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Project C: BTree Index 
 

In this last project, you will implement a BTree index in C++.  At the end of the project, 
you will have a C++ class that conforms to a specific interface.  Your class is then used 
by various command-line tools.  The tools will let you create and manipulate persistent 
BTree indexes stored in virtual disks and accessed through a buffer cache that 
manipulates disk blocks or pages.  The tools will also tell you what the performance is, in 
terms of how long individual operations take and how many disk reads and writes you do.  
The I/O model of computation is used – we only count disk time.  
 
You can assume that requests to the BTree are sequential, meaning that you can finish a 
request before starting the next one.  In a real database system, however, locking and 
logging are used to allow multiple requests to simultaneously execute on the tree.  If you 
really feel ambitious, you can add support for this for extra credit.   
 
You can assume that keys and values in the BTree are of fixed size and given when the 
BTree is initialized.  In a real database system, however, keys and values can be of 
variable size.  You are welcome to add support for variable length keys and values for 
extra credit.   
 
You will be implementing a “pure” BTree.   The nodes of a BTree are disk blocks.   The 
leaf nodes hold keys and values, while the interior nodes hold keys and disk block 
pointers.   You can also optionally chain the BTree leaf nodes together into a linked list, 
making range queries much faster.  If you do this, it’s known as a “B+Tree”.  
 
Your class will be evaluated using a test harness that will evaluate its correctness and 
performance.   The test harness will generate a random, but repeatable stream of requests, 
run them through your implementation and a reference implementation, and compare the 
outputs, pointing out errors in your implementation.  We will grade your project based on 
correctness using a random request stream generated from a particular seed.   We won’t 
tell you which seed, but you can test your program using lots of different seeds, key sizes, 
and value sizes.   
 
This project may be done in groups of up to three people.   
 

Getting and installing the framework 
To install the framework, log into your account on Murphy and do the following: 
 
cd ~ 
tar xvfz ~pdinda/339/HANDOUT/btree/btree_lab.tgz 
cd btree_lab 
export PATH=$PATH:. 
touch .dependencies 
make depend clean 
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make 
more README 
 
 
The README file will give you detailed instructions on how to configure the framework 
and verify that it is working.   You will be writing  btree.cc and btree.h, and adding other 
files as you see fit.  You’ll see “WRITE ME” comments in these files to indicate where 
you probably want to work.   Note test.pl – it is the test harness mentioned above.  
ref_impl.pl is the reference implementation.   You can use test_me.pl to run your 
implementation against the reference implementation.    Your implementation will be 
executed via sim.cc. 
 
The code should compile and work on any Unix-like environment, provided you have gcc 
and Perl.   If you want graphical displays of your BTrees, you’ll also need to have 
AT&T’s GraphViz package (which is free).   Murphy has all the necessary tools installed.  
Your code will be tested on Murphy. 
 
Because you can graphically display trees, you may find it useful to have NX, X, or VNC 
to provide remote access to graphical applications or desktops running on the Unix 
machine.    
 

BTree operations and the command-line 
At a high-level of abstraction, a BTree is a mapping from keys to values.  BTrees can 
require that all keys be unique, but it’s not necessary – there is a distinction between a 
key in a BTree and a key in relational database terminology.   This is also necessary for 
SQL.  In SQL, it is perfectly OK to create an index on some attribute or set of attributes 
that form neither a key or superkey.  Your implementation can assume that all keys are 
unique. 
 
Your BTree implementation must perform the following operations: 

• Initialize:  create a new BTree structure on the disk --- this is like “format” or 
“mkfs” in a file system.    

• Attach: open a BTree for use.   In our API, this is combined with initialization 
(the “create” argument).  You can ask for the BTree to be attached with our 
without initialization.   This is like mounting a file system. 

• Insert (key, value) – insert the key/value pair 
• Update (key, value) – change the value associated with an existing key 
• Delete (key) – delete the key/value pair associated with the given key You do 

not need to do this for Fall 2012, but you can do it for extra credit 
• Lookup (key) - return the value associated with the key 
• SanityCheck(): do a self-check of the tree looking for problems --- this is like 

“chkdsk” or “fsck” in a file system. 
• Display(): do a traversal of the BTree, printing out the sorted (key,value) pairs in 

ascending order of the keys.    
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The btree_* tools that are built implement these operations.  This lets you manipulate a 
BTree from the command line.  At the end of each execution, the performance statistics 
are printed.     
 
The sim tool reads a sequence of these operations, starting with an initialization, from 
standard input and applies them.  The results of each operation are printed.  At the very 
end, the performance statistics for the entire run are printed. 
 
If your Display() function also supports output in the dot format, which is described in a 
comment in the code, you can use btree_display.pl to show your tree graphically.  The 
dot format is basically just a description of graph. 
 

What does the BTree look like on the disk? 
A BTree on the disk looks a lot like a file system on a disk.  The blocks of the disk are 
used to store BTree nodes.  BTree nodes come in two forms: 

• Internal nodes:  These store keys and pointers to other disk blocks. 
• Leaf nodes: These store keys and their associated values. 

