaining some number of parti-
tions of the table. When new nodes are added to the system, this
partitioning is altered so that data is spread onto the new node. Sim-
ilarly to classic DHTs, all DHT participant nodes form an overlay
logically. Each node in the overlay is identified by a unique ID and
is responsible for storing memory blocks with certain hash values
in its partitions.

The DHT API provides services with add() and remove() for the
memory tracer to update the DHT. In addition to the update oper-
ations, each node in the system can query the DHT to discover the
degree of intra- and inter-node memory content sharing the system
currently has, where these shared memory blocks are located, etc.

The basic structure of the DHT is the <hash, list(node id)> pair.
In general, the DHT receives <hash, node ID> pair updates from
memory tracers that are running on each physical node. The DHT
collects all pairs of <hash, node ID>, sorts them and generates
<hash, list(node ID)> from pairs with the same hash. In addition,
the DHT computes and maintains the degree of inter-node content
sharing, the number of content shared blocks and all other informa-
tion from these stored hash pairs accordingly with the DHT update
operations.

Memory tracer.
A memory tracer is run on each physical node. It works by pe-

riodically stepping through the full memory of the machine being
traced, generating hashes for each of its memory blocks. Since a
full memory scan is a costly operation, an alternative approach for
the tracer is to monitor the memory updates in the system, and only
rehash these memory blocks that have been modified since the last
scan. This can be implemented by scanning the page table (shadow
page table or nested page table for a virtual machine) to locate all
updated pages (by checking the dirty bit in the page table entry)



from last scan round. After each page table scan, the dirty bit is
cleared in the entry.

In each round, the memory tracer scans the target VM’s page ta-
ble, rehashes all memory blocks that have been modified since the
last scan and send the updates of these hashes to the DHT. When-
ever there is a hash update to a memory block, the new hash value
of the block is added to the DHT, while its old hash value is re-
moved from DHT.

In addition, the memory tracer maintains a local hash table that
allows the DHT to efficiently locate a memory page’s content from
its hash, whenever the DHT requests the memory page. Each entry
in the hash table corresponds to a memory hash value, which can
map to several memory blocks.

5.4 Discussion
We now discuss issues that arise in the design and implementa-

tion.

Hash function.
Since we use a hash value to represent the content of a memory

block, there is always possibility of collisions, which means the
different memory blocks are mapped to the same hash value by the
system. However, when we use MD5, which generates 128bit hash
value, if we consider a system with 1 Petabyte (250 bytes) of 4KB
memory pages hashed by our memory tracer using the MD5 hash
function, the collision probability is around 10−14. This is consid-
ered to be less than probability of physical memory corruption.

Since there is no critical security concern for our target paral-
lel systems. We can potentially reduce compute overhead by using
non-cryptographic hash functions, for example, we extend Super-
Hash [7] to generate 128bit hash as the same length as MD5 but
need less computing efforts. We will compare the performance
overheads by using the two hash functions in section 5.5.

It is important to point out that while we need a good hash func-
tion, we do not need a cryptographic hash. Furthermore, while it is
true that there are attacks on, e.g., SHA-1, that allow for collisions
to be engineered, we do not assume that the VMs are adversarial,
which is a common assumption in HPC.

Memory update rate.
The memory tracer will compute the number of memory pages

that have been updated since last scan and predict the possible com-
puting overhead to rehash all of them. If the memory update rate
becomes too high, the tracer will temporarily increase the scan in-
terval to reduce the accumulated overheads to the system. It slows
down memory hash updates to the DHT to prevent a burst flood to
the network and the DHT. As we discuss in Section 5.5, increas-
ing the scan interval will generally decrease the system overheads.
Furthermore, the memory tracer could adaptively adjust its scan
interval to control the system overheads.

DHT availability.
Communication failures or node failure can lead to part of the

content-sharing information being not available. As the size of
system grows, the likelihood of communication/node failures in-
creases. The DHT itself has to be kept available in case of all these
different kind of failures.

