intel)

Intel® 64 and IA-32 Architectures
Software Developer’'s Manual

Volume 2A:
Instruction Set Reference, A-M

NOTE: The Intel 64 and IA-32 Architectures Software Developer’s Manual
consists of five volumes: Basic Architecture, Order Number 253665;
Instruction Set Reference A-M, Order Number 253666; Instruction Set
Reference N-Z, Order Number 253667; System Programming Guide,
Part 1, Order Number 253668; System Programming Guide, Part 2,
Order Number 253669. Refer to all five volumes when evaluating your
design needs.

Order Number: 253666-026US
February 2008

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANT-
ED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED
FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Developers must not rely on the absence or characteristics of any features or instructions marked “reserved”
or “undefined.” Improper use of reserved or undefined features or instructions may cause unpredictable be-
havior or failure in developer's software code when running on an Intel processor. Intel reserves these fea-
tures or instructions for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from their unauthorized use.

The Intel® 64 architecture processors may contain design defects or errors known as errata. Current char-
acterized errata are available on request.

Hyper-Threading Technology requires a computer system with an Intel® processor supporting Hyper-
Threading Technology and an HT Technology enabled chipset, BIOS and operating system. Performance will
vary depending on the specific hardware and software you use. For more information, see http://www.in-
tel.com/technology/hyperthread/index.ntm; including details on which processors support HT Technology.

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technol-
ogy requires a computer system with Intel® Virtualization Technology, an Intel TXT-enabled processor,
chipset, BIOS, Authenticated Code Modules and an Intel TXT-compatible measured launched environment
(MLE). The MLE could consist of a virtual machine monitor, an OS or an application. In addition, Intel TXT
requires the system to contain a TPM v1.2, as defined by the Trusted Computing Group, and specific soft-
ware for some uses. For more information, see http://www.intel.com/technology/security

Intel® Virtualization Technology requires a computer system with an enabled Intel® processor, BIOS, virtual
machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, perfor-
mance or other benefits will_vary depending on hardware and software configurations. Intel® Virtualization
Technology-enabled BIOS and VMM applications are currently in development.

64-bit computing on Intel architecture requires a computer Séstem with a processor, chipset, BIOS, oper-
ating system, device drivers and applications enabled for Intel®™ 64 architecture. Processors will not operate
(including 32-bit operation) without an Intel® 64 architecture-enabled BIOS. Performance will vary de-
pending on your hardware and software configurations. Consult with your system vendor for more infor-
mation.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability
and a supporting operating system. Check with your PC manufacturer on whether your system delivers Ex-
ecute Disable Bit functionality.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel Core Solo, Intel Core Duo, Intel Core 2 Duo, Intel Core 2
Extreme, Intel Pentium D, Itanium, Intel SpeedStep, MMX, and VTune are trademarks or registered trade-
marks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing
your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-548-4725
or visit Intel’s website at http://www.intel.com

Copyright © 1997-2008 Intel Corporation

i Vol.2A

CONTENTS

PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1 IA-32 PROCESSORS COVERED IN THISMANUAL ..o 1-1
1.2 OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION SET REFERENCE 1-3
13 NOTATIONAL CONVENTIONS ..ottt e 1-4
1.3.1 Bit and Byte Order. ..o e 1-4
1.3.2 Reserved Bits and Software Compatibility...............ccooiiiiiiiii it 1-4
133 TSy 1 o o T 0= = T 3 1-5
134 Hexadecimal and Binary NUMbDers. e 1-6
135 Segmented AddreSSiNg. vt 1-6
136 EXCEPTIONS &ttt e 1-6
137 A New Syntax for CPUID, CR,and MSR Valuesc.cvvviiiiiiiiiiinnnenns. 1-7
14 RELATED LITERATURE . . vttt et e e 1-8
CHAPTER 2
INSTRUCTION FORMAT
2.1 INSTRUCTION FORMAT FOR PROTECTED MODE, REAL-ADDRESS MODE, AND

VIRTUAL-8086 MODE 2-1

2.1.1 INStrUCHION PrefiXeS . .\t e 2-1
2.1.2] ol a1 2-3
213 MOdR/M and SIB BYteS v ittt e 2-4
214 Displacement and Immediate Bytesc.ovviiiiiiii i 2-4
215 Addressing-Mode Encoding of ModR/Mand SIBByteS..........cocovvvviniinininnn. 2-4
2.2 A-32E MODE ..\ttt e e 2-9
2.2.1 REX PrEfiXES ottt 2-9
2.2.1.1 = ol a1 2-10
2.2.1.2 More on REX Prefix Fieldsovve v 2-10
2213 Y] =Tl =T 3 3= 2-13
2214 Direct Memory-Offset MOVS. ...t 2-13
2215 IMMEdIatES oot e 2-14
2.2.1.6 RIP-Relative Addressing.o.vvviii et 2-14
2.2.1.7 Default 64-Bit Operand Size.coii i e 2-15
2.2.2 Additional Encodings for Control and Debug Registersccovvvennnt. 2-15
CHAPTER 3
INSTRUCTION SET REFERENCE, A-M
3.1 INTERPRETING THE INSTRUCTION REFERENCEPAGES ..o 3-1
3.1.1 INSTrUCHION FOMMaT . . oottt e e 3-1
3.1.1.1 Opcode Column in the Instruction Summary Table ...t 3-2
3.1.1.2 Instruction Column in the Opcode Summary Tableccvviviinnnt,. 3-3
3.1.1.3 64-bit Mode Column in the Instruction Summary Table......................... 3-7
3.1.14 Compatibility/Legacy Mode Column in the Instruction Summary Table. 3-7

Vol. 2A i

CONTENTS

PAGE
3.1.1.5 Description Column in the Instruction Summary Table.......................... 3-7
3.1.16 DESCriPtioN SECHION ..\ttt 3-7
3.1.1.7 OPEration SECHION. ..o\ttt 3-7
3.1.1.8 Intel® C/C++ Compiler Intrinsics Equivalents Section......................c... 3-11
3.1.19 Flags Affected SEeCtioncooii i 3-14
3.1.1.10 FPU Flags Affected SECtion.o e 3-14
3.1.1.11 Protected Mode EXceptions Section.c.vviiiiiii it 3-15
3.1.1.12 Real-Address Mode Exceptions Section ..ot 3-16
3.1.1.13 Virtual-8086 Mode Exceptions SECtion.vvvvvviiii i 3-16
3.1.1.14 Floating-Point Exceptions Section.o 3-16
3.1.1.15 SIMD Floating-Point Exceptions Section ...t 3-17
3.1.1.16 Compatibility Mode Exceptions Section...........cooiiiiiii i 3-17
3.1.1.17 64-Bit Mode Exceptions SECtioncovvi i e 3-17
3.1.2 Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM /
PCMPISTRI/ PCMPISTRM. . ottt 3-18
3.1.2.1 General DesCriplioNo v e 3-18
3.1.2.2 Source Data FOMmMat.t e 3-19
3.1.23 Aggregation Operationcvuir it e e 3-20
3.1.24 POty o 3-21
3.1.25 OUTPUL SElBCHION. .ottt e 3-21
3.1.26 Valid/Invalid Override of COMPariSONS. ... vvvvvt vttt rneianns 3-22
3.1.2.7 Summary of Im8 Controlbyte.o 3-23
3.1.2.8 Diagram Comparison and Aggregation Process...........ovvviiiiiiiiiinnnnn. 3-24
3.2 INSTRUCTIONS (A-M) . ettt e e e e e 3-24
AAA—ASCII Adjust After Addition. ..o 3-25
AAD—ASCII Adjust AX Before Division.ovvu v e 3-27
AAM—ASCII Adjust AX After MUIEPIY. . ..o 3-29
AAS—ASCII Adjust AL After Subtraction. ... 3-31
ADC—Add WIth Cammy . ot e et e e e e e e 3-33
ADD— A .. ettt e 3-36
ADDPD—Add Packed Double-Precision Floating-Point Values 3-39
ADDPS—Add Packed Single-Precision Floating-Point Values 3-42
ADDSD—Add Scalar Double-Precision Floating-Point Values 3-45
ADDSS—Add Scalar Single-Precision Floating-Point Values 3-48
ADDSUBPD—Packed Double-FP Add/Subtractccoovvviiiiiii e 3-51
ADDSUBPS—Packed Single-FP Add/Subtract. ... 3-55
AND—LOGICAI AND ..\ttt e e e 3-59

iv Vol. 2A

ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values. .. 3-62
ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values.... 3-64
ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision

Floating-Point Values e e 3-66
ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision

Floating-Point Valueso e 3-68
ARPL—Adjust RPL Field of Segment Selector...........cooovviiiiiiiiiiinnnnns 3-70
BLENDPD — Blend Packed Double Precision Floating-Point Values 3-72
BLENDPS — Blend Packed Single Precision Floating-Point Values 3-74
BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values 3-77

CONTENTS

PAGE

BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values........ 3-80
BOUND—Check Array Index Against Boundscoovviiiiiiiiiininininanns 3-83
BSF—BIit SCan FOrWardovuiit e 3-86
BSR—BIit SCaN REVEISE ..\ttt e 3-88
BS W AP —BY e SWaD . ottt e 3-90
BT Bt TSt vttt ittt e 3-92
BTC—Bit Test and Complementoviiiiii i iiaaaas 3-95
BTR—Bit Test and ReSet.\ttt e 3-98
BTS—Bit Testand Set .. .vvveii e 3-101
CALL—Call ProCedUre . . v v ettt 3-104
CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to

Doubleword/Convert Doubleword to Quadword.coovveen. 3-122
CLC—Clear Carmy Flago vttt et 3-123
CLD—Clear Direction FIagvvvvvir e 3-124
CLFLUSH—FIush Cache Line.ovi e 3-125
CLI —Clear Interrupt FIag.o v e 3-127
CLTS—Clear Task-Switched FIagin CRO. ..ot 3-130
CMC—Complement Carry FIag vt e 3-132
CMOVcc—Conditional MOVE ... vv vttt 3-133
CMP—Compare TWO OPerandsouvuiriririiii it enenas 3-140
CMPPD—Compare Packed Double-Precision Floating-Point Values............... 3-143
CMPPS—Compare Packed Single-Precision Floating-Point Values................ 3-148
CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands............... 3-153
CMPSD—Compare Scalar Double-Precision Floating-Point Values 3-159
CMPSS—Compare Scalar Single-Precision Floating-Point Values 3-163
CMPXCHG—Compare and EXChange.vvvvvrii i ei e 3-167
CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes 3-170
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set

o I 3-173
COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set

B LA G S . e 3-176
CPUID—CPU Identification.vvei e 3-179
CRC32 — Accumulate CRC32 Value. ... oo 3-212
CVTDQ2PS—Convert Packed Doubleword Integers to Packed

Single-Precision Floating-Point Values.............cooi i 3-218
CVTPD2DQ—Convert Packed Double-Precision Floating-Point

Values to Packed Doubleword Integers.........coovviiiviiiiiiiinnnnn. 3-221
CVTPDZ2PI—Convert Packed Double-Precision Floating-Point

Values to Packed Doubleword Integers..........oovvvviiiiiiiiiinnnnnnns 3-224
CVTPD2PS—Convert Packed Double-Precision Floating-Point

Values to Packed Single-Precision Floating-Point Values.................. 3-227
CVTPI2PD—Convert Packed Doubleword Integers to Packed

Double-Precision Floating-Point Values ..ot 3-230
CVTPI2PS—Convert Packed Doubleword Integers to Packed

Single-Precision Floating-Point Values................cociiiiiiiininn 3-233
CVTPS2DQ—Convert Packed Single-Precision Floating-Point

Values to Packed Doubleword Integers............coooviiiiiniiinnenn 3-236

Vol.2A v

CONTENTS

vi Vol.2A

PAGE

CVTPS2PD—Convert Packed Single-Precision Floating-Point

Values to Packed Double-Precision Floating-Point Values 3-239
CVTPS2PI—Convert Packed Single-Precision Floating-Point

Values to Packed Doubleword Integers.covivviiiiiiiiennnnnns. 3-242
CVTSD2SI—Convert Scalar Double-Precision Floating-Point

Value to Doubleword INnteger.o.oiiii i 3-245
CVTSD2SS—Convert Scalar Double-Precision Floating-Point

Value to Scalar Single-Precision Floating-Point Value 3-248
CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision

Floating-PointValue 3-251
CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision

Floating-Point Value ... e e 3-254
CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to

Scalar Double-Precision Floating-Point Valueocooviiint 3-257
CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to

Doubleword INteger.ot e 3-260
CVTTPD2DQ—Convert with Truncation Packed Double-Precision

Floating-Point Values to Packed Doubleword Integers 3-263
CVTTPD2PI—Convert with Truncation Packed Double-Precision

Floating-Point Values to Packed Doubleword Integers 3-266
CVTTPS2DQ—Convert with Truncation Packed Single-Precision

Floating-Point Values to Packed Doubleword Integers 3-269
CVTTPS2PI—Convert with Truncation Packed Single-Precision

Floating-Point Values to Packed Doubleword Integers 3-272
CVTTSDZSI—Convert with Truncation Scalar Double-Precision

Floating-Point Value to Signed Doubleword Integer....................... 3-275
CVTTSS2SI—Convert with Truncation Scalar Single-Precision

Floating-Point Value to Doubleword Integer...............cooovvvvnient 3-278
CWD/CDQ/CQO0—Convert Word to Doubleword/Convert Doubleword to Quadword3-281
DAA—Decimal Adjust AL after Addition...............coiiiii i 3-283
DAS—Decimal Adjust AL after Subtraction..............cocoiiiiiiiiiiiiennn., 3-285
DEC—Decrement DY T ... ittt e 3-287
DIV—URSIgNed Divideouvriiit e 3-290
DIVPD—Divide Packed Double-Precision Floating-Point Values................... 3-294
DIVPS—Divide Packed Single-Precision Floating-Point Values.................... 3-297
DIVSD—Divide Scalar Double-Precision Floating-Point Values.................... 3-300
DIVSS—Divide Scalar Single-Precision Floating-Point Values 3-303
DPPD — Dot Product of Packed Double Precision Floating-Point Values 3-306
DPPS — Dot Product of Packed Single Precision Floating-Point Values 3-309
EMMS—Empty MMX Technology Statecovoviiiii e 3-313
ENTER—Make Stack Frame for Procedure Parameterscovvvvvinnnn. 3-315
EXTRACTPS — Extract Packed Single Precision Floating-Point Value............. 3-319
F2XMT—0mMPULE 2X=T ottt e e e e e 3-322
FABS—ADSOIUTE VAIUEt 3-324
FADD/FADDP/FIADD—AA.ottt e 3-326
FBLD—Load Binary Coded Decimalouviniiiiii i 3-330
FBSTP—Store BCD Integer and Popovvvv i 3-332