 
By pointer, what I mean is a disk block number (the blocks are numbered from 0 to the 
total number of blocks minus one.  The size of a block is determined when the disk is 
created.  Since the BTree nodes are the size of disk blocks, we often use the words 
“node” and “block” interchangeably.  On a typical system, the disk blocks are also the 
same size as the pages the operating system uses to manage memory. 
 
The size of a key and the size of a value are determined when the BTree is initialized and 
need not be the same (and generally are not).  Because of this variation, you will need 
serializers/unserializers that read and write disk blocks into appropriate in-memory 
structures.1    The project handout includes BTree C++ data structures with such 
serialization support.    These are in the files btree_ds.{ch}.   You are welcome to use 
them, or write your own. 
 
Generally, it a good idea to give your disk a superblock, a block, typically stored in block 
number zero, that describes the BTree (size of key, size of value, pointer to root node, 
pointer to free list, etc). 
 
You will also want to have a data structure to keep track of free and allocated blocks on 
the disk.2  Notice that you can always discover all the allocated blocks by doing a 
traversal of the tree.  However, this is quite inefficient.  There are many approaches you 
could use to keep track of free blocks.  Allocation of free space is very important in disk 
systems because they have non-uniform access latencies.  Allocating a block that is 
“close” to other blocks that are used with it is very important for performance.  If you 
                                                 
1 Make sure that you understand what is meant here because it is very important.  You can write your 
BTree data structures as C/C++ structs, but then you also need a way to write those structs to disk blocks 
and read them back again.  The functions that do this reading and writing are typically called serializers and 
unserializers.   
2 This part should sound to you very much like the malloc lab from EECS 213, except here all requests are 
for the same size.  Also, this data structure must itself be stored on the disk, not just in memory.    
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allocate blocks all in random locations, you’ll have lousy performance because you’ll be 
doing big seeks as you walk the tree. 
 
However, since you are not going to be graded on performance, I suggest you use a 
simple free list.   Have the superblock point to the first free node and have every free 
node point to the next free node.  Then simply insert and remove free nodes from the 
front of the list.   Another alternative is to use a simple bit vector, with a bit for each 
block on the disk.  If the bit is zero, the block is free.   A simple free list allocator is 
included in the code we give you. 

What are the interfaces? 
The framework provides the following interface to you.  Notice that the interface is of a 
buffer cache, an intermediary between the data storage and indexing systems and the raw 
disk system.   It keeps track of reads and writes to the actual underlying disk system.  To 
see how to use the interface, take a look at the btree_*, and *buffer tools.  
 
We use the I/O model of computation here and assume that your performance is 
dominated by these read and writes.  The framework also keeps track of virtual time – the 
time in milliseconds that has passed since you started using the buffer cache.  Virtual 
time passes according to I/Os. 
 
Block:  This abstracts a linear array of bytes and provides memory management. 
 
DiskSystem:  This simulates a single disk disk system.  Think of this as a single hard 
disk.  You read and write Blocks from and to a DiskSystem.    To see how to use this, 
look at the various *disk tools. 
 
BufferCache: This is your main interface to the disk.  It has the following properties: 

• Write back:  Writes are cached as well as reads. 
• Write allocate: A write to a block that is not in the cache puts it into the cache. 
• LRU: When a block needs to be evicted, the one that was used the longest time 

ago is chosen. 
 
In addition, for this project, we are also providing the following partial implementation:  
 
BTreeNode: This an implementation of a BTree node (root, interior, and leaf), which is 
provided in btree_ds.{ch}.  It is a C++ class that provides serialization to/from the 
DiskSystem via the BufferCache as Block.   That is, a BTreeNode is the same size as a 
Block.     You are welcome to write your own implementation of a BTree node if you’d 
like, or you can use this one. 
 
BTreeIndex: The interface you will provide is that of a BTree index for fixed length 
binary keys.     You can optionally add range queries based on leaf-node linking (see 
extra credit).  A detailed, commented version of the interface is available in btree.h.    
BTreeIndex is partially implemented.  Init, Attach, Lookup, and Display are implemented 
for you.  We also provide a simple free list allocator.  You are welcome to write your own 
implementation of BTreeIndex or extend this one.  
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Advice 
It’s very easy to become overwhelmed with the code in this project.   There are almost 
3400 lines of C++!  When you’re asked to work in the context of an existing codebase, 
which is almost always the case, you have to adopt strategies that do not involve trying to 
read and understand all of the code.  Some strategies that are useful include: 

• Walk through several specific execution paths instead of the whole codebase.  In 
this project, you could focus on understanding Init/Attach and Lookup to start 
with.   If you don’t know how to use a symbolic debugger (i.e., gdb) to do this, 
now is a great time to learn. 

