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Paper	in	a	Nutshell
• HPC	node	OS	as	an	RTOS

– Isolation	in	time-shared	environment
– Resource	control	with	commensurate	performance
– Coordination	via	time	instead	of	via	synchronization

• Barrier	removal	example

• Hard	real-time	threads	in	Nautilus	kernel
– Despite	x64
– ~10	us	resolution	(Xeon	Phi	KNL)

• Thread	group	scheduling	and	coordination
– ~3	us	synchronization	for	255	threads	(Phi)

• Publicly	available	codebase
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Outline
• Motivation

– Prior	work	on	soft	RT	scheduling	of	distributed	machines
– Modern	machines	and	interesting	runtimes

• What	is	hard	real-time?
– Liu	model

• Implementation	in	Nautilus
– Threads
– Groups

• Performance	evaluation
– Limits	(mostly	on	KNL)
– Fine-grain	BSP	benchmark

• Conclusions	and	future	work
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Experiences	with	Soft	Real-time

• VSched soft	RT	scheduler	extension	for	Linux
• Consolidation of	interactive	and	batch	VMs	
• Time-sharing of	distributed	memory	parallel	
applications	on	a	cluster	with	
performance	isolation	and	control
– Coordinated	scheduling	(i.e.,	gang	scheduling	
based	on	time)	so	BSP	applications	achieve	
resource-commensurate	performance
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Can	This	Apply	Within	a	Node?
• Increasingly	interesting	target

– Growing	CPU	count:			Phi	now	at	256;	NUMA,	…
• OS	noise	concerns	continue
• Much	finer	granularity	scheduling	and	
coordination	needed
– OpenMP loops	and	tasking
– NESL	VCODE	model	(abstract	vector	machine)

• New	opportunity:	substitute	timing	for	
synchronization
– Example:	potential	barrier	removal
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What	is	Hard	Real-time?

• Formal	admission	control	process
– Based	on	work	and	deadlines
– Scheduler	can	say	no

• Scheduler	engine	guarantees all	deadlines
• Limitations

– Scheduler	overheads
– Context	switch	overheads

• Our	system:	threads	on	a	NUMA	node
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What	is	Hard	Real-time?

• Aperiodic	threads
– Have	priority
– Always	admitted

• Periodic	threads
– Phase,	period,	slice	(deadline=period)
– Selective	admission	(RMA	tests)

• Sporadic	threads
– Phase,	size,	deadline,	aperiodic	priority
– Selective	admission	(EDF	tests)

7J.	W.	S.	Liu, Real-time	Systems,	Prentice	Hall,	2000	

now
slice

phase period

…



Nautilus	as	the	Basis	for	an	RTOS
• Nautilus:	kernel	framework	for	constructing	
hybrid	run-times	(HRTs)	on	x64
– No	userspace,	simple	address	translation,	single	
address	space,	streamlined	primitives,	NUMA,	…

– 15-40%	speedup	over	Linux	for	Legion	run-time
• Particularly	salient	for	an	RTOS:

– No	page	faults,	only	capacity	TLB	misses
– Deterministic	path	length	in	drivers	and	all	core	
functionality

– Steerable	interrupts
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• Complex,	but	core	
concept	is	Eager	EDF

• Admission	control	in	
thread	context

• Reservations for	
aperiodic,	sporadic,	
missing	time…

• Interrupt	control

• ns-resolution	time	based	on	cycle	counter	(ARAT,	ConstantTSC)
• Scheduling	interrupts:	APIC	timer	(TSC	deadline	mode	if	available)



The	Curse	of	Missing	Time
• Unaccounted	time	within	kernel	itself

– Scheduler	overhead,	context	switch	overhead,	etc.

• Deliberate,	nondeterministic,	unaccounted	time	due	to	
System	Management	Interrupts	(SMIs)
– Firmware-level	interrupts
– Higher	privilege	than	kernel	or	even	VMM
– Cannot	be	turned	off
– Like	an	alien	abduction	from	the	scheduler’s	perspective

• “My	clock	just	jumped	forward	10	us!”