CONTENTS

PAGE
FCHS—Change Sign. ..o .ottt ettt 3-335
FCLEX/FNCLEX—Clear EXCEPLIONS ...\ vv vttt 3-337
FCMOVcc—Floating-Point Conditional Move 3-339
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point
Values and SEt EFLAGSor i 3-345
FOOS—0SINMe . ottt ettt e e e e 3-348
FDECSTP—Decrement Stack-Top PoINtercvvvvir it 3-350
FDIV/EDIVP/FIDIV=DiIVIde.ttt 3-352
FDIVR/FDIVRP/FIDIVR—Reverse Divide.vvvviiiiii i 3-356
FFREE—Free Floating-Point Registero 3-360
FICOM/FICOMP—Compare INtegerot aaes 3-361
FILD—L0ad INteger .. vttt i e e e e 3-364
FINCSTP—Increment Stack-Top Pointer. ... 3-366
FINIT/FNINIT—Initialize Floating-PointUnit.............ooiiiiiiii i 3-368
FIST/FISTP—St0re INteGEr . vttt et e e 3-370
FISTTP—Store Integer with Truncation ..o 3-374
FLD—Load Floating Point Valuet i 3-377
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLNZ/FLDZ—Load Constant........... 3-380
FLDCW—Load x87 FPU Control Word ..ot 3-382
FLDENV—Load x87 FPU ENVIrONMENT ...\ \vv e eiees 3-384
FMUL/FMULP/FIMUL—MURIPIY .« oo 3-387
FNOP—NO OPErationoveteieti e 3-391
FPATAN—Partial Arctangent.ot e e et et 3-392
FPREM—Partial Remainder.covvri e 3-395
FPREM1—Partial Remaindervvrviiiiii i 3-398
FPTAN—Partial Tangentottt i 3-401
FRNDINT—ROUN t0 INTEQET. .. vttt et 3-404
FRSTOR—Restore X87 FPU State ..o v 3-406
FSAVE/FNSAVE—Store x87 FPU State ..o 3-409
FSCALE—SCalE ..ottt 3-413
FSIN SN ettt et 3-415
FSINCOS—SiNE and COSINE ...ttt e 3-417
FSQRT—SQUare ROOT . ..o v vttt s 3-420
FST/FSTP—Store Floating Point Value. ... 3-422
FSTCW/FNSTCW—Store x87 FPU ControlWordoovviviiiiiiiiinnnnns 3-425
FSTENV/FNSTENV—Store x87 FPU Environmentcovviiininnnnnnn. 3-428
FSTSW/FNSTSW—Store x87 FPU StatusWordcovoviiviiiiiiiieins 3-431
FSUB/FSUBP/FISUB—SUDLIACt . ..ottt 3-434
FSUBR/FSUBRP/FISUBR—Reverse Subtract...........coovviiviiiiinininnn. 3-438
FT ST T ST . ettt e e 3-442
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Floating Point Values......... 3-444
FXAM—EXamineModR/M. 3-447
FXCH—Exchange Register Contents........oovviiii i enenas 3-449
FXRSTOR—Restore x87 FPU, MMX, XMM, and MXCSR State.................... 3-451
FXSAVE—Save x87 FPU, MMX Technology, and SSEState...................... 3-454
FXTRACT—Extract Exponent and Significand ..o, 3-465
FYL2X—ComPULE Y * 002X .+ v v ettt et 3-467

Vol. 2A Vi

CONTENTS

viii Vol. 2A

PAGE
FYL2XPT—Compute v ¥ 10G2(X +1). .ottt 3-469
HADDPD—Packed Double-FP Horizontal Add.covviiiii i 3-471
HADDPS—Packed Single-FP Horizontal Add.cccoiiii i 3-475
HUT—Halt o e 3-479
HSUBPD—Packed Double-FP Horizontal Subtractcooviviviiintt 3-481
HSUBPS—Packed Single-FP Horizontal Subtract ...t 3-485
IDIV=SIigned DiVidecouiriii it i et 3-489
IMUL—SIgned MURIPIYo 3-493
IN—INPUL frOm POt .. i 3-498
INC—INCrement bY T ..o e 3-500
INS/INSB/INSW/INSD—Input from Port to Stringccovviiiiiin .. 3-503
INSERTPS — Insert Packed Single Precision Floating-Point Value 3-507
INT n/INTO/INT 3—Call to Interrupt Procedure.covviiiiiiiinininnnns. 3-510
INVD—Invalidate Internal Caches.oovvriiii e 3-525
INVLPG—Invalidate TLB ENtry . ..ovvviii et 3-527
IRET/IRETD—INterrupt RETUMN ... 3-529
Jec—Jump if Condition IS Met. i 3-540
T P UMD e 3-547
LAHF—Load Status Flags into AHRegistercoovviiiiiiiiiiiiiiiaenns 3-557
LAR—Load Access Rights BYte.ii it 3-559
LDDQU—Load Unaligned Integer 128 BitS........covvviiiiiiiiiiiicice e 3-563
LDMXCSR—L0oad MXCSR RegiSter.ottt 3-566
LDS/LES/LFS/LGS/LSS—Load Far POINter.vv i 3-568
LEA—Load Effective Addresso.vvrvi e 3-574
LEAVE—High Level Procedure EXit.........cccoviiiiiiiii i 3-577
LFENCE—LOAd FENCE. ..\ttt e 3-579
LGDT/LIDT—Load Global/Interrupt Descriptor Table Register.................... 3-580
LLDT—Load Local Descriptor Table Register.ooovviiiiiiiiiinennnn. 3-583
LMSW—Load Machine Status Word. ..o 3-586
LOCK—Assert LOCK# Signal Prefix. ..o 3-588
LODS/LODSB/LODSW/LODSD/LODSQ—L0ad String. ... ovvvvvveiienieiniinnnenn, 3-590
LOOP/LOOPcc—Loop According to ECX Counter.ovvvvviii i 3-594
LSL—Load Segment Limit.ovvrin e 3-597
LTR—Load Task Register.ovuveii e 3-601
MASKMOVDQU—Store Selected Bytes of Double Quadword..................... 3-604
MASKMOVQ—Store Selected Bytes of Quadword...........covvviiviiiinnnnn. 3-607
MAXPD—Return Maximum Packed Double-Precision Floating-Point Values....... 3-610
MAXPS—Return Maximum Packed Single-Precision Floating-Point Values......... 3-613
MAXSD—Return Maximum Scalar Double-Precision Floating-Point Value 3-616
MAXSS—Return Maximum Scalar Single-Precision Floating-Point Value 3-619
MEENCE—MEMOrY FEMCE .. ittt e et et e e 3-622
MINPD—Return Minimum Packed Double-Precision Floating-Point Values.......... 3-623
MINPS—Return Minimum Packed Single-Precision Floating-Point Values.......... 3-626
MINSD—Return Minimum Scalar Double-Precision Floating-Point Value........... 3-629
MINSS—Return Minimum Scalar Single-Precision Floating-Point Value............ 3-632
MONITOR—Set Up Monitor Addressvvvvrviiiii i 3-635
MOV MOV Lttt e 3-638

CONTENTS

PAGE
MOV—Move to/from Control Registers.coviiiiii it 3-644
MOV—Move to/from Debug Registerscoooviiiiiiiiiii i 3-647
MOVAPD—Move Aligned Packed Double-Precision Floating-Point Values......... 3-649
MOVAPS—Move Aligned Packed Single-Precision Floating-Point Values. 3-652
MOVD/MOVQ—Move Doubleword/Move Quadword.oovvvvnveninnns. 3-655
MOVDDUP—Move One Double-FP and Duplicate. ..., 3-659
MOVDQA—Move Aligned Double Quadwordoovvviiinniiniienninnns. 3-662
MOVDQU—Move Unaligned Double Quadword.c.ovviiiiiiiinninennnns 3-664
MOVDQ2Q—Move Quadword from XMM to MMX Technology Register........... 3-667
MOVHLPS— Move Packed Single-Precision Floating-Point Values High to Low ... 3-669
MOVHPD—Move High Packed Double-Precision Floating-Point Value 3-671
MOVHPS—Move High Packed Single-Precision Floating-Point Values 3-674
MOVLHPS—Move Packed Single-Precision Floating-Point Values Low to High.... 3-677
MOVLPD—Move Low Packed Double-Precision Floating-Point Value............. 3-679
MOVLPS—Move Low Packed Single-Precision Floating-Point Values 3-681
MOVMSKPD—Extract Packed Double-Precision Floating-Point Sign Mask.......... 3-684
MOVMSKPS—Extract Packed Single-Precision Floating-Point Sign Mask.......... 3-686
MOVNTDQA — Load Double Quadword Non-Temporal Aligned Hint.............. 3-688
MOVNTDQ—Store Double Quadword Using Non-Temporal Hint 3-691
MOVNTI—Store Doubleword Using Non-Temporal Hint 3-694
MOVNTPD—Store Packed Double-Precision Floating-Point Values
Using Non-Temporal Hintoouveii e 3-696
MOVNTPS—Store Packed Single-Precision Floating-Point Values
Using Non-Temporal Hint e 3-699
MOVNTQ—Store of Quadword Using Non-Temporal Hint. 3-702
MOVQ—Move QUadWOI.ttt 3-705
MOVQ2DQ—Move Quadword from MMX Technology to XMM Register........... 3-708
MOVS/MOVSB/MOVSW/MOVSD/MOVSQ—Move Data from String to String. 3-710
MOVSD—Move Scalar Double-Precision Floating-Point Value 3-715
MOVSHDUP—Move Packed Single-FP High and Duplicate 3-718
MOVSLDUP—Move Packed Single-FP Low and Duplicate........................ 3-721
MOVSS—Move Scalar Single-Precision Floating-Point Values 3-724
MOVSX/MOVSXD—Move with Sign-EXtension.ovvvvviiiiiiiiinennnnnnss 3-727
MOVUPD—Move Unaligned Packed Double-Precision Floating-Point Values 3-729
MOVUPS—Move Unaligned Packed Single-Precision Floating-Point Values 3-732
MOVZX—Move with Zero-EXtend.covviiiiii e 3-735
MPSADBW — Compute Multiple Packed Sums of Absolute Difference............ 3-737
MUL—Unsigned MUItIPIYo 3-741
MULPD—Multiply Packed Double-Precision Floating-Point Values................ 3-744
MULPS—Multiply Packed Single-Precision Floating-Point Values................. 3-747
MULSD—Multiply Scalar Double-Precision Floating-Point Values................. 3-750
MULSS—Multiply Scalar Single-Precision Floating-Point Values 3-753
MWAIT—MONITOr Wait. . ..o e 3-756
CHAPTER 4
INSTRUCTION SET REFERENCE, N-Z
4.1 INSTRUCTIONS (N-Z). v ettt ettt ettt e e e 4-1

Vol. 2A ix

CONTENTS

X Vol.2A

PAGE
NEG—Two's Complement Negation.ooviuiiii it 4-2
NOP—NO OPBration ..o v vttt ettt et e 4-5
NOT—O0ne's Complement Negation.covuviiii it e 4-7
OR—Logical INCIUSIVE OR ...t e 4-9
ORPD—Bitwise Logical OR of Double-Precision Floating-Point Values 4-12
ORPS—Bitwise Logical OR of Single-Precision Floating-Point Values 4-14
OUT—0UTPUL 10 POt . . ot e e e e 4-16
OUTS/QUTSB/OUTSW/QUTSD—Output StringtoPort.........cooovvvivinnnnnne, 4-18
PABSB/PABSW/PABSD — Packed Absolute Valuecovviviiiiiinnnnn, 4-23
PACKSSWB/PACKSSDW—Pack with Signed Saturationcovvvient 4-27
PACKUSDW — Pack with Unsigned Saturationccovoiiiiiiiiiiinnnnn 4-32
PACKUSWB—Pack with Unsigned Saturation ...t 4-35
PADDB/PADDW/PADDD—Add Packed INtegers.vvvrviiiiiii e 4-39
PADDQ—Add Packed Quadword INTEgers.vvviii it ienenens 4-43
PADDSB/PADDSW—Add Packed Signed Integers with Signed Saturation.......... 4-46
PADDUSB/PADDUSW—Add Packed Unsigned Integers with Unsigned Saturation .. 4-50
PALIGNR — Packed Align Righto s 4-54
PAND—LOGICAI AND . ..ottt e e 4-57
PANDN—LOGICAl AND NOT . ..ottt 4-60
PAUSE—SPIN Loop HiNt. .. v ettt e 4-63
PAVGB/PAVGW—Average Packed INtEGerSvvvviiii it iiiiiieieaans 4-64
PBLENDVB — Variable Blend Packed Bytes.c.c.ooviiiiiiiiiiiiiiinnnns 4-67
PBLENDW — Blend Packed Words.ovvviii e eeees 4-70
PCMPEQB/PCMPEQW/PCMPEQD— Compare Packed Data for Equal................ 4-73
PCMPEQQ — Compare Packed Qword Datafor Equalcoooviivvinnnnn, 4-77
PCMPESTRI — Packed Compare Explicit Length Strings, Return Index 4-79
PCMPESTRM — Packed Compare Explicit Length Strings, ReturnMask 4-82
PCMPISTRI — Packed Compare Implicit Length Strings, Return Index 4-85
PCMPISTRM — Packed Compare Implicit Length Strings, ReturnMask 4-88
PCMPGTB/PCMPGTW/PCMPGTD—Compare Packed Signed Integers for Greater Than .4-