• Follow the abstractions only as far as you need to.   In this project, there is a lot of 
code that implements the buffer cache and the disk system simulation.   In order 
to create a correct implementation of BTree, you don’t need to know any of it.   
You just need to know how to make a virtual disk, how to read and write the 
buffer cache, and how to assure that the buffer cache is flushed when your tree is 
detached.  Later, you may want to dig deeper if you decide to make your 
implementation faster. 

• Play with it.   Code is intended to be run, not stared at.  This codebase includes a 
number of tools for exploration, including graphical display (btree_display.pl). 

 
For a sense of scope of the project, my implementation is about 650 lines of C++ code in 
addition to those I’ve given you, and that includes the Delete functionality, which you do 
not need to do.  

Suggested Project Steps 
We suggest that you take the following steps: 

1. Carefully read and understand the BTree information in the book.   You do not 
want to start this project without understanding what a BTree node should 
contain, and how BTrees are kept balanced.     You may also find Comer’s survey 
article on BTrees helpful. 

2. Understand the on-disk data structures:  superblock, interior node, and leaf node.  
We provide implementations of these in btree_ds.{h,cc,README}.    You are 
welcome to use them or write your own.  We strongly suggest you look at our 
on-disk data structures implementation first.  

3. Make sure you understand serialization/unserialization of your superblock, 
interior node, leaf node, and any free space management data structures.  We 
provide an implementation for the nodes in btree_ds.{h,cc,README} which 
you’re welcome to use, or you can roll your own.   

4. Make sure you understand the code for initialization and attaching the BTree, or 
write your own.      

5. Understand the implementation of Lookup, or write your own.    
6. Extend the code to implement Update.   This should be very easy to do if you 

understand Lookup.   Note that you won’t be able to test your code for this until 
you have at least Insert also working. 

7. Determine whether you will use the free space allocator we provide or if you will 
write your own.   The code we give you sets up a simple explicit free list.  You’re 
welcome to design your own free space management approach to replace this one.   
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8. Implement Insert.   Insert is not really something that you can implement 
incrementally.  You need to design your approach and implement it en masse.  
Fortunately, the descriptions given in the book and in Comer are very detailed.  
Overall, you will probably find that this is simplest to do using recursion, walking 
down the tree to figure out where to insert, and then walking up the tree as you 
split nodes.   Then there is a special case if you have to split the root. 

9. Do extra credit if you have time! 

Where to go for help 
 Take a look at Comer’s Ubiquitous B-Tree article (linked from the course web 

page) 
 You might find the B+-tree code in the MacFS filesystem to be interesting.  The 

Macintosh’s HFS and HFS+ filesystems use BTrees to store directories and 
logical to physical block mappings.  However, note that it is rather Mac-specific, 
and it implements variable-length keys.  See 
http://www.cs.northwestern.edu/~pdinda/codes.html for more.  Please note that 
attempting to copy+paste from this code will be nearly impossible.   

 Our course discussion group.  Don’t forget to help others with problems that 
you’ve already overcome. 

 OFFICE HOURS AND RECITATION SECTION.  Make sure to use the 
office hours made available by the instructor and the Tas. 

 We may provide additional code snippets/etc over time.  If we do, we will 
announce them and make them available in ~pdinda/339/HANDOUT/btree. 

Hand-in 
We will send email about this. 
 

Extra Credit (30% Maximum) 
As with previous projects, if you are interested in doing extra credit, talk to us first so that 
we can determine the maximum number of points possible.  
 
Implement Delete.   The first step here is to implement Delete without key recovery 
from internal nodes.  Delete is more difficult than insert because the key to be deleted can 
exist both in the leaves and in interior nodes.   Begin with an implementation that leaves 
deleted keys in internal nodes and simply removes them from leaves. Notice that this still 
requires that you do merging of nodes, so you’ll search down to a leaf, delete, and then 
merge back up to the root.  Again, this will be easiest to do with recursion.  Once you’ve 
completed this step, you’ll have a perfectly correct BTree implementation.  The only 
problem is that it will slowly accumulate garbage (deleted keys in interior nodes).   The 
next step will be to do key recovery from internal nodes.   Be sure you read the book and 
Comer carefully before starting this part.  Note that to test your Delete functionality, you 
will need to modify gen_test_sequence.pl and uncomment the DELETE and 
DELETE_EXISTS operations.   
 
Add fast range queries.  To do this, you’ll need to stitch your leaf nodes into a linked 
list and extend the interface of BTreeIndex.  A range query for keys between min and 
max then boils down to a Lookup for the min key, and then a forward scan through the 
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linked list until the max key is found.   This will turn your  BTree into a B+Tree, 
allowing you to do range queries in O(log(n)+m) time, where n is the number of keys in 
the tree, and m is the number of keys in the range. 
 
Add support for variable length keys and values.  This is self-explanatory. 
 
Implement a locking protocol (something better than just one big lock) for the tree so 
that operations do not have to be serialized. 
 
Implement a logging approach (redo or undo logging) so that you can rollback 
changes to the tree in case of a failed transaction.  
 
 