• Our	approach	to	both:	
(a)	Reservations,	(b)	Eager	Earliest	Deadline	First

10B.	Delgado,	K.	Karavanic, Performance	Implications	of	System	Management	Mode,	IISWC	2013



Global	(per-node)	
Scheduler
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Distributed	Functionality

• Local	scheduler	coordination	via
• Time	(mostly)
• Interrupts (sparingly)
• No	global	locking

• Interrupt	steering	and	
segregation

• Interrupt-free	CPUs	see	only	
scheduling-related	interrupts

• Interrupt-laden	CPUs	have	careful	
interrupt	control

Few	SurprisesMore	Surprises



Group	Scheduling

• Local	schedulers’	clocks	synchronized
– Variance	<1000	cycles	(<1	us)	over	256	CPUs	on	Phi

• Thread	groups	and	group	admission	control
– Main	element	is	admission	control	done	in	parallel
– All	or	nothing

• Phase	correction	to	coordinate	initial	thread	
arrival	on	all	involved	local	schedulers

• Same	constraints	on	all	local	schedulers	results	in	
gang	scheduling	of	the	group	of	threads
– Without	explicit	communication
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Local	Scheduler	Synchronization	on	Phi
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Code	Measures

• Scheduler:	~5000	LoC	(C)
– Also	includes work-stealing,	thread pools,	garbage
collection support,	and tasks

• Groups	and	Group	Scheduling:	~1000	LoC	(C)

• Other	changes:	~2000	LoC (C+Assembly)
– Low-level	CPU-state	maintenance	/	context	switch
– Additional	thread	states
– Assorted
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Test	machines
• Phi

– Supermicro 5038ki	(”Colfax	KNL	Ninja”)
– Intel	Xeon	Phi	7210	(“Knight’s	Landing”)

• 64	cores,	4	hardware	threads	per	core
• 1.3	GHz
• 16	GB	MCDRAM,	96	GB	DRAM
• All	throttling/burst	behavior	disabled	in	BIOS

• R415
– Dell	R415
– AMD	4122

• 2	sockets,	8	cores/threads	total,	
• 2.2	GHz
• 16	GB	DRAM
• All	throttling/bust	behavior	disabled	in	BIOS
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Validation	Through	External	Monitoring
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Limits	on	Phi:	~10us
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Figure 6: Local scheduler deadline miss rate on Phi as a function of
period (� ) and slice (� ). Once the period and slice are feasible given
scheduler overhead, the miss rate is zero.
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Figure 7: Local scheduler deadlinemiss rate onR415 as a function of
period (� ) and slice (� ). Once the period and slice are feasible given
scheduler overhead, the miss rate is zero.

arrival, and the timeout), although these can overlap (one thread’s
timeout and the next thread’s arrival can be processed in the same
interrupt.) Hence, the limits on scheduling constraints will be in
the 6000-12000 cycle range (4.6 to 9.2 µs). About half of the over-
head involves the scheduling pass itself, while the rest is spent in
interrupt processing and the context switch.

Figure 6 shows the the local scheduler miss rate on the Phi. Here
we have turned o� admission control to allow admission of threads
with infeasible timing constraints. Each curve represents a di�erent
period, the x-axis represents the slice as a fraction of the period,
and the y-axis shows the miss rate. On this kind of graph, we expect
a sharp disconnect: for too small of a period or slice, or too large of
a slice within a period, misses will be virtually guaranteed since the
scheduler overhead will not leave enough time. On the other hand,
once the period and slice are feasible given the scheduler overhead,
we expect a zero miss rate. As the graph shows, the transition point,
or the “edge of feasibility” is for a period of about 10 µs, as we
would expect given the overhead measurements.

It is important to realize that an individual Phi CPU is quite slow,
both in terms of its clock rate and its superscaler limits. On faster
individual CPUs, the scheduling overheads will be lower in terms of
both cycles and real time, as can be seen for the R415 in Figure 5(b).
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Figure 8: Average and standard deviation of miss times for feasible
schedules on Phi. For infeasible constraints, which are usually not
admitted, deadlines are missed by only small amounts.
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Figure 9: Average and standard deviation of miss times for feasible
schedules on R415. For infeasible constraints, which are usually not
admitted, deadlines are missed by only small amounts.

These lower overheads in turn make possible even smaller schedul-
ing constraints, as can be seen for the R415 in Figure 7. Here, the
edge of feasibility is about 4µs.

It is also instructive to see what happens beyond the edge of
feasibility, when deadlines misses occur because the timing con-
straint is simply not feasible given the overhead of the scheduler.
In Figures 8 (Phi) and 9 (R415) we show the average and variance
of miss times both for feasible and infeasible timing constraints.
For feasible timing constraints, the miss times are of course always
zero. For infeasible timing constraints, the miss times are generally
quite small compared to the constraint. Note again that, in nor-
mal operation, infeasible constraints are �ltered out by admission
control.

