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Project A: Extending Microblog 
 
In this first project, you will spend an intensive two weeks understanding the 
implementation of a small web log (“blog”) application, Microblog, and extending it to 
add additional functionality.   
 
The project must be done individually, although you are strongly encouraged to ask for 
help from the TAs, classmates, and friends.  The goal here is for you to understand, top-
to-bottom how a database-backed web application works.  In project B, you will design 
and implement your own database-backed web application from scratch. 

Before you start 
Read the handout “Using Oracle in the TLAB”.  This will explain how to log in to the 
tlab server, how to configure your environment, and how to access oracle using 
SQL*Plus.  Make sure that your environment is working correctly.   

Getting and installing Microblog 
To install Microblog, log into your account on tlab-server and do the following: 
 
cd ~/public_html 
tar xvfz ~pdinda/HANDOUT/microblog.tgz 
cd microblog 
more README 
 
The README file will give you detailed instructions on how to configure Microblog and 
verify that it is working.   You should be able to visit your Microblog via http://tlab-
server/~you/microblog/blog.html.  At this point, you should be able to log in as the root 
user and do the following:  add and delete users, add and revoke user permissions, write 
messages, see a summary of all messages, and see all the messages. 

How does Microblog work? 
The state of Microblog (users, their permissions, and the messages) lives entirely in the 
database.  That state consists of a sequence and three tables (see blog.sql).  The 
blog_users table contains the username, password, and email address of each Microblog 
user.  The password is stored in cleartext, which is insecure.  The blog_actions table 
contains the names of all the possible actions that a user may take in Microblog.  The 
blog_permissions table maps from Microblog usernames to the actions that they have 
permission to take.  An action should only be taken if the action exists in the blog_actions 
table, the user exists in the blog_users table, and the user has permission for the action in 
the blog_permissions table.  By default, the following actions are made available: 
manage-users, query-messages, delete-any-messages, delete-own-messages, and write-
messages.   Two users are added by default: root, with password rootroot, who can do 
anything, and none, with password nonenone, who can do nothing. 
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The blog_message_id sequence provides a way of getting a unique number for tagging 
each message (the message id).  The blog_messages table contains the actual messages.  
In addition to a message id, each message has an author (who must exist in the 
blog_messages blog_users table), a subject, a timestamp, and the text of the message 
(which can be HTML).  A message also has a field called “respid”, which is the id of the 
message to which it is responding.  This referential behavior means that the messages 
form a tree.  By default, there is a message with id zero, written by user none, and 
referring to itself that is installed into the database.  This message, which is never 
displayed, is the root of the message tree. 
 
Microblog has a notion of user sessions.  The state of a session is kept in the web 
browser, in a cookie named MicroblogSession.  When users log into Microblog they are 
given a cookie that contains their login name and password in cleartext (this is not 
secure) and is set to expire in about one hour.   Without a cookie, the user can only log in.  
When presented with a cookie, Microblog uses its contents to validate the user and check 
to see if he has the necessary permissions to do what he wants. 
 
The following is a more detailed description of a Microblog session: 

 The user visits http://tlab-server/~you/microblog/blog.html 
 blog.html is loaded 

o It creates an HTML frameset, consisting of a left frame and a right frame 
o The left frame is filled with actions.html, whose different links are 

targeted at the right frame. 
o The right frame is filled by executing blog.pl with the “act” parameter set 

to “query”  
o blog.pl notices that there is no cookie and so forces the “login” action. 
o The login form is displayed. 

 The user fills out the login form and hits submit. 
 blog.pl is invoked with the “act” parameter set to “login”, and the “loginrun” 

parameter set to one. 
o blog.pl extracts the “user” and “password” parameters provided by the 

form, and does a SQL query to see if the combination exists in the 
database. 

o If the combination exists, it creates a cookie with the combination and 
passes it back to the user’s browser.  Next, it displays the query form 
(provided the user is permitted query-messages). 

o If the combination does not exist, blog.pl  complains, does not return a 
cookie, and displays the login form again. 

 At this point, the user’s browser has the cookie, which is good for one hour. 
 The default “query” action, if there is a cookie, and the user/password 

combination in the cookie is valid, and the user has query-messages permission, 
displays the query form and then does a SQL query to generate a summary of all 
the messages in the database which it then displays as an HTML table. 

 The user fills out the query form and hits submit. 
 Seeing that the “queryrun” parameter exists, blog.pl, if there is a cookie, and the 

user/password combination in the cookie is valid, and the user has query-
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messages permission, executes a SQL query that fetches all the matching 
messages.  It then prints them formatted in HTML. 

 On every interaction, the cookie is refreshed, so the one hour time limit on the 
cookie is basically the maximum idle time before the user is logged out. 