91

PCMPGTQ — Compare Packed Data for Greater Than.ovvveviiiiinnnnnn 4-96
PEXTRB/PEXTRD/PEXTRQ — Extract Byte/Dword/Qword.c.covvvvvunnn. 4-98
PEXTRW—EXTract Wordt 4-101
PHADDW/PHADDD — Packed Horizontal Addccovviiiii i 4-105
PHADDSW — Packed Horizontal Add and Saturateooovevvivvnnns. 4-108
PHMINPOSUW — Packed Horizontal Word Minimumcooviviiiininn, 4-111
PHSUBW/PHSUBD — Packed Horizontal Subtractcovvivvinnnn. 4-113
PHSUBSW — Packed Horizontal Subtract and Saturate.....................oc. 4-116
PINSRB/PINSRD/PINSRQ — Insert Byte/Dword/Qwordcovvvvnen.. 4-119
PINSRW—INSErt Wordovie e 4-122
PMADDUBSW — Multiply and Add Packed Signed and Unsigned Bytes............ 4-125
PMADDWD—Multiply and Add Packed Integers.covvviviienininenanns. 4-128
PMAXSB — Maximum of Packed Signed Byte Integers..............cocvvvnnnn. 4-132
PMAXSD — Maximum of Packed Signed Dword Integers..............covvuinnn. 4-135
PMAXSW—Maximum of Packed Signed Word Integerscot. 4-137
PMAXUB—Maximum of Packed Unsigned Byte Integers......................... 4-140

CONTENTS

PAGE
PMAXUD — Maximum of Packed Unsigned Dword Integers 4-143
PMAXUW — Maximum of Packed Word Integers.............covviiiiiiinnnnnnns 4-145
PMINSB — Minimum of Packed Signed Byte Integerscccovvvvvvnnne. 4-148
PMINSD — Minimum of Packed Dword Integers..............covviiiiiniininnn. 4-151
PMINSW—Minimum of Packed Signed Word Integers................cooovvvennt 4-153
PMINUB—Minimum of Packed Unsigned Byte Integers..................o.ouae 4-156
PMINUD — Minimum of Packed Dword Integerscoviviiinennnnnnns 4-159
PMINUW — Minimum of Packed Word Integersoooveiiiiiiiiennnnnnns 4-161
PMOVMSKB—MOVE BYte Maskouvriiiiiiiiiii it 4-164
PMOVSX — Packed Move with SignExtendcoviiiiiiiinnnnns, 4-167
PMOVZX — Packed Move with Zero Extend. ... 4-170
PMULDQ — Multiply Packed Signed Dword Integerscoovvvivininnnn, 4-173
PMULLD — Multiply Packed Signed Dword Integers and Store Low Result 4-175
PMULHRSW — Packed Multiply High with Roundand Scale 4-177
PMULHUW—Multiply Packed Unsigned Integers and Store High Result........... 4-180
PMULHW—Multiply Packed Signed Integers and Store HighResult 4-184
PMULLW—Multiply Packed Signed Integers and Store Low Result............... 4-187
PMULUDQ—Multiply Packed Unsigned Doubleword Integers 4-191
POP—PopaValuefromtheStack ... 4-194
POPA/POPAD—Pop All General-Purpose Registerscocvvviviivinininns 4-201
POPCNT — Return the Count of Number of BitsSetto 1........................ 4-203
POPF/POPFD/POPFQ—Pop Stack into EFLAGS Register.........oocvvvvvvvinnnn. 4-205
POR—Bitwise Logical OR.ot i e i 4-209
PREFETCHh—Prefetch DatalntoCaches..........covvvvii i 4-212
PSADBW—Compute Sum of Absolute Differencescovvvviiiinnnn.. 4-214
PSHUFB — Packed Shuffle Bytes.......vvvviinii ittt 4-218
PSHUFD—Shuffle Packed Doublewords.covvvviiiiiiiiiiii e 4-222
PSHUFHW—Shuffle Packed HighWords.ccoooviiiii i 4-225
PSHUFLW—Shuffle Packed Low Wordsooviiviiiiiiiiiiiiiiininns 4-228
PSHUFW—Shuffle Packed WOrdscovvii i 4-231
PSIGNB/PSIGNW/PSIGND — Packed SIGN ..o 4-233
PSLLDQ—Shift Double Quadword Left Logical...........ovvviiiiiiiiiinenns 4-238
PSLLW/PSLLD/PSLLQ—Shift Packed Data Left Logicalovvvvnint 4-240
PSRAW/PSRAD—Shift Packed Data Right Arithmetic0 4-245
PSRLDQ—Shift Double Quadword Right Logicalccovvviiiniiiiininnn, 4-250
PSRLW/PSRLD/PSRLQ—Shift Packed Data Right Logicalovues 4-252
PSUBB/PSUBW/PSUBD—Subtract Packed Integerscoovviiiiiiininnn 4-257
PSUBQ—Subtract Packed Quadword INtegers..........vvveviiiiiiiinnnnnnnnss 4-261

PSUBSB/PSUBSW—Subtract Packed Signed Integers with Signed Saturation..... 4-264
PSUBUSB/PSUBUSW—Subtract Packed Unsigned Integers with

Unsigned Saturation.ottt e e 4-268
PTEST- Logical ComPare ... v ettt it ettt i ne e 4-272
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ/PUNPCKHQDQ— Unpack High Data. ... 4-274
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ/PUNPCKLQDQ—

UNPack LOW Data. .. .ove et e 4-279
PUSH—Push Word, Doubleword or Quadword Onto the Stack 4-284
PUSHA/PUSHAD—Push All General-Purpose Registers...............covvivvnns. 4-289

Vol. 2A Xi

CONTENTS

xii Vol. 2A

PAGE
PUSHF/PUSHFD—Push EFLAGS Register onto the Stackoves. 4-292
PXOR—Logical EXCIUSIVE OR . ..ottt e 4-295
RCL/RCR/ROL/ROR-—ROTETE. . o vttt ettt ettt 4-298

RCPPS—Compute Reciprocals of Packed Single-Precision Floating-Point Values. ..4-305
RCPSS—Compute Reciprocal of Scalar Single-Precision Floating-Point Values4-308

RDMSR—Read from Model Specific Register...............cocoiviiiiiiian.t. 4-311
RDPMC—Read Performance-Monitoring Counters............coovvvvvivnnenenns. 4-313
RDTSC—Read Time-Stamp CoUNterovvvi i 4-318
REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix................ 4-320
RET—Return from Procedure.ovvvvii e 4-325
ROUNDPD — Round Packed Double Precision Floating-Point Values.............. 4-337
ROUNDPS — Round Packed Single Precision Floating-Point Values............... 4-340
ROUNDSD — Round Scalar Double Precision Floating-Point Values............... 4-343
ROUNDSS — Round Scalar Single Precision Floating-Point Values 4-346
RSM—Resume from System ManagementModecovvviviiiiiinnnnn, 4-349
RSQRTPS—Compute Reciprocals of Square Roots of Packed Single-Precision

Floating-Point Values e 4-351
RSQRTSS—Compute Reciprocal of Square Root of Scalar

Single-Precision Floating-Point Value ...t 4-354
SAHF—Store AHINTO FIagsvv v e 4-357
SAL/SAR/SHU/SHR—ShIft. . .o e 4-359
SBB—Integer Subtraction with Borrowc.ooviiiiiiiii s 4-366
SCAS/SCASB/SCASW/SCASD—SCaN StHNG ..o v vee e 4-370
SETcc—Set Byte on Conditionooiviiii i 4-375
SFENCE—STOre FONCE . . ittt e 4-380
SGDT—Store Global Descriptor Table Register..........coovvviiiiiiiiiiinnn, 4-381
SHLD—Double Precision Shift Leftooovii 4-384
SHRD—Double Precision Shift Right............c.ccoiii i 4-387
SHUFPD—Shuffle Packed Double-Precision Floating-Point Values................ 4-390
SHUFPS—Shuffle Packed Single-Precision Floating-Point Values................. 4-393
SIDT—Store Interrupt Descriptor Table Register..............cocoviiiiiinnnn... 4-396
SLDT—Store Local Descriptor Table Register.........ccovvviviiiiiiiiiiinnnn, 4-399
SMSW—Store Machine Status Wordoovv i 4-401
SQRTPS—Compute Square Roots of Packed Single-Precision Floating-Point Values ..4-

407

SQRTSD—Compute Square Root of Scalar Double-Precision Floating-Point Value .4-410
SQRTSS—Compute Square Root of Scalar Single-Precision Floating-Point Value ..4-413

STC—=Set Carmry Flag. ..o v et 4-416
STD—Set Direction FIag ovvvvei i 4-417
STI=Set INterrupt FIago 4-418
STMXCSR—Store MXCSR Register Stateoovvviiiiiii i 4-421
STOS/STOSB/STOSW/STOSD/STOSQ—Store String .. ovvvvvveeiiiiiieiennanns 4-423
STR—St0ore Task ReGISTer ...\ vvii it e e 4-427
SUB—SUDTraCT . oottt 4-429
SUBPD—Subtract Packed Double-Precision Floating-Point Values................ 4-432
SUBPS—Subtract Packed Single-Precision Floating-Point Values................. 4-435
SUBSD—Subtract Scalar Double-Precision Floating-Point Values................. 4-438

CONTENTS

PAGE
SUBSS—Subtract Scalar Single-Precision Floating-Point Values.................. 4-441
SWAPGS—Swap GS Base Register.vuvuiuiriiiii it 4-444
SYSCALL—Fast System Callovve e 4-446
SYSENTER—Fast System Call. . ..o 4-448
SYSEXIT—Fast Return from Fast System Callccoiviiiiiiiaat 4-452
SYSRET—Return From Fast System Call ... 4-456
QIS R o | or= 0T 1= 4-458
UCOMISD—Unordered Compare Scalar Double-Precision Floating-Point
Values and Set EFLAGSot 4-461
UCOMISS—Unordered Compare Scalar Single-Precision Floating-Point
Values and SEt EFLAGSo 4-464
UD2—Undefined INSTruction.ovvvv et i 4-467
UNPCKHPD—Unpack and Interleave High Packed Double-Precision
Floating-Point Values. e 4-468
UNPCKHPS—Unpack and Interleave High Packed Single-Precision
Floating-Point Values.o 4-471
UNPCKLPD—Unpack and Interleave Low Packed Double-Precision
Floating-Point Values. ..o e e 4-474
UNPCKLPS—Unpack and Interleave Low Packed Single-Precision
Floating-Point Values ... i 4-477
VERR/VERW—Verify a Segment for Reading or Writing....................ov.s. 4-480
WAIT /WA T WA . e e 4-483
WBINVD—Write Back and Invalidate Cache............coovviiiiiiii e 4-485
WRMSR—Write to Model SpecificRegisterccoiiiiiiiiiiiiiianns. 4-487
XADD—Exchange and Addc.oviiii i e 4-489
XCHG—Exchange Register/Memory with Register.............ooovvviiiiiinns. 4-492
XGETBV—Get Value of Extended Control Registerocvvviiiiinnnnnnn 4-495
XLAT/XLATB—Table Look-up Translation.coviiiiiiiiiiiiiinenen. 4-497
XOR—Logical EXCIUSIVE ORot i e e e 4-499
XORPD—Bitwise Logical XOR for Double-Precision Floating-Point Values......... 4-502
XORPS—Bitwise Logical XOR for Single-Precision Floating-Point Values 4-504
XRSTOR—Restore Processor Extended States.........ccoovvviiiiiininnnnnn. 4-506
XSAVE—Save Processor Extended States ..o 4-511
XSETBV—Set Extended Control Registercovviiiiiiiiiiiiiinnan, 4-515
CHAPTER 5
VMX INSTRUCTION REFERENCE
5.1 OV RV BN ottt et e e e e 5-1
5.2 CONVENTIONS .ttt e e e e e e e 5-2
53 VMXINSTRUCTIONS . . oottt 5-3
VMCALL—Call 10 VM MONITOT . . v v e e ens 5-4
VMCLEAR—Clear Virtual-Machine Control Structurecccovviiiiiiininn.s. 5-7
VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine 5-10
VMPTRLD—Load Pointer to Virtual-Machine Control Structure 5-13
VMPTRST—Store Pointer to Virtual-Machine Control Structure 5-16
VMREAD—Read Field from Virtual-Machine Control Structure..................... 5-18
VMRESUME—Resume Virtual Machineoooviiiiii e 5-21

Vol. 2A xiii

CONTENTS

PAGE
VMWRITE—Write Field to Virtual-Machine Control Structure...................... 5-22
VMXOFF—Leave VMX Operation.ouvuvririiniii it iii i eenanes 5-25
VMXON—ENter VMX Operationvuvr ettt ii i eeaenes 5-27
CHAPTER 6
SAFER MODE EXTENSIONS REFERENCE
6.1 OV RV, o et e 5-1
6.2 SMX FUNCTION AL TY ottt et et e 5-1
6.2.1 Detecting and ENabling SMX o i 5-2
6.2.2 SMX INSTrUCTION SUMMANY .« .\ vttt e 5-3
6.2.2.1 GETSECICAPABILITIES] . o vttt ettt e e s 5-3
6.2.2.2 GETSECIENTERACCS] « vttt ettt e s 5-4
6.2.2.3 GET S EXIT AL ettt ettt et e e e e e e 5-4
6.2.24 GETSECISENTER] .ttt ettt s 5-4
6.2.2.5] Y =0 Y = I P 5-5
6.2.2.6 GETSECIPARAMETERS]. . . ottt ettt 5-5
6.2.2.7] Y = 0 (O 1 5-5
6.2.2.8 GETSEC W AKEUP . . ettt et 5-6
6.2.3 Measured Environment and SMX. 5-6
6.3 GETSEC LEAF FUNCTIONS ..ttt eens 5-7
GETSEC[CAPABILITIES] - Report the SMX Capabilitiescccovviiiinninns. 5-9
GETSEC[ENTERACCS] - Execute Authenticated ChipsetCodecovvvnnne 5-12
GETSEC[EXITAC]—Exit Authenticated Code ExecutionMode...................... 5-23
GETSEC[SENTER]—Enter a Measured Environment............ccovviiiiiiienn.t. 5-27
GETSEC[SEXIT]—Exit Measured Environment..........coviiiiii i ienenn. 5-39
GETSEC[PARAMETERS]—Report the SMX Parameters.coovvvvennnnn.. 5-43
GETSEC[SMCTRL]—SMX Mode CoNtrol.vvvvvrniiiii it ieii e 5-48
GETSEC[WAKEUP]—Wake up sleeping processors in measured environment....... 5-51
APPENDIX A
OPCODE MAP
A USING OPCODE TABLES ...ttt et A-1
A2 KEY TO ABBREVIATIONS ...ttt ettt e i A-2
A2.1 Codes for Addressing Method.o e A-2
A2.2 Codes TOr OPerand Ty P . vttt et e ettt e A-3
A23 REGISTEr COUBS. . .o\ttt e A-4
A24 Opcode Look-up Examples for One, Two,
and Three-Byte OpcodesA-4
A241 One-Byte Opcode INStrUCTIONS . ..o v et A-4
A24.2 Two-Byte Opcode INStruCtionS. vvvv vt A-5
A243 Three-Byte Opcode INStruCtionS vv e eieas A-6
A25 Superscripts Utilized inOpcode Tablesooviiiiii e A-7
A3 ONE, TWO, AND THREE-BYTE OPCODE MAPS\ttt A-8
A4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES.............ovvne A-20
A4 Opcode Look-up Examples Using Opcode EXTeNSIONS.vvvvvrveviieieieenanns A-20
Ad4.2 Opcode EXtension Tables.uu it e A-21
A5 ESCAPE OPCODE INSTRUCTIONSottt et eieans A-23