5.4 Group admission control costs
In steady state operation, once a group of threads has been admitted
in our system, only the overheads of the local schedulers matter.
These are quite low, as shown previously. The time costs of group
operation are born solely when the group of threads is admitted,
namely for the algorithm in Section 4.3. Figure 10 breaks down
the absolute costs of the major steps of the algorithm: group join,
leader election, distributed admission control, and the �nal barrier.



Controlled	Miss	Behavior	on	Phi
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Figure 6: Local scheduler deadline miss rate on Phi as a function of
period (� ) and slice (� ). Once the period and slice are feasible given
scheduler overhead, the miss rate is zero.
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Figure 7: Local scheduler deadlinemiss rate onR415 as a function of
period (� ) and slice (� ). Once the period and slice are feasible given
scheduler overhead, the miss rate is zero.

arrival, and the timeout), although these can overlap (one thread’s
timeout and the next thread’s arrival can be processed in the same
interrupt.) Hence, the limits on scheduling constraints will be in
the 6000-12000 cycle range (4.6 to 9.2 µs). About half of the over-
head involves the scheduling pass itself, while the rest is spent in
interrupt processing and the context switch.

Figure 6 shows the the local scheduler miss rate on the Phi. Here
we have turned o� admission control to allow admission of threads
with infeasible timing constraints. Each curve represents a di�erent
period, the x-axis represents the slice as a fraction of the period,
and the y-axis shows the miss rate. On this kind of graph, we expect
a sharp disconnect: for too small of a period or slice, or too large of
a slice within a period, misses will be virtually guaranteed since the
scheduler overhead will not leave enough time. On the other hand,
once the period and slice are feasible given the scheduler overhead,
we expect a zero miss rate. As the graph shows, the transition point,
or the “edge of feasibility” is for a period of about 10 µs, as we
would expect given the overhead measurements.

It is important to realize that an individual Phi CPU is quite slow,
both in terms of its clock rate and its superscaler limits. On faster
individual CPUs, the scheduling overheads will be lower in terms of
both cycles and real time, as can be seen for the R415 in Figure 5(b).
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Figure 8: Average and standard deviation of miss times for feasible
schedules on Phi. For infeasible constraints, which are usually not
admitted, deadlines are missed by only small amounts.
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Figure 9: Average and standard deviation of miss times for feasible
schedules on R415. For infeasible constraints, which are usually not
admitted, deadlines are missed by only small amounts.

These lower overheads in turn make possible even smaller schedul-
ing constraints, as can be seen for the R415 in Figure 7. Here, the
edge of feasibility is about 4µs.

It is also instructive to see what happens beyond the edge of
feasibility, when deadlines misses occur because the timing con-
straint is simply not feasible given the overhead of the scheduler.
In Figures 8 (Phi) and 9 (R415) we show the average and variance
of miss times both for feasible and infeasible timing constraints.
For feasible timing constraints, the miss times are of course always
zero. For infeasible timing constraints, the miss times are generally
quite small compared to the constraint. Note again that, in nor-
mal operation, infeasible constraints are �ltered out by admission
control.

5.4 Group admission control costs
In steady state operation, once a group of threads has been admitted
in our system, only the overheads of the local schedulers matter.
These are quite low, as shown previously. The time costs of group
operation are born solely when the group of threads is admitted,
namely for the algorithm in Section 4.3. Figure 10 breaks down
the absolute costs of the major steps of the algorithm: group join,
leader election, distributed admission control, and the �nal barrier.



Limits	on	R415:	~4us
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Figure 6: Local scheduler deadline miss rate on Phi as a function of
period (� ) and slice (� ). Once the period and slice are feasible given
scheduler overhead, the miss rate is zero.
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Figure 7: Local scheduler deadlinemiss rate onR415 as a function of
period (� ) and slice (� ). Once the period and slice are feasible given
scheduler overhead, the miss rate is zero.

arrival, and the timeout), although these can overlap (one thread’s
timeout and the next thread’s arrival can be processed in the same
interrupt.) Hence, the limits on scheduling constraints will be in
the 6000-12000 cycle range (4.6 to 9.2 µs). About half of the over-
head involves the scheduling pass itself, while the rest is spent in
interrupt processing and the context switch.

Figure 6 shows the the local scheduler miss rate on the Phi. Here
we have turned o� admission control to allow admission of threads
with infeasible timing constraints. Each curve represents a di�erent
period, the x-axis represents the slice as a fraction of the period,
and the y-axis shows the miss rate. On this kind of graph, we expect
a sharp disconnect: for too small of a period or slice, or too large of
a slice within a period, misses will be virtually guaranteed since the
scheduler overhead will not leave enough time. On the other hand,
once the period and slice are feasible given the scheduler overhead,
we expect a zero miss rate. As the graph shows, the transition point,
or the “edge of feasibility” is for a period of about 10 µs, as we
would expect given the overhead measurements.