 The other actions are very similar to the query action. 

Project Steps 
In this project, you will extend Microblog to provide the following functionality.  Each 
extension is marked with a percentage that is intended to reflect its perceived difficulty 
level.  You may do the extensions in any order, although we believe the order presented 
will be the easiest.  We believe the best approach to building each extension is the 
following: 
 

1. Read and understand blog.sql and blog.pl 
2. Design the SQL statements that are needed 
3. Test the SQL statements using SQL*Plus. 
4. Embed the SQL statements into Perl functions (see UserAdd(), for example)  
5. Write the Perl logic to call the functions at the appropriate times. 

 
You should avoid becoming bogged down in the Perl and, especially, the HTML, parts of 
the code.   As this is a databases course, you will be graded on correctness, not the 
appearance of the final product. 
 
Implement query (20%) :  As handed out, message queries completely ignore all the 
arguments and simply return all messages.  Extend MessageQuery so that it is possible to 
query messages by author, by date range, and by both.  You will find that it is easiest to 
add query-by-author first.  Query by date will require that you become familiar with 
Time::ParseDate. 
 
Add reply and delete (30%) : In the message summary display and the message query 
display, it should be possible to reply to or delete a message in a single click.   To do so, 
modify MessageSummary and MessageQuery so that when they print a message, they 
also print an anchor tag that leads to deletion or update.  For example: 
 
<a href=”blog.pl?act=delete&deleterun=1&id=533”>delete</a> 
<a href=”blog.pl?act=reply&respid=533”>reply</a> 
 
These urls will then point to your delete and reply functionality.  A user is allowed to 
delete any of his own messages if he has delete-own-messages permission, and any 
messages if he has delete-any-messages permission.  In order to reply, he must have 
write-messages permission.  A message can only be deleted if no other messages refer to 
it.   
 
Add tree display (20%) : Modify message summary so that it displays the messages as a 
tree.  You may find the Oracle-specific “CONNECT BY” feature to be useful here, 
although it is not necessary. 
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Add multi-page display (30%) : Currently, message summaries and message query 
results are displayed as a single web page.  This will become unworkable as the number 
of messages increases.  In the multi-screen version of MessageSummary and 
MessageQuery, you will display matching messages n at a time, where n will be a form 
parameter supplied by the user.  At the end of each display, you will include “next” and 
“previous” links that will allow you to scroll through the matching messages.  For 
example: 
 
<a 
href=”blog.pl?act=query&queryrun=1&from=date1&to=date2&by=b
ywhom&startwith=25&endwith=50”>prev</a> 
<a 
href=”blog.pl?act=query&queryrun=1&from=date1&to=date2&by=b
ywhom&startwith=75&endwith=100”>next</a> 
 
You will find the “rownum” feature of Oracle very useful here: 
 
select id from blog_messages where [query clause]  
      and rownum>=25 and rownum<50 
 

Where to go for help 
The goal of this project is to learn how a database-backed web application works.  Don’t 
fall into the trap of spending lots of time generating pretty HTML or particularly elegant 
Perl.  Get the SQL right first and make the Perl return what you need.  We don’t want 
you to get stuck on the details of Perl, CGI, or HTML, so please use the following 
resources: 

 Blackboard discussion groups.   If you have a question, please check here first, 
and post it if it hasn’t already been answered.  We strongly encourage the class to 
talk on the discussion group, share ideas and insights, and code snippets. 

 Office hours.  Make sure to use the office hours made available by the instructor 
and the TAs. 

 Handouts:  we have prepared handouts on using Oracle in the TLAB and a high-
level introduction to the Perl programming language. 

 Introductory sessions.  We will hold two evening sessions in the first week.  One 
to bring everyone up to speed on Linux, the other to introduce the fundamental 
concepts behind CGI and Perl. 

 Web content.  You will find many examples of Perl CGI and DBI programming 
on the web. 

Hand-in 
To hand in the project, you will do the following:   

 Get a copy of your extended blog up and running in your account on tlab-server.   
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 Email the instructor and the TAs with a copy of all the files that you have 
modified or added.  At minimum, this will be blog.pl.  In the email, also supply a 
URL for your running blog and the root account name and password. 

 

Extra Credit (30% Maximum) 
You can gain extra credit by one or both of the following extensions: 
 
Interface: The Microblog user interface is “primitive” (ugly!).  Enhance the interface to 
make it suitable for ordinary users. 
 
Security: Microblog is horrendously insecure because passwords are stored in cleartext 
in the database and cookie file, and are sent in cleartext over the network.  Read about 
more secure approaches to session management and implement one of them.   
 