Given that the data in the DHT is spread across multiple nodes,
if any of those nodes fail, then a portion of the hash table will be-
come unavailable. For this reason, each partition of the DHT can
be replicated on more than one node. The set of replicas from the
same partition forms a group, while all replicas in the group are
kept coherent with each other. Any replica in the group can be used

when there are read operations to it. However,to maintain consis-
tency among all replicas in the group, when the write operations
to the partition, for example (put() and remove()), are issued, all
replicas belonging to the same partition must be synchronously up-
dated. If a node fails, the data from its partitions is still available
from other surviving nodes which contain these partitions.

Memory block granularity.
Generally, the size of the memory block in the system is of page

granularity, i.e, 4KB page in x86 machines. However, detecting
memory content sharing with another block size is possible, but the
smaller the memory block, the more extra CPU, memory and com-
munication overhead is needed. In addition, from Figure 5, we can
see that reducing the size of memory blocks does not increase the
detected amount of memory content sharing for most of applica-
tions.

Another option is to dynamically change the granularity of de-
tected memory block size at runtime, such as what has been applied
on incremental checkpoint [8]. In this approach, the size of mem-
ory block to be hashed is dynamically changed through adaptively
splitting/merging according to the memory access pattern and the
working set of the detected workloads.

5.5 Initial performance evaluation
The detection system is still an in-progress project. We have in-

vestigated the CPU and network overheads needed for the memory
tracer. We report the CPU time needed for the memory tracer to
scan the page table and rehash all updated local memory pages,
and the size of data that it sends to convey these hash updates to the
DHT over the network.

In Figure 8, we show the CPU time that is spent by the memory
tracer for each node to scan and rehash all locally updated mem-
ory pages during each scan round. We present the burst, average
and minimal CPU times needed for each round during the entire
execution the workload.

For most of the workloads, using the MD5 hash function, it takes
on average less than 128ms to scan and rehash memory updates
when the scan interval is set to 2s. This is less than 6.4% overhead.
With a scan interval of 5s, the CPU time required is even less, re-
sulting in a 2.6% overhead. However, several applications (such
as BT and MG) have much higher memory update rates, which
need on average 512ms CPU time (25% overhead) during each
scan round when the interval is 2s. For these applications, when
the system extends its scan interval to 5s, the CPU times needed
for each scan round do not increase too much, which makes the
CPU overhead decrease to less than 10%. Even for less frequently
occurring burst updates during application execution, the memory
tracer consumes less than 512ms, which is 25% overhead for most
of the workloads. To reduce this overhead, the system can set the
scan interval to 5s, which only increases the CPU time a little bit,
resulting in an overhead of less than 10% even during the burst
updates.

Compared with MD5, when the SuperHash hash function is used,
the CPU overheads are about 1/3 as high. That means for most of
the workloads, the overheads of the memory tracer are less than
2.2% with a 2s interval and less than 1% when interval is 5s, and
less than 9% in 2s and 4% in 5s interval during burst updates.

As we discussed in Section 5.4, the memory tracer can dynami-
cally adjust the scan interval for memory hash updates. If it detects
that the current memory update period would cause CPU overhead
to surpass a preset threshold, the memory tracer will increase the
scan interval. If it dips below a higher threshold, it will decrease
the interval.
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Figure 8: CPU Time that is spent by the memory tracer on each node to scan and rehash all local updated memory pages during each
scan round. We show results from using 2s and 5s scan intervals with MD5 and SuperHash functions. For most of the workloads
when using MD5 hash, it needs less than 128ms to rehash memory updates in 2s interval, which is less than 6.4% overhead. While in
5s interval, it need less than 128ms, which is less than 2.6% overhead. When switching to SuperHash, the overheads are around 1/3
of the ones using MD5.
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Figure 9: Size of data that is sent over the network by the mem-
ory tracer on each node during each scan round to update its
memory hashes to DHT. We show results from using 2s and 5s
scan intervals with MD5. For most of the workloads, the mem-
ory tracer sends less than 512Kbytes data during each round
averagely and less than 1024Kbytes during burst updates.