It is important to realize that an individual Phi CPU is quite slow,
both in terms of its clock rate and its superscaler limits. On faster
individual CPUs, the scheduling overheads will be lower in terms of
both cycles and real time, as can be seen for the R415 in Figure 5(b).
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Figure 8: Average and standard deviation of miss times for feasible
schedules on Phi. For infeasible constraints, which are usually not
admitted, deadlines are missed by only small amounts.
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Figure 9: Average and standard deviation of miss times for feasible
schedules on R415. For infeasible constraints, which are usually not
admitted, deadlines are missed by only small amounts.

These lower overheads in turn make possible even smaller schedul-
ing constraints, as can be seen for the R415 in Figure 7. Here, the
edge of feasibility is about 4µs.

It is also instructive to see what happens beyond the edge of
feasibility, when deadlines misses occur because the timing con-
straint is simply not feasible given the overhead of the scheduler.
In Figures 8 (Phi) and 9 (R415) we show the average and variance
of miss times both for feasible and infeasible timing constraints.
For feasible timing constraints, the miss times are of course always
zero. For infeasible timing constraints, the miss times are generally
quite small compared to the constraint. Note again that, in nor-
mal operation, infeasible constraints are �ltered out by admission
control.

5.4 Group admission control costs
In steady state operation, once a group of threads has been admitted
in our system, only the overheads of the local schedulers matter.
These are quite low, as shown previously. The time costs of group
operation are born solely when the group of threads is admitted,
namely for the algorithm in Section 4.3. Figure 10 breaks down
the absolute costs of the major steps of the algorithm: group join,
leader election, distributed admission control, and the �nal barrier.



Controlled	Miss	Behavior	on	R415
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Figure 6: Local scheduler deadline miss rate on Phi as a function of
period (� ) and slice (� ). Once the period and slice are feasible given
scheduler overhead, the miss rate is zero.
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Figure 7: Local scheduler deadlinemiss rate onR415 as a function of
period (� ) and slice (� ). Once the period and slice are feasible given
scheduler overhead, the miss rate is zero.

arrival, and the timeout), although these can overlap (one thread’s
timeout and the next thread’s arrival can be processed in the same
interrupt.) Hence, the limits on scheduling constraints will be in
the 6000-12000 cycle range (4.6 to 9.2 µs). About half of the over-
head involves the scheduling pass itself, while the rest is spent in
interrupt processing and the context switch.

Figure 6 shows the the local scheduler miss rate on the Phi. Here
we have turned o� admission control to allow admission of threads
with infeasible timing constraints. Each curve represents a di�erent
period, the x-axis represents the slice as a fraction of the period,
and the y-axis shows the miss rate. On this kind of graph, we expect
a sharp disconnect: for too small of a period or slice, or too large of
a slice within a period, misses will be virtually guaranteed since the
scheduler overhead will not leave enough time. On the other hand,
once the period and slice are feasible given the scheduler overhead,
we expect a zero miss rate. As the graph shows, the transition point,
or the “edge of feasibility” is for a period of about 10 µs, as we
would expect given the overhead measurements.

It is important to realize that an individual Phi CPU is quite slow,
both in terms of its clock rate and its superscaler limits. On faster
individual CPUs, the scheduling overheads will be lower in terms of
both cycles and real time, as can be seen for the R415 in Figure 5(b).
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Figure 8: Average and standard deviation of miss times for feasible
schedules on Phi. For infeasible constraints, which are usually not
admitted, deadlines are missed by only small amounts.
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Figure 9: Average and standard deviation of miss times for feasible
schedules on R415. For infeasible constraints, which are usually not
admitted, deadlines are missed by only small amounts.

These lower overheads in turn make possible even smaller schedul-
ing constraints, as can be seen for the R415 in Figure 7. Here, the
edge of feasibility is about 4µs.

It is also instructive to see what happens beyond the edge of
feasibility, when deadlines misses occur because the timing con-
straint is simply not feasible given the overhead of the scheduler.
In Figures 8 (Phi) and 9 (R415) we show the average and variance
of miss times both for feasible and infeasible timing constraints.
For feasible timing constraints, the miss times are of course always
zero. For infeasible timing constraints, the miss times are generally
quite small compared to the constraint. Note again that, in nor-
mal operation, infeasible constraints are �ltered out by admission
control.