Xiv Vol. 2A

CONTENTS

PAGE

A5.1 Opcode Look-up Examples for Escape Instruction Opcodes.................covvene A-23
A5.2 Escape Opcode Instruction Tablesvvv i e A-23
A5.2.1 Escape Opcodes with DB as First Byte.......ovvvviii it A-24
A5.2.2 Escape Opcodes with D9 as First Byte.vvvviii i A-25
A523 Escape Opcodes with DA as First Byte. ... A-26
A524 Escape Opcodes withDBas First Byte......ccovvviiiiii i A-27
A5.25 Escape Opcodes with DCas First Byteoovvvviiiiii it ici i A-28
A5.2.6 Escape Opcodes with DD as First Byte.ovvvvvvii it A-29
A5.2.7 Escape Opcodes with DEas First Bytevvvvvii it A-30
A5.2.8 Escape Opcodes with DF As First Byte. ..o vvvii i A-31
APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1 MACHINE INSTRUCTION FORMAT . . .ottt e et enees B-1
B.1.1 LEgaCY PrefiXeS . ittt B-2
B.1.2 REX PrefiXeS . ottt B-2
B.1.3 0pcode FeldsS e B-2
B.1.4 SpeCial Flelds. . .. vt e B-2
B.1.4.1 Reg Field (reg) for Non-64-BitModes...........vviiiiii i B-3
B.1.4.2 Reg Field (reg) for 64-Bit Mode.vvvvi i B-4
B.1.4.3 Encoding of Operand Size (W) Bit.......ccooviiiiiii B-5
B.144 SIgn-EXtend (S) Bitot B-5
B.1.45 Segment Register (sreg) Field. ..o B-6
B.1.4.6 Special-Purpose Register (eee) Field ... B-6
B.14.7 Condition Test (tttn) Field.oo v e B-7
B.1.4.8 Direction (d) Bitovvi i B-8
B.1.5 13 T=T Y01 (= B-9
B.2 GENERAL-PURPOSE INSTRUCTION FORMATS AND ENCODINGS

FOR NON-64-BIT MODESttt ettt et e B-9
B.2.1 General Purpose Instruction Formats and Encodings for 64-Bit Mode. B-24
B3 PENTIUM® PROCESSOR FAMILY INSTRUCTION FORMATS AND ENCODINGS.... B-53
B4 64-BIT MODE INSTRUCTION ENCODINGS FOR SIMD INSTRUCTION EXTENSIONS. B-54
B.S5 MMX INSTRUCTION FORMATS AND ENCODINGSo B-54
B.5.1 Granularity FIield (Gg) ... vvvvvrr e B-54
B.5.2 MMX Technology and General-Purpose Register Fields (mmxreg and reg). B-55
B5.3 MMX Instruction Formats and Encodings Table. ...t B-55
B.6 PROCESSOR EXTENDED STATE INSTRUCTION FORMATS AND ENCODINGS............ B-58
B.7 P6 FAMILY INSTRUCTION FORMATS AND ENCODINGSo v B-59
B8 SSE INSTRUCTION FORMATS AND ENCODINGS ... oo B-60
B9 SSE2 INSTRUCTION FORMATS AND ENCODINGS. oo B-68
B.9.1 Granularity Field (Gg) « .o .vvree i B-69
B.10 SSE3 FORMATS AND ENCODINGS TABLE. .. .ot v vttt e B-86
B.11 SSSE3 FORMATS AND ENCODING TABLE. .. .o v v it B-88
B.12 SPECIAL ENCODINGS FOR B4-BITMODE.ot e vt B-92
B.13 SSE4.T FORMATS AND ENCODING TABLE . ..o et B-96
B.14 SSE4.2 FORMATS AND ENCODING TABLE . ..o v et B-104
B.15 FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGSo B-106

Vol. 2A Xv

CONTENTS

PAGE
B.16 VMX INSTRUCTIONS ..ottt et e B-112
B.17 SMX INSTRUCTIONS. . .ttt e B-114
APPENDIX C
INTEL® C/C++ COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C1 SIMPLE INTRINSICS. . ottt e e c-2
C2 COMPOSITE INTRINSICS ..ottt e C-16
FIGURES
Figure 1-1. Bitand Byte Order. ..ot e 1-4
Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation....................covoents. 1-8
Figure 2-1. Intel 64 and IA-32 Architectures Instruction Formatcoovuene 2-1
Figure 2-2. Table Interpretation of ModR/MByte (CBH)coviiiiii i 2-5
Figure 2-3. Prefix Ordering in 64-bitMode.ot e 2-9
Figure 2-4. Memory Addressing Without an SIB Byte; REXX NotUsed 2-11
Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X NotUsed 2-11
Figure 2-6. Memory AddressingWithaSIBByteccoiiiiii i 2-12
Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REXR Not Used 2-12
Figure 3-1. Bit Offset for BIT[RAX, 21 vttt 3-10
Figure 3-2. Memory Bit INAEXINGot 3-11
Figure 3-3. Operation of PCMPSTRx and PCMPESTRXvvvvii e 3-24
Figure 3-4. ADDSUBPD—Packed Double-FP Add/Subtract ...t 3-51
Figure 3-5. ADDSUBPS—Packed Single-FP Add/Subtractcooviiiiiiiiiii 3-55
Figure 3-6. Version Information Returned by CPUIDINEAX. ..o 3-190
Figure 3-7. Feature Information Returned in the ECX Register............ccovvvvvininnn. 3-192
Figure 3-8. Feature Information Returned in the EDX Registercovovvvvnnnns. 3-195
Figure 3-9. Determination of Support for the Processor Brand String 3-204
Figure 3-10. Algorithm for Extracting Maximum Processor Frequency..................... 3-206
Figure 3-11. HADDPD—Packed Double-FP Horizontal Addccooiiiiiiniinn. 3-471
Figure 3-12. HADDPS—Packed Single-FP Horizontal Add. ..ot 3-475
Figure 3-13. HSUBPD—Packed Double-FP Horizontal Subtract..............coovvviiininn, 3-481
Figure 3-14. HSUBPS—Packed Single-FP Horizontal Subtractcovvvnans, 3-486
Figure 3-15. MOVDDUP—Move One Double-FP and Duplicatecovviviiniinnt 3-659
Figure 3-16. MOVSHDUP—Move Packed Single-FP High and Duplicate..................... 3-718
Figure 3-17. MOVSLDUP—Move Packed Single-FP Low and Duplicate 3-721
Figure 4-1. Operation of the PACKSSDW Instruction Using 64-bit Operands 4-27
Figure 4-2. PMADDWD Execution Model Using 64-bit Operands.cocvvvvvnnn. 4-129
Figure 4-3. PMULHUW and PMULHW Instruction Operation Using 64-bit Operands........ 4-180
Figure 4-4. PMULLU Instruction Operation Using 64-bit Operands 4-187
Figure 4-5. PSADBW Instruction Operation Using 64-bitOperands....................... 4-215
Figure 4-6. PSHUB with 64-Bit Operands.c.ovvtiiiiii ittt i e 4-219
Figure 4-7. PSHUFD Instruction Operation..........ccoviiiviiiiii it iiiiieennns 4-222
Figure 4-8. PSLLW, PSLLD, and PSLLQ Instruction Operation Using 64-bit Operand 4-241
Figure 4-9. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand 4-246
Figure 4-10. PSRLW, PSRLD, and PSRLQ Instruction Operation Using 64-bit Operand....... 4-253
Figure 4-11. PUNPCKHBW Instruction Operation Using 64-bit Operands................... 4-275

XVi Vol. 2A

Figure 4-12.
Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.

Figure A-1.
Figure B-1.

TABLES

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-5.
Table 3-4.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.
Table 3-14.
Table 3-15.
Table 3-16.
Table 3-17.
Table 3-18.
Table 3-19.
Table 3-20.
Table 3-21.
Table 3-22.
Table 3-23.
Table 3-24.
Table 3-25.
Table 3-26.
Table 3-27.

CONTENTS

PAGE
PUNPCKLBW Instruction Operation Using 64-bit Operands................... 4-279
Bit Control Fields of Immediate Byte for ROUNDxx Instruction............... 4-337
SHUFPD Shuffle Operation.co.vuiinii i en 4-390
SHUFPS Shuffle Operation.ovviii s 4-393
UNPCKHPD Instruction High Unpack and Interleave Operation 4-468
UNPCKHPS Instruction High Unpack and Interleave Operation 4-471
UNPCKLPD Instruction Low Unpack and Interleave Operation................ 4-474
UNPCKLPS Instruction Low Unpack and Interleave Operation................ 4-477
ModR/M Byte nnn Field (Bits 5,4,and 3)........coviiiiii i A-20
General Machine Instruction Format.........oovveiii i B-1
16-Bit Addressing Forms with the ModR/MBytecoovviiiiiiiiinnne, 2-6
32-Bit Addressing Forms with the ModR/MBytecocoviiiiiints, 2-7
32-Bit Addressing Forms withthe SIBByte...........cccooiiiiiiiiiiii i, 2-8
REX Prefix Fields [BITS: OTOOWRXB] . ..ot vvve et inieaean 2-11
Special Cases 0f REX ENCOAINGS . ..o vvvvi i 2-13
Direct Memory Offset Formof MOV ..o e 2-14
RIP-Relative Addressing .. .ovvvve e 2-15
Register Codes Associated With +rb, +rw, +rd, +ro..............ccovviiiinnn, 3-2
Range of Bit Positions Specified by Bit Offset Operands....................... 3-11
Intel 64 and IA-32 General EXCePtioNS.ovvv vttt 3-15
SIMD Floating-Point EXCEPTIONSivii e 3-17
x87 FPU Floating-Point EXCEPLIONS.vvvvv it 3-17
Source Data FOrmatov e 3-19
Aggregation OPerationouirii i 3-20
Agaregation Operationvviii i 3-20
0] = 1 3-21
OUPUL SBIBCTION . .ottt e 3-21
OUTPUL SEIBCHION vt 3-22
Comparison Result for Each Element Pair BoolRes[ij]........cvvvvviininnnn.n. 3-22
Summary of Imm8 Control Byteoooiuiii 3-23
Decision Table for CLIRESUIS .. .o vvvvv et 3-127
Comparison Predicate for CMPPD and CMPPS Instructions 3-143
Pseudo-Op and CMPPD Implementation............cccoviiiiiviiiieieinnanns. 3-144
Pseudo-0ps and CMPPS. ... o 3-149
Pseudo-0ps and CMPSD. ... ov vt e 3-159
Pseudo-Ops and CMPSS. . ..o 3-164
Information Returned by CPUID Instructioncooovviiivinnn.s. 3-180
Highest CPUID Source Operand for Intel 64 and IA-32 Processors............ 3-189
Processor Type Fieldoviei e 3-190
Feature Information Returned in the ECX Register.............ovvvvvnnnnn. 3-192
More on Feature Information Returned in the EDX Register 3-196
Encoding of Cache and TLB Descriptors.vvvvrviiiriiiiiiiniiieiannns 3-198
Processor Brand String Returned with Pentium 4 Processor................. 3-204

Mapping of Brand Indices; and

Vol. 2A xvii

CONTENTS

Table 3-28.
Table 3-29.
Table 3-30.
Table 3-31.
Table 3-32.
Table 3-33.
Table 3-34.
Table 3-35.
Table 3-36.
Table 3-37.
Table 3-38.
Table 3-39.
Table 3-40.
Table 3-41.
Table 3-42.
Table 3-43.
Table 3-44.
Table 3-45.
Table 3-46.
Table 3-47.
Table 3-48.
Table 3-49.
Table 3-50.
Table 3-51.
Table 3-52.
Table 3-53.
Table 3-54.
Table 3-55.
Table 3-56.

Table 3-57.
Table 3-58.
Table 3-59.

Table 3-60.

