
CS 339 Project C Dinda

 Page 1 of 5

Project C: BTree

In this last project, you will implement a BTree index in C++. At the end of the project,
you will have a C++ class that conforms to a specific interface. Your class is then used
by various command-line tools. The tools will let you create and manipulate persistent
BTree indexes stored in virtual disks and accessed through a buffer cache that
manipulates disk blocks or pages. The tools will also tell you what the performance is, in
terms of how long individual operations take and how many disk reads and writes you do.
The I/O model of computation is used – we only count disk time.

You can assume that requests to the BTree are serialized, meaning that you can finish a
request before starting the next one. In a real database system, however, locking and
logging are used to allow multiple requests to simultaneously execute on the tree. If you
really feel ambitious, you can add support for this for extra credit.

You can assume that keys and values in the Btree are of fixed size and given when the
Btree is initialized. In a real database system, however, keys and values can be of
variable size. You are welcome to add support for variable length keys and values for
extra credit.

You will be implementing a “pure” BTree. Many databases implement a B+Tree, which
is a relatively straightforward extension and makes doing range queries much faster. You
are welcome to do a B+Tree for extra credit.

Your class will be evaluated using a test harness that will evaluate its correctness and
performance. The test harness will generate a random, but repeatable stream of requests,
run them through your implementation and a reference implementation, compare the
outputs, pointing out errors in your implementation, and presenting a performance
number. We will grade your project based on correctness and performance using a
random request stream generated from a particular seed. We won’t tell you which seed,
but you can test your program using lots of different seeds. At the end of the class, we
will make available a web page showing the performance/correctness of each
implementation in an anonymized form. We may also provide opportunities for
competition earlier during the project for those who are interested.

This project may be done in groups of up to three people.

Getting and installing the framework
To install the framework, log into your account on tlab-login and do the following:

cd ~
tar xvfz ~pdinda/HANDOUT/btree_lab.tgz
cd btree_lab
more README

CS 339 Project C Dinda

 Page 2 of 5

The README file will give you detailed instructions on how to configure the framework
and verify that it is working. You will be writing btree.cc and btree.h. Note test.pl – it is
the test harness mentioned above. ref_impl.pl is the reference implementation. Your
implementation will be executed via sim.cc

Btree operations and the command-line
At a high-level of abstraction, a Btree is a mapping from keys to values. Btrees can
require that all keys be unique, but it’s not necessary – there is a distinction between a
key in a Btree and a key in relational database terminology. This is also necessary for
SQL. In SQL, it is perfectly OK to create an index on some attribute or set of attributes
that form neither a key or superkey. If the index is implemented as a Btree, then it must
be possible for the “key” (the values that the set of attributes takes on) not to be unique.

A Btree implementation must perform the following operations:

• Initialize: create a new Btree structure on the disk – “format” or “mkfs” in a file
system

• Insert (key, value)
• Update (key, value)
• Delete (key)
• Lookup (key) : returns value associated with the key
• Range Lookup (key1,key2): returns a list of (key,value) pairs, ranging from those

associated with key1 to those associated with key2.

In addition, your Btree implementation will also support the following operations:

• Sanity Check: do a self-check of the tree looking for problems – “chkdsk” or
“fsck” in a file system.

• Display: do a traversal of the BTree, printing out the sorted (key,value) pairs in
ascending order of the keys.

The btree_* tools that are built implement these operations. This lets you manipulate a
btree from the command line. At the end of each execution, the performance statistics
are printed.

The sim tool reads a sequence of these operations, starting with an initialization, from
standard input and applies them. The results of each operation are printed. At the very
end, the performance statistics for the entire run are printed.

What does the Btree look like on the disk?
A BTree on the disk looks a lot like a file system on a disk. The blocks of the disk are
used to store BTree nodes. BTree nodes come in two forms:

• Internal nodes: These store keys and pointers.
• Leaf nodes: These store keys and their associated values.

CS 339 Project C Dinda

 Page 3 of 5

By pointer, what I mean is a disk block number (the blocks are numbered from 0 to the
total number of blocks minus one. Do not worry about pointer swizziling.

The size of a block is determined when the disk is created. The size of a key and the size
of a value are determined when the BTree is initialized and need not be the same (and
generally are not). Because of this variation, you will probably have to write
serializers/unserializers that read and write disk blocks into appropriate in-memory
structures.

Generally, it a good idea to give your disk a superblock, a block, typically stored in block
number zero, that describes the BTree (size of key, size of value, pointer to root block,
pointer to free list).

You will also want to have a data structure to keep track of free and allocated blocks on
the disk. Notice that you can always discover all the allocated blocks by doing a traversal
of the tree. However, this is quite inefficient. Some approaches you could track free
blocks:

• Use a free space bitmap: you can create an in-memory bitmap of the allocation
status of the blocks by doing a traversal at startup time. This doesn’t really scale
(eventually the bitmap is big enough that you have to put *it* on the disk, in
which case you have the same problem you started with). However, it’s OK for
the project.