5.4 Group admission control costs
In steady state operation, once a group of threads has been admitted
in our system, only the overheads of the local schedulers matter.
These are quite low, as shown previously. The time costs of group
operation are born solely when the group of threads is admitted,
namely for the algorithm in Section 4.3. Figure 10 breaks down
the absolute costs of the major steps of the algorithm: group join,
leader election, distributed admission control, and the �nal barrier.



Fine-grain	BSP	Microbenchmark
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each thread in group:

for (i=0;i<N;i++) {

local_compute(granularity)

optional_barrier();

write_to_neighbor(granularity)

optional_barrier();
}

Barrier	overhead	grows	with	shrinking	granularity
Barriers	could	be	removed	if	the	threads	ran	in	lock-step
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• Resource control with commensurate performance: Can we
throttle up and down the CPU time resource given to a paral-
lel application with proportionate e�ects on its performance?
• Barrier removal: Can we use real-time behavior to avoid
barriers that are necessary in a non-real-time model?

We can answer yes to both questions.

6.1 Microbenchmark
We developed a bulk-synchronous parallel (BSP [11]) microbench-
mark for shared memory that allows �ne grain control over com-
putation, communication, and synchronization. The benchmark
emulates iterative computation on a discrete domain, modeled as a
vector of doubles.

As used here, the algorithm is parameterized by P, the number
of CPUs used (each CPU runs a single thread), NE, the number of
elements of the domain (vector) that are local to a given CPU, NC,
the number of computations done on each element per iteration,
NW, the number of remote writes to do to other CPUs’ elements
per iteration, and N, the number of iterations done in total. In the
following, remote writes are done according to a ring pattern. CPU
i writes to some of the elements owned by CPU (i+1) % P.

Once the threads are running, they execute an
nk_group_sched_change_constraints() call to use a common
schedule, and to synchronize their operation. Next, they all execute
the following:
for (i=0; i<N; i++) {

for (j=0; j<NE; j++) {
compute_local_element(NC);

}
optional_barrier();
for (j=0;j<NW;j++) {
write_remote_element_on((myproc+1)%P);

}
optional_barrier();

}

As is common to BSP codes, the barriers in the above are needed
for any non-real-time schedule since we need to assure that each
compute or communication phase completes before the next phase
starts to avoid race conditions on the elements. With a group real-
time schedule, this property may be feasible to provide via timing.

6.2 Study
We ran a parameter study using the microbenchmark and our sched-
uler on the Xeon Phi. We in particular wanted to study the part of
the parameter space where the compute and communicate phases
in the algorithm are short. These create the greatest stress for the
scheduler for providing resource control with commensurate per-
formance, and present the most interesting opportunities for barrier
removal.

We swept P from 1 to 255 CPUs in powers of two, and NE, NC
and NW from 1 to 128 in powers of two. N was chosen to be large
enough in all cases to allow us to see the steady state behavior of
the scheduler’s interaction with the benchmark. All threads are
mapped 1:1 with CPUs in the interrupt-free partition.

We considered both aperiodic and periodic group constraints.
For aperiodic, since no other threads are available on the CPUs,
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Figure 13: Resource control with commensurate performance for
coarsest granularity with barriers. All period and slice combina-
tions are plotted, with utilization meaning the ratio of slice to pe-
riod (� /� ). Regardless of the speci�c period chosen, benchmark ex-
ecution rate matches the time resources given.

the benchmark has as much CPU time as possible—there are no
context switches and scheduling interrupts are extremely rare (they
occur at 10 Hz, similar to Kitten [20]). We considered 900 di�erent
periodic constraints, with the period ranging from 100 µs to 10 ms
in steps of 100 µs, and, for each period, 9 slices comprising 10, 20,
..., 90% of the period. A �nal parameter involves executing, or not
executing, the optional_barrier() call.

The entire parameter space explored consists of 1,037,852 combi-
nations. In the following, we focus on the cases where there are 255
CPUs (the largest scale), and where NC and NW are equal (indicating
a roughly 50/50 compute/communicate ratio). The value for NE then
essentially gives us the computation granularity. Our observations
can be readily understood simply by considering the extremes of
granularity (“coarsest” and “�nest”).

6.3 Resource control
The group hard real-time scheduling scheme can keep application
threads executing in lock-step. As a consequence, when one thread
needs to synchronize or communicate with another, for example via
the optional_barrier() in our benchmark, the synchronization
is almost certain to avoid any blocking on a descheduled thread.
Further note that the scheduler is providing isolation. While this
isolation is limited to timing, as we previously described [6, 22],
timing isolation, combined with other readily available resource
isolation techniques available at the OS level and above, can result
in quite strong isolation properties across most resources.