Table 3-61.
Table 3-62.
Table 3-63.
Table 3-64.
Table 3-65.
Table 3-66.
Table 3-67.
Table 3-68.
Table 3-69.
Table 3-70.

xviii Vol. 2A

PAGE
Intel 64 and IA-32 Processor Brand Strings.cocvviiiiiiiiinninnns. 3-207
DIV AT ON . e 3-291
Results Obtained from F2XMT 3-322
Results Obtained from FABS.ot i 3-324
FADD/FADDP/FIADD RESUIS. .« vt vt v et e 3-327
FBS TP RESUIS . .\ vttt ettt e 3-332
FCHS RESURS . vt e 3-335
FCOM/FCOMP/FCOMPP RESUIS . .. vt 3-341
FCOMI/FCOMIP/ FUCOMI/FUCOMIP ReSUItS. .. .o vveeeeeee e 3-345
FCOS RESUIS .« vttt ettt et e 3-348
FDIV/EDIVP/FIDIV RESUIS . . vt v vttt e 3-353
FDIVR/FDIVRP/FIDIVR RESUIS . .« v vttt e et 3-357
FICOM/FICOMP RESUIS . . v vttt ettt e et 3-361
FIST/FISTP RESURS. . . .ot 3-370
FISTTP RESUIS .ttt e 3-374
FMUL/FMULP/FIMUL RESUIS ..ot e 3-388
FPATAN RESUIS « v vttt ettt e e ees 3-393
FPREM RESUIS. . v vttt 3-395
FPREMT RESURS . .\ttt e 3-398
FPTAN RESURS. . . vt 3-401
FSCALE RESURS . . vt e 3-413
FSIN RESUS . . vttt 3-415
FSINCOS RESURS . . v ettt ettt e 3-417
FSQRT RESUIS. .\ttt vttt e e 3-420
FSUB/FSUBP/FISUB RESUILS . ..ot 3-435
FSUBR/FSUBRP/FISUBR RESUIS . . oo 3-439
FT ST RESUIS vttt 3-442
FUCOM/FUCOMP/FUCOMPP RESUIS. ..t v e 3-444
FXAM RESUIS. . et e 3-447
Non-64-bit-Mode Layout of FXSAVE and FXRSTOR
MEMOTY REGION . .\ttt ettt 3-454
Field Definitionsove e e 3-456
Recreating FSAVE FOrmat. ... vr i 3-458
Layout of the 64-bit-mode FXSAVE Map
with Promoted OperandSize.coovvr it e 3-459
Layout of the 64-bit-mode FXSAVE Map with
Default OperandSizeovvi i e 3-460
FYL2X RESURS . o vttt 3-467
FYL2XPT RESUIS v ettt 3-469
IDIV RESUIS vttt ettt e e 3-490
DECiSION Table ..o e 3-511
Segment and Gate Ty PES. . v vttt e e 3-560
Non-64-bit Mode LEA Operation with Address and Operand Size Attributes...3-574
64-bit Mode LEA Operation with Address and Operand Size Attributes........ 3-575
Segment and Gate Descriptor TYPES .. vt 3-598
MUL RESUS .+ vttt 3-741
MWAIT Extension Register (ECX).ovuvriirii i 3-757

Table 3-71.
Table 4-1.
Table 4-2.

Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 6-9.
Table 6-10.
Table 6-11.
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.
Table A-7.
Table A-8.
Table A-S.

Table A-10.
Table A-11.

Table A-12.

Table A-13.
Table A-14.
Table A-15.
Table A-16.

Table A-17.
Table A-18.

Table A-19.
Table A-20.
Table A-21.
Table A-22.

CONTENTS

PAGE
MWAIT Hints Register (EAX) . vvvviit ittt 3-758
Recommended Multi-Byte Sequence of NOP Instruction...............cooovunnn 4-5
Valid General and Special Purpose Performance Counter
INdex Range fTOr RDPMU ovi i 4-314
REPEAT PrefiXeS . ot e 4-323
Rounding Modes and Encoding of Rounding Control (RC) Field................ 4-338
Decision Table for STIRESUIS.vvvvi s 4-418
SWAPGS Operation Parametersovvvviiii i 4-444
MSRs Used By the SYSENTER and SYSEXIT Instructions 4-448
General Layout of XSAVE/XRSTOR Save Area.covvvvvvviinninnnnnnn. 4-506
XSAVEHEADER Layout ..ottt 4-507
Processor Supplied Init Values XRSTORMay Useoovvviiiininnt. 4-507
Reserved Bit Checkingand XRSTORcooiiiiiiii e 4-508
XSAVE Save Area Layout for x87 FPUand SSEState..............ovvvnts. 4-512
Layout of IA32_FEATURE_CONTROLvvii e e 5-2
GETSEC Leaf FUNCHIONS ..\ttt 5-3
Getsec Capability Result Encoding (EBX=0)cvvriiiiiiiiiiie e 5-9
Register State Initialization after GETSEC[ENTERACCS].covvviinnntt. 5-15
IA32_MISC_ENALBES MSR Initialization by ENTERACCS and SENTER 5-17
Register State Initialization after GETSEC[SENTER] and GETSEC[WAKEUP] 5-31
SMX Reporting Parameters FOrmat.vviiiiiiiiii i 5-43
External Memory Types Using Parameter 3., 5-45
Default Parameter ValUuesvvvie e 5-46
Supported Actions for GETSEC[SMCTRL(O)] .. v vvvvee i 5-49
RLP MVMM JOIN Data Structure . ..o i i ea e 5-51
Superscripts Utilized in Opcode Tables. ...t A-7
One-byte Opcode Map: (O0H — F7H) * ..ot i A-10
Two-byte Opcode Map: 00H — 77H (First ByteisOFH) *....................... A-12
Three-byte Opcode Map: 00H — F7H (First Two Bytes are OF 38H) *........... A-16
Three-byte Opcode Map: 00H — F7H (First two bytes are OF 3AH) *........... A-18
Opcode Extensions for One- and Two-byte Opcodes by Group Number * A-21
D8 Opcode Map When ModR/M Byte is WithinOOHto BFH* A-24
D8 Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-24
D9 Opcode Map When ModR/M Byte is WithinOOHto BFH* A-25
D9 Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-25
DA Opcode Map When ModR/M Byte is Within OOHtoBFH™* A-26
DA Opcode Map When ModR/M Byte is Outside OOHtoBFH *.................. A-26
DB Opcode Map When ModR/M Byte is Within OOHtoBFH* A-27
DB Opcode Map When ModR/M Byte is Outside OOHto BFH *.................. A-27
DC Opcode Map When ModR/M Byte is Within OOHto BFH™*.................... A-28
DC Opcode Map When ModR/M Byte is Outside OOHtoBFH* A-28
DD Opcode Map When ModR/M Byte is Within OOHto BFH™* A-29
DD Opcode Map When ModR/M Byte is Outside OOHtoBFH *.................. A-29
DE Opcode Map When ModR/M Byte is Within OOHto BFH™*.................... A-30
DE Opcode Map When ModR/M Byte is Outside OOHto BFH* A-30
DF Opcode Map When ModR/M Byte is Within OOHto BFH™*.................... A-31
DF Opcode Map When ModR/M Byte is Outside OOHto BFH* A-31

Vol. 2A Xix

CONTENTS

Table B-1.
Table B-2.
Table B-4.
Table B-3.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9

Table B-11.
Table B-10.
Table B-12.
Table B-13.

Table B-14.
Table B-15.

Table B-16.

Table B-17.
Table B-18.
Table B-19.
Table B-20.
Table B-21.
Table B-22.
Table B-23.
Table B-24.
Table B-25.
Table B-26.
Table B-27.
Table B-28.
Table B-29.
Table B-30.
Table B-31.
Table B-32.
Table B-33.
Table B-34.
Table B-35.
Table B-36.
Table B-37.
Table B-38.
Table B-39.

Table C-1.
Table C-2.

XX Vol. 2A

PAGE
Special Fields Within Instruction Encodingsovvvviiii i B-3
Encoding of reg Field When w Field is Not Present in Instruction................ B-3
Encoding of reg Field When w Field is Not Present in Instruction................ B-4
Encoding of reg Field When w Field is Present in Instruction. B-4
Encoding of reg Field When w Field is Present in Instruction.................... B-5
Encoding of Operand Size (W) Bitovviiiii B-5
Encoding of Sign-Extend (S) Bitcoviiiii e B-6
Encoding of the Segment Register (sreg) Field..............coviiiiiiiiinnn., B-6
Encoding of Special-Purpose Register (eee) Fieldccoovviiiiiinanns, B-7
Encoding of Operation Direction (d) Bit..............cooiiiiiii i B-8
Encoding of Conditional Test (tttn) Field............coviiiiiiii e B-8
Notes on Instruction ENCOding.oovvv i e e e B-9
General Purpose Instruction Formats and Encodings
FOr NON-64-Bit MOdeSot B-9
SpeCial SYMDBOIS. . .. B-24
General Purpose Instruction Formats and Encodings
FOr B4-Bit MOGE. ..ottt e B-24
Pentium Processor Family Instruction Formats and Encodings,
NON-64-Bit MOES ...\ttt B-53
Pentium Processor Family Instruction Formats and Encodings, 64-Bit Mode.. ... B-53
Encoding of Granularity of Data Field (gg)covvviii i B-54
MMX Instruction Formats and Encodingsoovvviiiiiiiii i B-55
Formats and Encodings of XSAVE/XRSTOR/XGETBV/XSETBV Instructions..... B-58
Formats and Encodings of P6 Family Instructions............................. B-59
Formats and Encodings of SSE Floating-Point Instructions. B-60
Formats and Encodings of SSE Integer Instructionscoovviiiininnn B-66
Format and Encoding of SSE Cacheability & Memory Ordering Instructions B-68
Encoding of Granularity of Data Field (gg)ovvvvveiii e B-69
Formats and Encodings of SSE2 Floating-Point Instructions B-69
Formats and Encodings of SSE2 Integer Instructions B-78
Format and Encoding of SSE2 Cacheability Instructions B-85
Formats and Encodings of SSE3 Floating-Point Instructions B-86
Formats and Encodings for SSE3 Event Management Instructions B-87
Formats and Encodings for SSE3 Integer and Move Instructions B-87
Formats and Encodings for SSSE3 Instructionsccoviiiiiiiinn, B-88
Special Case Instructions Promoted UsingREXW ...t B-92
Encodings of SSE4.T INSTrUCtiONSvii e B-96
Encodings of SSE4.2 INSTrUCTIONSo vt B-104
General Floating-Point Instruction Formats. ..o i, B-106
Floating-Point Instruction Formats and Encodingscovvivvinnt B-107
Encodings for VMX INStructions. ..ot B-112
Encodings for SMX INSTruCtionsoviiiii i B-114
SIMPlE INTMINSICS vt e C-3
ComMPOSITE INTFINSICS. . v vt C-16

CHAPTER 1
ABOUT THIS MANUAL

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes

2A & 2B: Instruction Set Reference (order numbers 253666 and 253667) are part of
a set that describes the architecture and programming environment of all Intel 64
and IA-32 architecture processors. Other volumes in this set are:

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture (Order Number 253665).

®* The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volumes
3A & 3B: System Programming Guide (order numbers 253668 and 253669).

The Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
describes the basic architecture and programming environment of Intel 64 and IA-32
processors. The Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, describe the instruction set of the processor and the opcode struc-
ture. These volumes apply to application programmers and to programmers who
write operating systems or executives. The Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volumes 3A & 3B, describe the operating-system support
environment of Intel 64 and IA-32 processors. These volumes target operating-
system and BIOS designers. In addition, the Inte/® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 3B, addresses the programming environment for
classes of software that host operating systems.

1.1 IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual set includes information pertaining primarily to the most recent Intel 64
and IA-32 processors, which include:

* Pentium® processors

® P6 family processors

* Pentium® 4 processors

* Pentium® M processors

* Intel® Xeon® processors

* Pentium® D processors

* Pentium® processor Extreme Editions
* 64-bit Intel® Xeon® processors

* Intel® Core™ Duo processor

* Intel® Core™ Solo processor

* Dual-Core Intel® Xeon® processor LV

Vol.2A 1-1

ABOUT THIS MANUAL

* Intel® Core™2 Duo processor

* Intel® Core™2 Quad processor Q6000 series

* Intel® Xeon® processor 3000, 3200 series

* Intel® Xeon® processor 5000 series

* Intel® Xeon® processor 5100, 5300 series

* Intel® Core™2 Extreme processor X7000 and X6800 series
* Intel® Core™2 Extreme QX6000 series

* Intel® Xeon® processor 7100 series

* Intel® Pentium® Dual-Core processor

* Intel® Xeon® processor 7200, 7300 series

* Intel® Core™2 Extreme QX9000 series

* Intel® Xeon® processor 5200, 5400 series

* Intel® Core™2 Extreme processor QX9000 and X9000 series
* Intel® Core™2 Quad processor Q9000 series

* Intel® Core™2 Duo processor EB000 series

P6 family processors are IA-32 processors based on the P6 family microarchitecture.
This includes the Pentium® Pro, Pentium® II, Pentium® 111, and Pentium® 11l Xeon®
processors.

The Pentium® 4, Pentium® D, and Pentium® processor Extreme Editions are based
on the Intel NetBurst® microarchitecture. Most early Intel® Xeon® processors are
based on the Intel NetBurst® microarchitecture. Intel Xeon processor 5000, 7100
series are based on the Intel NetBurst® microarchitecture.

The Intel® Core™ Duo, Intel® Core™ Solo and dual-core Intel® Xeon® processor LV
are based on an improved Pentium® M processor microarchitecture.

The Intel® Xeon® processor 3000, 3200, 5100, 5300, 7200, and 7300 series, Intel®
Pentium® dual-core, Intel® Core™2 Duo, Intel® Core™2 Quad, and Intel® Core™2
Extreme processors are based on Intel® Core™ microarchitecture.

The Intel® Xeon® processor 5200, 5400 series, Intel® Core™2 Quad processor
Q9000 series, and Intel® Core™2 Extreme processors QX9000, X9000 series, Intel®
Core™?2 processor E8000 series are based on Enhanced Intel® Core™ microarchitec-
ture.

P6 family, Pentium® M, Intel® Core™ Solo, Intel® Core™ Duo processors, dual-core
Intel® Xeon® processor LV, and early generations of Pentium 4 and Intel Xeon
processors support IA-32 architecture.

The Intel® Xeon® processor 3000, 3200, 5000, 5100, 5200, 5300, 5400, 7100,
7200, 7300 series, Intel® Core™2 Duo, Intel® Core™2 Extreme, Intel® Core™2
Quad processors, Pentium® D processors, Pentium® Dual-Core processor, newer
generations of Pentium 4 and Intel Xeon processor family support Intel® 64 architec-
ture.

1-2 Vol. 2A

ABOUT THIS MANUAL

IA-32 architecture is the instruction set architecture and programming environment
for Intel's 32-bit microprocessors.

Intel® 64 architecture is the instruction set architecture and programming environ-
ment which is the superset of Intel’s 32-bit and 64-bit architectures. It is compatible
with the IA-32 architecture.

1.2 OVERVIEW OF VOLUME 2A AND 2B: INSTRUCTION
SET REFERENCE

A description of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volumes 2A & 2B, content follows:

Chapter 1 — About This Manual. Gives an overview of all five volumes of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual. 1t also describes
the notational conventions in these manuals and lists related Intel® manuals and
documentation of interest to programmers and hardware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format
used for all IA-32 instructions and gives the allowable encodings of prefixes, the
operand-identifier byte (ModR/M byte), the addressing-mode specifier byte (SIB
byte), and the displacement and immediate bytes.