• Tie together the free blocks in their own data structure. For example, since the
block is free, you might as well store a pointer in it. Using one pointer per block,
you can tie all the free blocks into a linked list.

Allocation of free space is very important in disk systems because they have non-uniform
access. Allocating a block that is “close” to other blocks that are used with it is very
important for performance. If you allocate blocks all in random locations, you’ll have
lousy performance because you’ll be doing big seeks as you walk the tree.

What are the interfaces?
The framework provides the following interface to you. Notice that the interface is of a
buffer cache, an intermediary between the data storage and indexing systems and the raw
disk system. It keeps track of reads and writes to the actual underlying disk system. To
see how to use the interface, take a look at the btree_*, and *buffer tools.

We use the I/O model of computation here and assume that your performance is
dominated by these read and writes. The framework also keeps track of virtual time – the
time in milliseconds that has passed since you started using the buffer cache. Virtual
time passes according to I/Os.

Block: This abstracts a linear array of bytes and provides memory management.

DiskSystem: This simulates a single disk disk system. Think of this as an IDE disk.
You read and write Blocks from and to a DiskSystem. To see how to use this, look at
the various *disk tools.

CS 339 Project C Dinda

 Page 4 of 5

BufferCache: This is your main interface to the disk. It has the following properties:

• Write back: Writes are caches as well as reads.
• Write allocate: A write to a block that is not in the cache puts it into the cache.
• LRU: When a block needs to be evicted, the one that was used the longest time

ago is chosen.
The interface also provides prefetching, meaning that you can request blocks at any time
and come back for them later, thus letting you overlap I/O with other work, and also to
generate parallelism for the cache and to give it a chance to plan a seek strategy. NOTE:
This is currently UNIMPLEMENTED and is available for extra credit. To see how to
use the buffer cache, look at the various *buffer tools.

BTreeIndex: The interface you will provide is that of a BTree index for fixed length
binary keys. Notice that a range scan is possible. If you implement a B+Tree (see extra
credit), range scans will be much faster. A detailed, commented version of the interface
is available in btree.h

Project Steps
We suggest that you take the following steps:

1. Carefully read and understand the BTree information in the book. You do not
want to start this project without understanding what a BTree node should
contain, and how BTrees are kept balanced.

2. Design your on-disk data structures: superblock, interior node, and leaf node.
3. Decide on how to do free space management and design your data structures for

that.
4. Write serializers/unserializers for your superblock, interior node, leaf node, and

any free space management data structures. A serializer takes an in-memory
representation (an interior node, for example), and writes it to a disk block in an
appropriate way. An unserializer does the reverse. If you are particularly clever,
you may be able to make these very “thin”.

5. Write and test your code for initialization. (Write the superblock to format, read
the superblock to initialize)

6. Write and test your code for free space management (allocate and deallocate
blocks). If you tell BufferCache when you allocate or deallocate a block, it will
also keep track of things in its own internal representation. The advantage of this
is that it may simplify debugging because it will warn you when you try to
allocate a block that’s already allocated or deallocate a block that was never
allocated.)

7. Implement the BTree without balancing. Notice that if you set the key size large
enough, you can effectively force this to be a binary tree, which is helpful for
getting started. You should be able to get insert, update, delete, and lookup
working and test correctness at this stage.

8. Implement balancing. We suggest that you start with the balance steps needed for
insertion and then do the ones needed for deletion.

9. Do extra credit if you have time!

CS 339 Project C Dinda

 Page 5 of 5

Where to go for help
 Take a look at Comer’s Ubiquitous B-Tree article (linked from the course web

page)
 You might find the B+-tree code in the MacFS filesystem to be interesting. The

Macintosh’s HFS and HFS+ filesystems use B+Trees to store directories and
logical to physical block mappings. However, note that it is rather Mac-specific,
and it implements variable-length keys. See
http://www.cs.northwestern.edu/~pdinda/codes.html for more. Please note that
attempting to copy+paste from this code will be nearly impossible.

 Newsgroups and instant messaging, as described on the course web page. Don’t
forget to help others with problems that you’ve already overcome.

 Office hours. Make sure to use the office hours made available by the instructor
and the TAs.

Hand-in
We will send email about this.

Extra Credit (30% Maximum)
Here are extra credit directions, ordered from easy to hard (in our estimation):

• B+Tree: Add B+Tree support and modify the range query to use it. Essentially,
you will now need to store two pointers in each leaf node.

• Prefetch: Add prefetch support to the BufferCache.
• Roll back: Make it possible to take your BTree “go back in time” using an undo

log. For extra points, put the undo log on the virtual disk.
• Atomicity and durability: Tag transaction begins and ends in your log and use

them to provide these transactional semantics.
• Concurrency: Allow multiple threads to manipulate your BTree simultaneously.

Note: outside of the obvious, very slow “big giant lock on the whole enchilada”
approach, this is subtle and interesting. We can point you to a survey paper on
BTree locking if you’re interested. We strongly suggest you try the other extra
credit first

• Independence. If you have logs and you have concurrency, you can implement
independence. Again, check with us before you decide to do this.