These observations suggest that the period (� ) and slice (� ) con-
straints of a periodic real-time constraint can be used to control
the resource utilization (utilization is �

� ) while providing commen-
surate application performance. That is, if �

� = 0.5, we expect the
application to operate at 50% of its top speed, not slower. Our prior
work also showed how to make this possible in a distributed en-
vironment for relatively coarse granularities using soft real-time
scheduling with feedback control. Does our hard real-time schedul-
ing approach make this possible for �ne granularities in a shared
memory machine?

Figure 13 clearly shows that this is indeed the case. Here, we
are looking at the coarsest granularity computation, with barriers,

Eliminate	OS	noise/surprises

Control	resources	with	commensurate	
application	performance

Phi,	255	thread	BSP	benchmark,	granularity	128,
900	combinations	of	period	and	slice	plotted
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Figure 14: Resource control with commensurate performance for a
�nest granularity with barriers. All period/slice combinations are
plotted, with utilization meaning the ratio of slice to period (� /� ).
Regardless of the speci�c period chosen, benchmark execution rate
roughly matches the time resources given.

running on 255 CPUs. In the �gure, each point represents a sin-
gle combination of period and slice (there are 900), plus aperiodic
scheduling with 100% utilization. Regardless of the period selected,
the performance of the benchmark is cleanly controlled by the time
resources allocated. As the granularity shrinks, proportionate con-
trol remains, as can be seen in Figure 14, in which we consider the
�nest granularity in our study. In this case, there is more variation
across the di�erent period/slice combinations with the same uti-
lization because the overall task execution time becomes similar to
the timing constraints themselves for some of the combinations.

6.4 Barrier removal
Because of the lock-step execution across CPUs that our scheduler
can provide for hard real-time groups, and the fully balanced nature
of a BSP computation as modeled in our microbenchmark, it is
possible to consider discarding the optional barriers. What are the
performance bene�ts of doing so?

The bene�ts depend on the granularity of the computation. Con-
sidering the BSP structure as represented in the benchmark, Am-
dahl’s law tells us that the cost of optional_barrier() only mat-
ters if the costs of compute_local_element() and
write_remote_element_on() are small. optional_barrier()’s
cost is only dependent on the number of CPUs, so this boils down
to how large NE, NC, and NW are.

Figure 15 shows us the bene�t for the coarsest granularity com-
putation, on 255 CPUs. In the �gure, each point represents a single
combination of period and slice (there are 900). The point compares
the time with the barrier to the time without. All points above
the line (almost all of them) represent con�gurations where the
benchmark is running faster without the barrier. The points form
9 clusters as these are the 9 levels of slice (10%, 20% and so on)
in our study. Also indicated is the performance of the aperiodic
constraints (which must be run with barriers for correctness). With
a 90% slice (utilization), the hard real-time scheduled benchmark,
with barriers removed, matches and sometimes slightly exceeds the
performance of the non-real-time scheduled benchmark. The latter
is running at 100% utilization.

Figure 16, which is semantically identical, shows the bene�t for
the �nest granularity computation on 255 CPUs Here, the bene�t of
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Figure 15: Bene�t of barrier removal at the coarsest granularity. Dis-
tance of points above line indicates bene�t. The real-time scheduled
benchmark without barriers and with period/slice constraints giv-
ing 90% utilization, is similar in performance to the non-real-time
scheduled benchmark with barriers at 100% utilization. Time in ns.
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Figure 16: Bene�t of barrier removal for the �nest granularity. Dis-
tance of points above line indicates bene�t. For a range of period/s-
lice combinations and utilizations, the real-time scheduled bench-
mark without barriers exceeds the performance of the non-real-
time scheduled benchmark with barriers. Time in ns.

barrier removal is much more pronounced, as Amdahl’s law would
suggest, and the e�ects of barrier removal are much more varied.
The bene�t ranges from about 20% to over 300%. As before the aperi-
odic/100% utilization case, which requires the barrier, is highlighted.
Now, however, the hard real-time cases, with barriers removed, can
not just match its performance, but in fact considerably exceed it.

7 RELATEDWORK
Ourwork ties to long-running research in several areas, as described
below. It is important to keep in mind that we target �ne-grain
scheduling of CPUs in a shared memory node, not courser grain
scheduling of a distributed memory machine.