Chapter 3 — Instruction Set Reference, A-M. Describes Intel 64 and IA-32
instructions in detail, including an algorithmic description of operations, the effect on
flags, the effect of operand- and address-size attributes, and the exceptions that
may be generated. The instructions are arranged in alphabetical order. General-
purpose, x87 FPU, Intel MMX™ technology, SSE/SSE2/SSE3/SSSE3/SSE4 exten-
sions, and system instructions are included.

Chapter 4 — Instruction Set Reference, N-Z. Continues the description of Intel
64 and IA-32 instructions started in Chapter 3. It provides the balance of the alpha-
betized list of instructions and starts Inte/l® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

Chapter 5 — VMX Instruction Reference. Describes the virtual-machine exten-
sions (VMX). VMX is intended for a system executive to support virtualization of
processor hardware and a system software layer acting as a host to multiple guest
software environments.

Chapter 6— Safer Mode Extensions Reference. Describes the safer mode exten-
sions (SMX). SMX is intended for a system executive to support launching a
measured environment in a platform where the identity of the software controlling
the platform hardware can be measured for the purpose of making trust decisions.

Appendix A — Opcode Map. Gives an opcode map for the IA-32 instruction set.

Appendix B — Instruction Formats and Encodings. Gives the binary encoding of
each form of each IA-32 instruction.

Vol.2A 1-3

ABOUT THIS MANUAL

Appendix C — Intel® C/C+Compiler Intrinsics and Functional Equivalents.
Lists the Intel® C/C+compiler intrinsics and their assembly code equivalents for each
of the IA-32 MMX and SSE/SSE2/SSE3 instructions.

1.3 NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic represen-
tation of instructions, and for hexadecimal and binary numbers. A review of this
notation makes the manual easier to read.

1.3.1 Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the
bottom of the figure; addresses increase toward the top. Bit positions are numbered
from right to left. The numerical value of a set bit is equal to two raised to the power
of the bit position. IA-32 processors are “little endian” machines; this means the
bytes of a word are numbered starting from the least significant byte. Figure 1-1
illustrates these conventions.

Highest Data Structure

Address 31 24 23 16 15 8 7 0 <« Bit offset
28

24

20

16

12

8

Lowest

4
Byte 3 Byte 2 Byte 1 ByteO | O Address

A

Byte Offset

Figure 1-1. Bit and Byte Order

1.3.2 Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as
reserved. When bits are marked as reserved, it is essential for compatibility with
future processors that software treat these bits as having a future, though unknown,
effect. The behavior of reserved bits should be regarded as not only undefined, but
unpredictable. Software should follow these guidelines in dealing with reserved bits:

1-4 Vol. 2A

ABOUT THIS MANUAL

®* Do not depend on the states of any reserved bits when testing the values of
registers which contain such bits. Mask out the reserved bits before testing.

®* Do not depend on the states of any reserved bits when storing to memory or to a
register.

* Do not depend on the ability to retain information written into any reserved bits.

®* When loading a register, always load the reserved bits with the values indicated
in the documentation, if any, or reload them with values previously read from the
same register.

NOTE

Avoid any software dependence upon the state of reserved bits in
IA-32 registers. Depending upon the values of reserved register bits
will make software dependent upon the unspecified manner in which
the processor handles these bits. Programs that depend upon
reserved values risk incompatibility with future processors.

1.3.3 Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly
language is used. In this subset, an instruction has the following format:
label: mnemonic argument1, argument2, argument3
where:
®* Alabel is an identifier which is followed by a colon.

* A mnemonic is a reserved name for a class of instruction opcodes which have
the same function.

®* The operands argumentl, argument2, and argument3 are optional. There may
be from zero to three operands, depending on the opcode. When present, they
take the form of either literals or identifiers for data items. Operand identifiers
are either reserved names of registers or are assumed to be assigned to data
items declared in another part of the program (which may not be shown in the
example).

When two operands are present in an arithmetic or logical instruction, the right
operand is the source and the left operand is the destination.

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode,
EAX is the destination operand, and SUBTOTAL is the source operand. Some
assembly languages put the source and destination in reverse order.

Vol.2A 1-5

ABOUT THIS MANUAL

1.3.4 Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits
followed by the character H (for example, F82EH). A hexadecimal digit is a character
from the following set: 0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes
followed by the character B (for example, 1010B). The "B” designation is only used in
situations where confusion as to the type of humber might arise.

1.3.5 Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed
as a sequence of bytes. Whether one or more bytes are being accessed, a byte
address is used to locate the byte or bytes in memory. The range of memory that can
be addressed is called an address space.

The processor also supports segmented addressing. This is a form of addressing
where a program may have many independent address spaces, called segments.
For example, a program can keep its code (instructions) and stack in separate
segments. Code addresses would always refer to the code space, and stack
addresses would always refer to the stack space. The following notation is used to
specify a byte address within a segment:

Segment-register:Byte-address
For example, the following segment address identifies the byte at address FF79H in
the segment pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment.
The CS register points to the code segment and the EIP register contains the address
of the instruction.

CS:ElP

1.3.6 Exceptions

An exception is an event that typically occurs when an instruction causes an error.
For example, an attempt to divide by zero generates an exception. However, some
exceptions, such as breakpoints, occur under other conditions. Some types of excep-
tions may provide error codes. An error code reports additional information about the
error. An example of the notation used to show an exception and error code is shown
below:

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code
naming a type of fault is reported. Under some conditions, exceptions which produce

1-6 Vol. 2A

ABOUT THIS MANUAL

error codes may not be able to report an accurate code. In this case, the error code
is zero, as shown below for a general-protection exception:

#GP(0)

1.3.7 A New Syntax for CPUID, CR, and MSR Values

Obtain feature flags, status, and system information by using the CPUID instruction,
by checking control register bits, and by reading model-specific registers. We are
moving toward a new syntax to represent this information. See Figure 1-2.

Vol.2A 1-7

ABOUT THIS MANUAL

CPUID Input and Output
CPUID.01H:ECX.SSE [bit 25] = 1

Some inputs require values in EAX and ECX.

This is represented as CPUID.(EAX=n, ECX=n).
If only one value is present, EAX is implied.

Output register and feature flag or field
name with bit position(s)

Value (or range) of output

Control Register Values
CR4.0SFXSR[bit 9] = 1

Example CR name i
Feature flag or field name
with bit position(s)

Value (or range) of output

Model-Specific Register Values
IA32_MISC_ENABLES.ENABLEFOPCODE[bit 2] = 1

Example MSR name i
Feature flag or field name with bit position(s)
Value (or range) of output

OM17732

Figure 1-2. Syntax for CPUID, CR, and MSR Data Presentation

1.4 RELATED LITERATURE
Literature related to Intel 64 and IA-32 processors is listed on-line at:
http://developer.intel.com/products/processor/manuals/index.htm

Some of the documents listed at this web site can be viewed on-line; others can be
ordered. The literature available is listed by Intel processor and then by the following

1-8 Vol. 2A

http://developer.intel.com/products/processor/manuals/index.htm

ABOUT THIS MANUAL

literature types: applications notes, data sheets, manuals, papers, and specification
updates.

See also:
®* The data sheet for a particular Intel 64 or IA-32 processor
®* The specification update for a particular Intel 64 or IA-32 processor

* Intel® C++ Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® Fortran Compiler documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® VTune™ Performance Analyzer documentation and online help
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

* Intel® 64 and IA-32 Architectures Software Developer’s Manual (in five volumes)
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® 64 and IA-32 Architectures Optimization Reference Manual
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® Processor Identification with the CPUID Instruction, AP-485
http://www.intel.com/support/processors/sb/cs-009861.htm

®* TLBs, Paging-Structure Caches, and Their Invalidation,
http://developer.intel.com/products/processor/manuals/index.htm

®* Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide, http://www.intel.com/technology/security/index.htm

®* Intel® SSE4 Programming Reference,
http://developer.intel.com/products/processor/manuals/index.htm

®* Developing Multi-threaded Applications: A Platform Consistent Approach
http://cache-
www.intel.com/cd/00/00/05/15/51534_developing_multithreaded_applications.pdf

® Using Spin-Loops on Intel Pentium 4 Processor and Intel Xeon Processor MP
http://www3.intel.com/cd/ids/developer/asmo-
na/eng/dc/threading/knowledgebase/19083.htm

More relevant links are:

® Software network link:
http://softwarecommunity.intel.com/isn/home/

®* Developer centers:
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm

® Processor support general link:
http://www.intel.com/support/processors/

®* Software products and packages:
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

Vol.2A 1-9

http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

http://developer.intel.com/products/processor/manuals/index.htm
http://www.intel.com/support/processors/sb/cs-009861.htm
http://www3.intel.com/cd/ids/developer/asmo-na/eng/dc/threading/knowledgebase/19083.htm
http://softwarecommunity.intel.com/isn/home/
http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/index.htm
http://www.intel.com/support/processors/
http://www.intel.com/cd/software/products/asmo-na/eng/index.htm

ABOUT THIS MANUAL

* Intel 64 and IA-32 processor manuals (printed or PDF downloads):
http://developer.intel.com/products/processor/manuals/index.htm

* Intel® Multi-Core Technology:
http://developer.intel.com/multi-core/index.htm

® Hyper-Threading Technology (HT Technology):
http://developer.intel.com/technology/hyperthread/

1-10 Vol.2A

http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/multi-core/index.htm
http://developer.intel.com/technology/hyperthread/

CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for all Intel 64 and IA-32 processors.
The instruction format for protected mode, real-address mode and virtual-8086
mode is described in Section 2.1. Increments provided for IA-32e mode and its sub-
modes are described in Section 2.2.

2.1 INSTRUCTION FORMAT FOR PROTECTED MODE,

REAL-ADDRESS MODE, AND VIRTUAL-8086 MODE

The Intel 64 and IA-32 architectures instruction encodings are subsets of the format
shown in Figure 2-1. Instructions consist of optional instruction prefixes (in any
order), primary opcode bytes (up to three bytes), an addressing-form specifier (if
required) consisting of the ModR/M byte and sometimes the SIB (Scale-Index-Base)
byte, a displacement (if required), and an immediate data field (if required).

InPsrter]LCJig:(teign Opcode ModR/M SIB Displacement Immediate
Up to four 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required) (if required) displacement data of
1 byte each of1,2,0r4 1,2,0r4
(optional) / \ bytes or none bytes or none

7 6 5 32 0 7 65 32 0
Mod ODRS%E R/M Scale | Index Base

Figure 2-1. Intel 64 and IA-32 Architectures Instruction Format

2.1.1 Instruction Prefixes

Instruction prefixes are divided into four groups, each with a set of allowable prefix
codes. For each instruction, one prefix may be used from each of four groups (Groups
1, 2, 3, 4) and be placed in any order.

® Group1l
— Lock and repeat prefixes:
* FOH—LOCK

Vol.2A 2-1

INSTRUCTION FORMAT

* F2H—REPNE/REPNZ (used only with string instructions; when used with
the escape opcode OFH, this prefix is treated as a mandatory prefix for
some SIMD instructions)

* F3H—REP or REPE/REPZ (used only with string instructions; when used
with the escape opcode OFH, this prefix is treated as an mandatory prefix
for some SIMD instructions)

® Group2
— Segment override prefixes:
¢ 2EH—CS segment override (use with any branch instruction is reserved)

* 36H—SS segment override prefix (use with any branch instruction is
reserved)

* 3EH—DS segment override prefix (use with any branch instruction is
reserved)

* 26H—ES segment override prefix (use with any branch instruction is
reserved)

* 64H—FS segment override prefix (use with any branch instruction is
reserved)

* 65H—GS segment override prefix (use with any branch instruction is
reserved)

— Branch hints:
¢ 2EH—Branch not taken (used only with Jcc instructions)
* 3EH—Branch taken (used only with Jcc instructions)
® Group 3

* 66H—Operand-size override prefix (when used with the escape opcode
OFH, this is treated as a mandatory prefix for some SIMD instructions)

®* Group 4
* 67H—Address-size override prefix

The LOCK prefix (FOH) forces an operation that ensures exclusive use of shared
memory in a multiprocessor environment. See "LOCK—Assert LOCK# Signal Prefix”
in Chapter 3, “Instruction Set Reference, A-M,” for a description of this prefix.

Repeat prefixes (F2H, F3H) cause an instruction to be repeated for each element of a
string. Use these prefixes only with string instructions (MOVS, CMPS, SCAS, LODS,
STOS, INS, and OUTS). Their use, followed by OFH, is treated as a mandatory prefix
by a number of SSE/SSE2/SSE3 instructions. Use of repeat prefixes and/or unde-
fined opcodes with other Intel 64 or IA-32 instructions is reserved; such use may
cause unpredictable behavior.

Branch hint prefixes (2EH, 3EH) allow a program to give a hint to the processor about
the most likely code path for a branch. Use these prefixes only with conditional
branch instructions (Jcc). Other use of branch hint prefixes and/or other undefined

2-2 Vol.2A

INSTRUCTION FORMAT

opcodes with Intel 64 or IA-32 instructions is reserved; such use may cause unpre-
dictable behavior.

The operand-size override prefix allows a program to switch between 16- and 32-bit
operand sizes. Either size can be the default; use of the prefix selects the non-default
size. Use of 66H followed by OFH is treated as a mandatory prefix by some
SSE/SSE2/SSE3 instructions. Other use of the 66H prefix with MMX/SSE/SSE2/SSE3
instructions is reserved; such use may cause unpredictable behavior.

The address-size override prefix (67H) allows programs to switch between 16- and
32-bit addressing. Either size can be the default; the prefix selects the non-default
size. Using this prefix and/or other undefined opcodes when operands for the instruc-
tion do not reside in memory is reserved; such use may cause unpredictable
behavior.

2.1.2 Opcodes

A primary opcode can be 1, 2, or 3 bytes in length. An additional 3-bit opcode field is
sometimes encoded in the ModR/M byte. Smaller fields can be defined within the
primary opcode. Such fields define the direction of operation, size of displacements,
register encoding, condition codes, or sign extension. Encoding fields used by an
opcode vary depending on the class of operation.