Besides the CPU overhead, we also evaluated the data traffic
that is needed for each node to send its memory hash updates to
the DHT during each scan round. Figure 9 shows the amount of
data that is sent over the network by each node during a 2s and 5s
scan interval. Since MD5 and our extended version of SuperHash
generate hash values of the same length, the data traffic needed
are the same for both hash functions. From the figure, we can
see that for most of the workloads, the memory tracer sends less
than 512Kbytes data during each round on average and less than
1024Kbytes during burst updates. This suggests that the network
overhead of memory tracer is generally less than 1% on 1Gbps net-
work, which is very acceptable in our target cluster and HPC sys-
tems.

6. RELATED WORK
Many studies have shown the benefits of using memory sharing

between VMs collocated on the same host. Content-based page
sharing was introduced in VMware ESX [28] and Xen [17]. These
implementations use background hashing and page comparison in
the hypervisor to transparently identify same pages belong to VMs
on the same host. Potemkin [27] uses flash cloning and delta virtu-
alization to enable a large number of mostly-identical VMs on the
same host. Satori [19] implements memory sharing in the Xen envi-
ronment by detecting opportunities for page sharing while reading
data from a block device. Difference Engine [15] has demonstrated
that even higher degrees of page sharing can be obtained by sharing
portions of similar, but not identical pages.

Kernel Samepage Merging (KSM) [10] lets the Linux kernel
share identical memory pages amongst different processes. It can
also be used in conjunction with QEMU/KVM to share identical
regions of memory between multiple co-located VMs. SBLLmal-
loc [11] is a user library that can identify identical memory blocks
on the same machine and merge them to reduce the memory usage
for large scale applications in HPC systems.

The above works have the goal of reducing memory pressure
on individual nodes by deduplicating intra-node memory content
sharing. In contrast, our proposed system detects and tracks both
intra-node and inter-node sharing of memory content across all the
nodes. Additionally, we have argued that such detection and track-
ing should be factored into a separate service, on top of which other
services, including dedupliction, can be built.

The work closest to ours is Memory buddies [29], which uses
memory fingerprinting to discover VMs with high sharing poten-
tial and then co-locates them on the same host. It uses a centraized
controller to gather fingerprints from each node, which is likely
to limit scalability. In contrast, our proposal uses a scalable dis-
tributed hashing approach.

Live gang migration [13] optimizes the live migration of a group
of co-located VMs on the same host by deduplicating the identi-
cal memory pages in these co-located VMs before migrating them.
VMFlock [9] and Shrinker [25] present a migration service opti-
mized for cross-datacenter transfer.



Finally, our proposed system is not a distributed memory shar-
ing/caching system such as Memcached [3] or RAMCloud [24].
Such general-purpose distributed memory caching systems are used
to speed up dynamic database-driven websites by caching data and
objects in RAM to reduce the number of times an external data
source must be read.

7. CONCLUSION
We have argued for a facility for dynamically detecting and track-

ing intra- and inter-node memory content sharing in a virtualized
large scale parallel system. The main contributions of this paper
that support this argument are:

• We carried out a detailed study of the memory content shar-
ing for a range of applications and application benchmarks
to support our argue that both intra- and inter-node memory
content sharing is common in parallel applications.

• We described how we can simplify and enhance many ser-
vices in large scale parallel systems by leveraging these mem-
ory content sharing within individual nodes and across nodes.

• We proposed a detection system which can efficiently and
scalably track and identify the memory content sharing in
large parallel systems with low overhead. We discussed the
challenge to build such a system, and our approach and some
preliminary results in building the system.

This is a work in-progress. We are currently completing the design
and implementation of the memory tracer frontend and the DHT
backend.
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