OS noise, overhead, and responses. In distributed memory parallel
machines, it has been well known for a long time that operating
system noise can produce di�erentiated timing, and ultimately
performance degradation [10] and variation [19]. These issues com-
pound as scale increases, as do the overheads of using full OS
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Eliminate	OS	noise/surprises

Control	resources	with	commensurate	
application	performance

Phi,	255	thread	BSP	benchmark,	granularity	1,	
900	combinations	of	period	and	slice	plotted
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each thread in group:

for (i=0;i<N;i++) {

local_compute(granularity)

optional_barrier();

write_to_neighbor(granularity)

optional_barrier();
}

Barrier	overhead	grows	with	shrinking	granularity
Barriers	could	be	removed	if	the	threads	ran	in	lock-step
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Figure 14: Resource control with commensurate performance for a
�nest granularity with barriers. All period/slice combinations are
plotted, with utilization meaning the ratio of slice to period (� /� ).
Regardless of the speci�c period chosen, benchmark execution rate
roughly matches the time resources given.

running on 255 CPUs. In the �gure, each point represents a sin-
gle combination of period and slice (there are 900), plus aperiodic
scheduling with 100% utilization. Regardless of the period selected,
the performance of the benchmark is cleanly controlled by the time
resources allocated. As the granularity shrinks, proportionate con-
trol remains, as can be seen in Figure 14, in which we consider the
�nest granularity in our study. In this case, there is more variation
across the di�erent period/slice combinations with the same uti-
lization because the overall task execution time becomes similar to
the timing constraints themselves for some of the combinations.

6.4 Barrier removal
Because of the lock-step execution across CPUs that our scheduler
can provide for hard real-time groups, and the fully balanced nature
of a BSP computation as modeled in our microbenchmark, it is
possible to consider discarding the optional barriers. What are the
performance bene�ts of doing so?

The bene�ts depend on the granularity of the computation. Con-
sidering the BSP structure as represented in the benchmark, Am-
dahl’s law tells us that the cost of optional_barrier() only mat-
ters if the costs of compute_local_element() and
write_remote_element_on() are small. optional_barrier()’s
cost is only dependent on the number of CPUs, so this boils down
to how large NE, NC, and NW are.

Figure 15 shows us the bene�t for the coarsest granularity com-
putation, on 255 CPUs. In the �gure, each point represents a single
combination of period and slice (there are 900). The point compares
the time with the barrier to the time without. All points above
the line (almost all of them) represent con�gurations where the
benchmark is running faster without the barrier. The points form
9 clusters as these are the 9 levels of slice (10%, 20% and so on)
in our study. Also indicated is the performance of the aperiodic
constraints (which must be run with barriers for correctness). With
a 90% slice (utilization), the hard real-time scheduled benchmark,
with barriers removed, matches and sometimes slightly exceeds the
performance of the non-real-time scheduled benchmark. The latter
is running at 100% utilization.

Figure 16, which is semantically identical, shows the bene�t for
the �nest granularity computation on 255 CPUs Here, the bene�t of
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Figure 15: Bene�t of barrier removal at the coarsest granularity. Dis-
tance of points above line indicates bene�t. The real-time scheduled
benchmark without barriers and with period/slice constraints giv-
ing 90% utilization, is similar in performance to the non-real-time
scheduled benchmark with barriers at 100% utilization. Time in ns.
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Figure 16: Bene�t of barrier removal for the �nest granularity. Dis-
tance of points above line indicates bene�t. For a range of period/s-
lice combinations and utilizations, the real-time scheduled bench-
mark without barriers exceeds the performance of the non-real-
time scheduled benchmark with barriers. Time in ns.

barrier removal is much more pronounced, as Amdahl’s law would
suggest, and the e�ects of barrier removal are much more varied.
The bene�t ranges from about 20% to over 300%. As before the aperi-
odic/100% utilization case, which requires the barrier, is highlighted.
Now, however, the hard real-time cases, with barriers removed, can
not just match its performance, but in fact considerably exceed it.

7 RELATEDWORK
Ourwork ties to long-running research in several areas, as described
below. It is important to keep in mind that we target �ne-grain
scheduling of CPUs in a shared memory node, not courser grain
scheduling of a distributed memory machine.

OS noise, overhead, and responses. In distributed memory parallel
machines, it has been well known for a long time that operating
system noise can produce di�erentiated timing, and ultimately
performance degradation [10] and variation [19]. These issues com-
pound as scale increases, as do the overheads of using full OS

granularity	128
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Figure 14: Resource control with commensurate performance for a
�nest granularity with barriers. All period/slice combinations are
plotted, with utilization meaning the ratio of slice to period (� /� ).
Regardless of the speci�c period chosen, benchmark execution rate
roughly matches the time resources given.

running on 255 CPUs. In the �gure, each point represents a sin-
gle combination of period and slice (there are 900), plus aperiodic
scheduling with 100% utilization. Regardless of the period selected,
the performance of the benchmark is cleanly controlled by the time
resources allocated. As the granularity shrinks, proportionate con-
trol remains, as can be seen in Figure 14, in which we consider the
�nest granularity in our study. In this case, there is more variation
across the di�erent period/slice combinations with the same uti-
lization because the overall task execution time becomes similar to
the timing constraints themselves for some of the combinations.