Two-byte opcode formats for general-purpose and SIMD instructions consist of:
®* An escape opcode byte OFH as the primary opcode and a second opcode byte, or

®* A mandatory prefix (66H, F2H, or F3H), an escape opcode byte, and a second
opcode byte (same as previous bullet)

For example, CVTDQ2PD consists of the following sequence: F3 OF E6. The first byte
is @ mandatory prefix for SSE/SSE2/SSE3 instructions (it is not considered as a
repeat prefix).

Three-byte opcode formats for general-purpose and SIMD instructions consist of:

®* An escape opcode byte OFH as the primary opcode, plus two additional opcode
bytes, or

* A mandatory prefix (66H), an escape opcode byte, plus two additional opcode
bytes (same as previous bullet)

For example, PHADDW for XMM registers consists of the following sequence: 66 OF
38 01. The first byte is the mandatory prefix.

Valid opcode expressions are defined in Appendix A and Appendix B.

Vol.2A 2-3

INSTRUCTION FORMAT

2.1.3 ModR/M and SIB Bytes

Many instructions that refer to an operand in memory have an addressing-form spec-
ifier byte (called the ModR/M byte) following the primary opcode. The ModR/M byte
contains three fields of information:

®* The mod field combines with the r/m field to form 32 possible values: eight
registers and 24 addressing modes.

®* The reg/opcode field specifies either a register number or three more bits of
opcode information. The purpose of the reg/opcode field is specified in the
primary opcode.

®* The r/m field can specify a register as an operand or it can be combined with the
mod field to encode an addressing mode. Sometimes, certain combinations of
the mod field and the r/m field is used to express opcode information for some
instructions.

Certain encodings of the ModR/M byte require a second addressing byte (the SIB
byte). The base-plus-index and scale-plus-index forms of 32-bit addressing require
the SIB byte. The SIB byte includes the following fields:

®* The scale field specifies the scale factor.

®* The index field specifies the register number of the index register.
®* The base field specifies the register number of the base register.
See Section 2.1.5 for the encodings of the ModR/M and SIB bytes.

2.14 Displacement and Immediate Bytes

Some addressing forms include a displacement immediately following the ModR/M
byte (or the SIB byte if one is present). If a displacement is required; it be 1, 2, or 4
bytes.

If an instruction specifies an immediate operand, the operand always follows any
displacement bytes. An immediate operand can be 1, 2 or 4 bytes.

2.1.5 Addressing-Mode Encoding of ModR/M and SIB Bytes

The values and corresponding addressing forms of the ModR/M and SIB bytes are
shown in Table 2-1 through Table 2-3: 16-bit addressing forms specified by the
ModR/M byte are in Table 2-1 and 32-bit addressing forms are in Table 2-2. Table 2-3
shows 32-bit addressing forms specified by the SIB byte. In cases where the
reg/opcode field in the ModR/M byte represents an extended opcode, valid encodings
are shown in Appendix B.

In Table 2-1 and Table 2-2, the Effective Address column lists 32 effective addresses
that can be assigned to the first operand of an instruction by using the Mod and R/M
fields of the ModR/M byte. The first 24 options provide ways of specifying a memory

2-4 \Vol.2A

INSTRUCTION FORMAT

location; the last eight (Mod = 11B) provide ways of specifying general-purpose,
MMX technology and XMM registers.

The Mod and R/M columns in Table 2-1 and Table 2-2 give the binary encodings of the
Mod and R/M fields required to obtain the effective address listed in the first column.
For example: see the row indicated by Mod = 11B, R/M = 000B. The row identifies
the general-purpose registers EAX, AX or AL; MMX technology register MMO; or XMM
register XMMO. The register used is determined by the opcode byte and the operand-
size attribute.

Now look at the seventh row in either table (labeled “"REG ="). This row specifies the
use of the 3-bit Reg/Opcode field when the field is used to give the location of a
second operand. The second operand must be a general-purpose, MMX technology,
or XMM register. Rows one through five list the registers that may correspond to the
value in the table. Again, the register used is determined by the opcode byte along
with the operand-size attribute.

If the instruction does not require a second operand, then the Reg/Opcode field may
be used as an opcode extension. This use is represented by the sixth row in the
tables (labeled “/digit (Opcode)”). Note that values in row six are represented in
decimal form.

The body of Table 2-1 and Table 2-2 (under the label “*Value of ModR/M Byte (in Hexa-
decimal)”) contains a 32 by 8 array that presents all of 256 values of the ModR/M
byte (in hexadecimal). Bits 3, 4 and 5 are specified by the column of the table in
which a byte resides. The row specifies bits 0, 1 and 2; and bits 6 and 7. The figure
below demonstrates interpretation of one table value.

Mod 11

RM 000
/digit (Opcode); REG= 001

C8H 11001000

Figure 2-2. Table Interpretation of ModR/M Byte (C8H)

Vol.2A 2-5

INSTRUCTION FORMAT

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL L DL BL AH CH DH BH
r16(/r) AX X DX BX SP BP1 S| DI
r32(/r) EAX ECX |EDX |EBX |ESP |€BP |ESI €Dl
mm(/r) MMO |MM1 |[MM2 |MM3 |MM4 |[MM5 |MMe | MM7
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 | 011 100 | 101 170 |1
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
BX-5I] 00 000 |00 08 10 18 20 28 30 38
BX-DI] 001 |01 09 11 19 21 29 31 39
BP-SI] 010 |02 0A 12 1A 22 2A 32 3A
BP-DI] 011 |03 0B 13 1B 23 2B 33 3B
SI] 100 |04 0C 14 1C 24 2C 34 3C
DI 101 |05 oD 15 1D 25 2D 35 3D
disp162 110 |06 0€E 16 1€ 26 2E 36 3€
[BX] 111 |07 OF 17 1F 27 2F 37 3F
BX-S5I]-+disp83 01 000 |40 48 50 58 60 68 70 78
BX-DI]-disp8 001 |41 49 51 59 61 69 71 79
BP-SI]+disp8 010 |42 4A 52 5A 62 6A 72 7A
BP-DI]-disp8 011 |43 4B 53 5B 63 6B 73 7B
Sl]+disp8 100 |44 4C 54 5C 64 6C 74 7C
DIldisp8 101 |45 4D 55 5D 65 6D 75 7D
BP]-isp8 110 |46 4€ 56 5€ 66 6€E 76 7€
BX]-isp8 111 |47 4F 57 5F 67 6F 77 7F
BX-SI]-+disp16 10 000 |80 88 90 98 AO A8 BO B8
BX-DI]Hisp16 001 |81 89 91 99 Al A9 B1 B9
BP-SI]disp16 010 |82 8A 92 9A A2 AA | B2 BA
BP-DI]-+disp16 011 |83 8B 93 9B A3 AB B3 BB
Sl]-disp16 100 |84 8C 94 9C A4 AC B4 BC
DI)disp16 101 |85 8D 95 9D A5 AD B5 BD
BPldisp16 110 |86 8E 96 9€ A6 AE B6 BE
BX]-«isp16 111 |87 8F 97 9F A7 AF B7 BF
EAX/AX/AL/MMO/XMMO | 11 000 |Co c8 DO D8 €0 €8 FO F8
ECX/CX/CL/IMM1/XMM1 001 | C1 C9 D1 D9 €EQ €9 F1 F9
EDX/DX/DL/MM2/XMM2 010 | C2 CA D2 DA €2 EA F2 FA
EBX/BX/BL/MM3/XMM3 011 | C3 CB D3 DB €3 EB F3 FB
ESP/SP/AHMM4/XMM4 100 |C4 CC D4 DC €4 €C F4 FC
€BP/BP/CH/MM5/XMM5 101 | C5 CD D5 DD €5 €D F5 FD
€SI/SI/DH/MM6/XMM6 110 |C6 CE D6 DE €6 EE F6 FE
€DI/DI/BH/MM7/XMM7 11 | C7 CF D7 DF €7 EF F7 FF
NOTES:

1. The default segment register is SS for the effective addresses containing a BP index, DS for other
effective addresses.

2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is
added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is
sign-extended and added to the index.

2-6 Vol.2A

Table 2-2. 32-Bit Addressin

INSTRUCTION FORMAT

g Forms with the ModR/M Byte

r8(/r) AL cL DL BL AH CH DH BH
r16(/r) AX X DX BX SP BP S| DI
r32(/r) EAX | ECX |EDX |EBX |ESP |EBP | ESI epl
mm(/r) MMO |MM1 |MM2 |MM3 |MM4 |MM5 |MM6 | MM7
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 |001 |010 |011 |100 |7101 |110 |111
Effective Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
EAX] 00 |000 |oo |08 10 18 |20 |28 30 38
ECX] 001 |01 09 11 19 |21 29 31 39
€DX] 010 |02 OA |12 1A |22 2A |32 3A
EBX] 011 |03 0B 13 1B |23 2B |33 3B
11 100 |04 |OC 14 1C 24 | 2C 34 |3C
disp322 101 |05 oD 15 1D |25 2D |35 3D
[ESN] 110 |06 |OE 16 1€ 26 | 2E 36 3E
[EDI] 111 |07 OF 17 1F 27 2F 37 3F
EAX]isp83 01 |000 |40 (48 |50 58 |60 |68 |70 |78
ECX]-disp8 001 |41 (49 |2} 59 |61 |69 |71 |79
EDX]-disp8 010 |42 |4A |53 5A |62 6A |72 7A
EBX]disp8 011 |43 |4B |54 5B |63 6B |73 7B
--][--]+disp8 100 |44 |4C gg 5C 64 |6C 74 | 7C
EBP]disp8 101 |45 (4D |37 50 |65 6D |75 7D
ESI]disp8 110 |46 |4E 5€ 66 | 6E 76 | 7€
EDI]-disp8 111 |47 | 4F 5F 67 6F 77 7F
EAX]disp32 10 |[000 |80 |88 |90 |98 |A0O |A8 |BO |B8
ECX]disp32 001 |81 89 |91 99 | Al A9 |B1 B9
EDX]+disp32 010 |82 |BA |92 9A |A2 |AA |B2 BA
EBX]disp32 011 |83 (8B |93 9B |A3 |AB |B3 BB
--][--]disp32 100 |84 |8C 94 | 9C A4 | AC B4 |BC
EBP]disp32 101 |85 |8D |95 9D |A5 |AD |B5 |BD
ESI]disp32 110 |86 |8E 96 |9€ A6 | AE B6 |BE
EDI]disp32 111 |87 |8F 97 9F A7 | AF B7 |BF
EAX/AX/AL/MMO/XMMO | 11 | 000 |CO 8 DO |D8 |EO €8 FO F8
ECX/CX/CL/MM/XMM1 001 |C1 9 D1 D9 |E1 €9 F1 F9
EDX/DX/DL/MM2/XMM2 010 |cC2 CA |D2 |DA |E2 EA |F2 FA
EBX/BX/BL/MM3/XMM3 011 |C3 CB D3 |DB |E3 €B F3 FB
ESP/SP/AH/MM4/XMM4 100 |C4 cC D4 | DC €4 €C F4 FC
€BP/BP/CH/MM5/XMM5 101 | C5 CD D5 |DD |E5 €D F5 FD
€SI/SI/DH/MM6/XMM6 110 |C6 CE D6 | DE €6 EE F6 FE
€DI/DI/BH/MM7/XMM7 11 | C7 CF D7 |DF €7 EF F7 FF
NOTES:

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB
byte if one is present) and that is sign-extended and added to the index.

Table 2-3 is organized to give 256 possible values of the SIB byte (in hexadecimal).
General purpose registers used as a base are indicated across the top of the table,
along with corresponding values for the SIB byte’s base field. Table rows in the body

Vol.2A 2-7

INSTRUCTION FORMAT

of the table indicate the register used as the index (SIB byte bits 3, 4 and 5) and the
scaling factor (determined by SIB byte bits 6 and 7).

Table 2-3. 32-Bit Addressing Forms with the SIB Byte

r32 EAX ECX EDX EBX €SP] €sl]
(In decimal) Base = 0 1 2 3 4 5 6 7
(In binary) Base = 000 001 010 011 100 101 110 111
Scaled Index SS | Index Value of SIB Byte (in Hexadecimal)
EAX] 00 000 |00 01 02 03 04 05 06 07
ECX] 001 |08 09 0A 0B 0C oD 0] OF
EDX] 010 |10 11 12 13 14 15 16 17
EBX] 011 |18 19 1A 1B 1C 1D 1€ 1F
none 100 |20 21 22 23 24 25 26 27
EBP] 101 |28 29 2A 2B 2C 2D 2€ 2F
ESI] 110 |30 31 32 33 34 35 36 37
EDI] 111 |38 39 3A 3B 3C 3D 3€ 3F
EAX*2] 01 000 |40 41 42 43 44 45 46 47
ECX*2] 001 |48 49 4A 4B 4C 4D 4€ 4F
EDX*2] 010 |50 51 52 53 54 55 56 57
EBX*2] 011 |58 59 5A 5B 5C 5D 5€ 5F
none 100 |60 61 62 63 64 65 66 67
EBP*2] 101 |68 69 6A 6B 6C 6D 6€ 6F
ESI*2] 110 |70 71 72 73 74 75 76 77
EDI*2] 111 |78 79 7A 7B 7C 7D 7€ 7F
EAX*4] 10 000 |80 81 82 83 84 85 86 87
ECX*4] 001 |88 89 8A 8B 8C 8D 8E 8F
EDX*4] 010 |90 91 92 93 94 95 96 97
EBX*4] 011 |98 89 9A 9B 9C D 9€ 9F
none 100 | AO Al A2 A3 A4 A5 A6 A7
EBP*4] 101 | A8 A9 AA AB AC AD AE AF
ESI*4] 110 |BO B1 B2 B3 B4 B5 B6 B7
EDI*4] 111 | B8 B9 BA BB BC BD BE BF
EAX*8] 11 000 |cCO C1 c2 c3 C4 c5 C6 c7
ECX*8] 001 |(C8 9 CA (B CC CD CE CF
EDX*8] 010 |DO D1 D2 D3 D4 D5 D6 D7
EBX*8] 011 |D8 D9 DA DB DC DD DE DF
none 100 |EO E1 €2 €3 €4) €6 €7
EBP*8] 101 | €8 €9 EA €B €C €D EE EF
ESI*8] 110 |FO F1 F2 F3 F4 F5 F6 F7
EDI*8] 111 |F8 F9 FA FB FC FD FE FF

NOTES:

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8
or disp32 + [EBP]. This provides the following address modes:

MOD bits _ Effective Address

00 [scaled index] + disp32
01 [scaled index] + disp8 + [EBP]
10 [scaled index] + disp32 + [EBP]

2-8 Vol.2A

INSTRUCTION FORMAT

2.2 IA-32€ MODE

IA-32e mode has two sub-modes. These are:

®* Compatibility Mode. Enables a 64-bit operating system to run most legacy
protected mode software unmodified.