6.4 Barrier removal
Because of the lock-step execution across CPUs that our scheduler
can provide for hard real-time groups, and the fully balanced nature
of a BSP computation as modeled in our microbenchmark, it is
possible to consider discarding the optional barriers. What are the
performance bene�ts of doing so?

The bene�ts depend on the granularity of the computation. Con-
sidering the BSP structure as represented in the benchmark, Am-
dahl’s law tells us that the cost of optional_barrier() only mat-
ters if the costs of compute_local_element() and
write_remote_element_on() are small. optional_barrier()’s
cost is only dependent on the number of CPUs, so this boils down
to how large NE, NC, and NW are.

Figure 15 shows us the bene�t for the coarsest granularity com-
putation, on 255 CPUs. In the �gure, each point represents a single
combination of period and slice (there are 900). The point compares
the time with the barrier to the time without. All points above
the line (almost all of them) represent con�gurations where the
benchmark is running faster without the barrier. The points form
9 clusters as these are the 9 levels of slice (10%, 20% and so on)
in our study. Also indicated is the performance of the aperiodic
constraints (which must be run with barriers for correctness). With
a 90% slice (utilization), the hard real-time scheduled benchmark,
with barriers removed, matches and sometimes slightly exceeds the
performance of the non-real-time scheduled benchmark. The latter
is running at 100% utilization.

Figure 16, which is semantically identical, shows the bene�t for
the �nest granularity computation on 255 CPUs Here, the bene�t of
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Figure 15: Bene�t of barrier removal at the coarsest granularity. Dis-
tance of points above line indicates bene�t. The real-time scheduled
benchmark without barriers and with period/slice constraints giv-
ing 90% utilization, is similar in performance to the non-real-time
scheduled benchmark with barriers at 100% utilization. Time in ns.
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Figure 16: Bene�t of barrier removal for the �nest granularity. Dis-
tance of points above line indicates bene�t. For a range of period/s-
lice combinations and utilizations, the real-time scheduled bench-
mark without barriers exceeds the performance of the non-real-
time scheduled benchmark with barriers. Time in ns.

barrier removal is much more pronounced, as Amdahl’s law would
suggest, and the e�ects of barrier removal are much more varied.
The bene�t ranges from about 20% to over 300%. As before the aperi-
odic/100% utilization case, which requires the barrier, is highlighted.
Now, however, the hard real-time cases, with barriers removed, can
not just match its performance, but in fact considerably exceed it.

7 RELATEDWORK
Ourwork ties to long-running research in several areas, as described
below. It is important to keep in mind that we target �ne-grain
scheduling of CPUs in a shared memory node, not courser grain
scheduling of a distributed memory machine.

OS noise, overhead, and responses. In distributed memory parallel
machines, it has been well known for a long time that operating
system noise can produce di�erentiated timing, and ultimately
performance degradation [10] and variation [19]. These issues com-
pound as scale increases, as do the overheads of using full OS

granularity	1
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• OS	Noise
• Gang	scheduling
• Vsched /	Coordinated	soft	RT

– As	in	motivation
• Mondragon
• RTVirt
• Tesselation
• Barrelfish

– Also	coordination	via	time

27



Ongoing/Future	Work
• Further	overhead	reduction

– Reduce	granularity
• Real-time	tasks
• Interrupt-free	scheduling

– Avoid	interrupt	overheads	/	Reduce	granularity
– Compiler-based	injection	of	cooperative	scheduling	calls

• Real-time	executive	model
– Scheduling	implemented	at	compile-time	as	a	superloop,	
as	in	safety-critical	and/or	smallest	embedded	systems

• Custom	hardware	for	scheduling	and	synchronization
– Intel	HARP	/	FPGA
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Paper	in	a	Nutshell
• HPC	node	OS	as	an	RTOS

– Isolation	in	time-shared	environment
– Coordination	via	time	instead	of	via	synchronization
– Barrier	removal	example

• Hard	real-time	threads	in	Nautilus	kernel
– Despite	x64
– ~10	us	resolution	(Xeon	Phi	KNL)

• Thread	group	scheduling	and	coordination
– ~3	us	synchronization	for	255	threads	(Phi)

• Publicly	available	codebase
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