® 64-Bit Mode. Enables a 64-bit operating system to run applications written to
access 64-bit address space.

2.2.1 REX Prefixes

REX prefixes are instruction-prefix bytes used in 64-bit mode. They do the following:
® Specify GPRs and SSE registers.

® Specify 64-bit operand size.

®* Specify extended control registers.

Not all instructions require a REX prefix in 64-bit mode. A prefix is necessary only if
an instruction references one of the extended registers or uses a 64-bit operand. If a
REX prefix is used when it has no meaning, it is ignored.

Only one REX prefix is allowed per instruction. If used, the prefix must immediately
precede the opcode byte or the two-byte opcode escape prefix (if present). Other
placements are ignored. The instruction-size limit of 15 bytes still applies to instruc-
tions with a REX prefix. See Figure 2-3.

:ﬁgﬁ%s PFrzgf)i(x Opcode ModR/M SIB Displacement Immediate
Grp1,Grp (optional) 1-,2-,0r 1 byte 1 byte Address Immediate data
2,Grp 3, 3-byte (ifrequired) ~ (if required) displacementof of 1,2, or 4
Grp4 opcode 1,2,0r4bytes bytes or none

(optional)

Figure 2-3. Prefix Ordering in 64-bit Mode

Vol.2A 2-9

INSTRUCTION FORMAT

2.2.1.1 Encoding

Intel 64 and IA-32 instruction formats specify up to three registers by using 3-bit
fields in the encoding, depending on the format:

® ModR/M: the reg and r/m fields of the ModR/M byte

®* ModR/M with SIB: the reg field of the ModR/M byte, the base and index fields of
the SIB (scale, index, base) byte

® Instructions without ModR/M: the reg field of the opcode

In 64-bit mode, these formats do not change. Bits needed to define fields in the
64-bit context are provided by the addition of REX prefixes.

2.2.1.2 More on REX Prefix Fields

REX prefixes are a set of 16 opcodes that span one row of the opcode map and
occupy entries 40H to 4FH. These opcodes represent valid instructions (INC or DEC)
in IA-32 operating modes and in compatibility mode. In 64-bit mode, the same
opcodes represent the instruction prefix REX and are not treated as individual
instructions.

The single-byte-opcode form of INC/DEC instruction not available in 64-bit mode.
INC/DEC functionality is still available using ModR/M forms of the same instructions
(opcodes FF/0 and FF/1).

See Table 2-4 for a summary of the REX prefix format. Figure 2-4 though Figure 2-7
show examples of REX prefix fields in use. Some combinations of REX prefix fields are
invalid. In such cases, the prefix is ignored. Some additional information follows:

® Setting REX.W can be used to determine the operand size but does not solely
determine operand width. Like the 66H size prefix, 64-bit operand size override
has no effect on byte-specific operations.

® For non-byte operations: if a 66H prefix is used with prefix (REX.W = 1), 66H is
ignored.

® If a 66H override is used with REX and REX.W = 0, the operand size is 16 bits.

®* REX.R modifies the ModR/M reg field when that field encodes a GPR, SSE, control
or debug register. REX.R is ignored when ModR/M specifies other registers or
defines an extended opcode.

® REX.X bit modifies the SIB index field.

® REX.B either modifies the base in the ModR/M r/m field or SIB base field; or it
modifies the opcode reg field used for accessing GPRs.

2-10 Vol. 2A

INSTRUCTION FORMAT

Table 2-4. REX Prefix Fields [BITS: 0100WRXB]

Field Name Bit Position Definition
- 7:4 0100
W 3 0 = Operand size determined by CS.D
1 = 64 Bit Operand Size
R 2 Extension of the ModR/M reg field
1 Extension of the SIB index field
B 0 Extension of the ModR/M r/m field, SIB base field, or
Opcode reg field
ModRM Byte
REX PREFIX Opcode mod reg r/m
O100WROEE #11 rer I‘ol‘)b‘
*]
&Vr‘;‘r' Bbbb
OM17xfig1-3

Figure 2-4. Memory Addressing Without an SIB Byte; REX.X Not Used

ModRM Byte
REX PREFIX Opcode mod reg r/m
0100WRO0B 11 rrr bbb
| [
‘ H J
i‘"ﬂ! J
Rrrr Bbbb
OM17Xfig1-4

Figure 2-5. Register-Register Addressing (No Memory Operand); REX.X Not Used

Vol.2A 2-11

INSTRUCTION FORMAT

ModRM Byte SIB Byte
REX PREFIX Opcode mod reg r/m scale index | base
0100WRXB #11 rrr 100 ss XXX bbb
I [
]
LHVV Yy l
Rrrr Xxxx Bbbb

OM17Xfig1-5

Figure 2-6. Memory Addressing With a SIB Byte

REX PREFIX Opcode reg
0100W00B bbb
| | 11
Bbbb
OM17Xfig1-6

Figure 2-7. Register Operand Coded in Opcode Byte; REX.X & REX.R Not Used

In the IA-32 architecture, byte registers (AH, AL, BH, BL, CH, CL, DH, and DL) are
encoded in the ModR/M byte’s reg field, the r/m field or the opcode reg field as regis-
ters 0 through 7. REX prefixes provide an additional addressing capability for byte-
registers that makes the least-significant byte of GPRs available for byte operations.

Certain combinations of the fields of the ModR/M byte and the SIB byte have special
meaning for register encodings. For some combinations, fields expanded by the REX
prefix are not decoded. Table 2-5 describes how each case behaves.

2-12 Vol. 2A

INSTRUCTION FORMAT

Table 2-5. Special Cases of REX Encodings

ModR/M or | Sub-field Compatibility Compatibility
SIB Encodings Mode Operation | Mode Implications | Additional Implications
ModR/M Byte |mod = 11 SIB byte present. |SIB byte required |REX prefix adds a fourth
/m == for ESP-based bit (b) which is not
b*100(ESP) addressing. decoded (don't care).
SIB byte also required for
R12-based addressing.
ModR/M Byte | mod == Base register not | EBP without a REX prefix adds a fourth
/m == used. displacement must | bit (b) which is not
b*101(EBP) be done using decoded (don't care).
mod = 01 with Using RBP or R13 without
displacement of 0. | displacement must be
done using mod = 01 with
a displacement of 0.
SIB Byte index == Index register not | ESP cannot be used | REX prefix adds a fourth
0100(ESP) used. as an index bit (b) which is decoded.
register. There are no additional
implications. The
expanded index field
allows distinguishing RSP
from R12, therefore R12
can be used as an index.
SIB Byte base == Base register is Base register REX prefix adds a fourth
0101(EBP) unused if depends on mod bit (b) which is not
mod = 0. encoding. decoded.
This requires explicit
displacement to be used
with EBP/RBP or R13.
NOTES:

* Don't care about value of REX.B

2.2.1.3

Displacement

Addressing in 64-bit mode uses existing 32-bit ModR/M and SIB encodings. The
ModR/M and SIB displacement sizes do not change. They remain 8 bits or 32 bits and
are sign-extended to 64 bits.

2.2.1.4

Direct Memory-Offset MOVs

In 64-bit mode, direct memory-offset forms of the MOV instruction are extended to
specify a 64-bit immediate absolute address. This address is called a moffset. No
prefix is needed to specify this 64-bit memory offset. For these MOV instructions, the

Vol.2A 2-13

INSTRUCTION FORMAT

size of the memory offset follows the address-size default (64 bits in 64-bit mode).
See Table 2-6.

Table 2-6. Direct Memory Offset Form of MOV

Opcode Instruction

AO MOV AL, moffset
Al MOV EAX, moffset
A2 MOV moffset, AL
A3 MOV moffset, EAX

2.2.1.5 Immediates

In 64-bit mode, the typical size of immediate operands remains 32 bits. When the
operand size is 64 bits, the processor sign-extends all immediates to 64 bits prior to
their use.

Support for 64-bit immediate operands is accomplished by expanding the semantics
of the existing move (MOV reg, imm16/32) instructions. These instructions (opcodes
B8H - BFH) move 16-bits or 32-bits of immediate data (depending on the effective
operand size) into a GPR. When the effective operand size is 64 bits, these instruc-
tions can be used to load an immediate into a GPR. A REX prefix is needed to override
the 32-bit default operand size to a 64-bit operand size.

For example:

48 B8 8877665544332211 MOV RAX,1122334455667788H

2.2.1.6 RIP-Relative Addressing

A new addressing form, RIP-relative (relative instruction-pointer) addressing, is
implemented in 64-bit mode. An effective address is formed by adding displacement
to the 64-bit RIP of the next instruction.

In IA-32 architecture and compatibility mode, addressing relative to the instruction
pointer is available only with control-transfer instructions. In 64-bit mode, instruc-
tions that use ModR/M addressing can use RIP-relative addressing. Without RIP-rela-
tive addressing, all ModR/M instruction modes address memory relative to zero.

RIP-relative addressing allows specific ModR/M modes to address memory relative to
the 64-bit RIP using a signed 32-bit displacement. This provides an offset range of
+2GB from the RIP. Table 2-7 shows the ModR/M and SIB encodings for RIP-relative
addressing. Redundant forms of 32-bit displacement-addressing exist in the current
ModR/M and SIB encodings. There is one ModR/M encoding and there are several SIB
encodings. RIP-relative addressing is encoded using a redundant form.

In 64-bit mode, the ModR/M Disp32 (32-bit displacement) encoding is re-defined to
be RIP+Disp32 rather than displacement-only. See Table 2-7.

2-14 Vol. 2A

INSTRUCTION FORMAT

Table 2-7. RIP-Relative Addressing

ModR/M and SIB Sub-field Compatibility 64-bit Mode | Additional Implications
Encodings Mode Operation | Operation in 64-bit mode
ModR/M mod == 00 Disp32 RIP + Disp32 | Must use SIB form with
Byte normal (zero-based)

r/m == 101 (none) displacement addressing

SIB Byte base == 101 (none) | if mod = 00, Same as None
index == 100 Disp32 legacy
(none)
scale=0,1,2,4

The ModR/M encoding for RIP-relative addressing does not depend on using prefix.
Specifically, the r/m bit field encoding of 101B (used to select RIP-relative
addressing) is not affected by the REX prefix. For example, selecting R13 (REX.B =1,
r/m = 101B) with mod = 00B still results in RIP-relative addressing. The 4-bit r/m
field of REX.B combined with ModR/M is not fully decoded. In order to address R13
with no displacement, software must encode R13 + 0 using a 1-byte displacement of
zero.

RIP-relative addressing is enabled by 64-bit mode, not by a 64-bit address-size. The
use of the address-size prefix does not disable RIP-relative addressing. The effect of
the address-size prefix is to truncate and zero-extend the computed effective
address to 32 bits.

2.2.1.7 Default 64-Bit Operand Size

In 64-bit mode, two groups of instructions have a default operand size of 64 bits (do
not need a REX prefix for this operand size). These are:

®* Near branches
* All instructions, except far branches, that implicitly reference the RSP

2.2.2 Additional Encodings for Control and Debug Registers

In 64-bit mode, more encodings for control and debug registers are available. The
REX.R bit is used to modify the ModR/M reg field when that field encodes a control or
debug register (see Table 2-4). These encodings enable the processor to address
CR8-CR15 and DR8- DR15. An additional control register (CR8) is defined in 64-bit
mode. CR8 becomes the Task Priority Register (TPR).

In the first implementation of IA-32e mode, CR9-CR15 and DR8-DR15 are not imple-
mented. Any attempt to access unimplemented registers results in an invalid-opcode
exception (#UD).

Vol.2A 2-15

INSTRUCTION FORMAT

2-16 Vol. 2A

CHAPTER 3
INSTRUCTION SET REFERENCE, A-M

This chapter describes the instruction set for the Intel 64 and IA-32 architectures
(A-M) in IA-32e, protected, Virtual-8086, and real modes of operation. The set
includes general-purpose, x87 FPU, MMX, SSE/SSE2/SSE3/SSSE3/SSE4, and system
instructions. See also Chapter 4, “Instruction Set Reference, N-Z,” in the Inte/l® 64
and IA-32 Architectures Software Developer’s Manual, Volume 2B.

For each instruction, each operand combination is described. A description of the
instruction and its operand, an operational description, a description of the effect of
the instructions on flags in the EFLAGS register, and a summary of exceptions that
can be generated are also provided.

3.1 INTERPRETING THE INSTRUCTION REFERENCE
PAGES

This section describes the format of information contained in the instruction refer-
ence pages in this chapter. It explains notational conventions and abbreviations used
in these sections.

3.1.1 Instruction Format

The following is an example of the format used for each instruction description in this
chapter. The heading below introduces the example. The table below provides an
example summary table.

CMC—Complement Carry Flag [this is an example]

Opcode Instruction 64-bit Mode Compat/ Description
Leg Mode
F5 CcMC Valid Valid Complement carry flag.

Vol.2A 3-1

INSTRUCTION SET REFERENCE, A-M

3.1

1.1 Opcode Column in the Instruction Summary Table

The “Opcode” column in the table above shows the object code produced for each
form of the instruction. When possible, codes are given as hexadecimal bytes in the
same order in which they appear in memory. Definitions of entries other than hexa-
decimal bytes are as follows:

REX.W — Indicates the use of a REX prefix that affects operand size or
instruction semantics. The ordering of the REX prefix and other
optional/mandatory instruction prefixes are discussed Chapter 2. Note that REX
prefixes that promote legacy instructions to 64-bit behavior are not listed
explicitly in the opcode column.

/digit — A digit between 0 and 7 indicates that the ModR/M byte of the
instruction uses only the r/m (register or memory) operand. The reg field
contains the digit that provides an extension to the instruction's opcode.

/r — Indicates that the ModR/M byte of the instruction contains a register
operand and an r/m operand.

cb, cw, cd, cp, co, ct — A 1-byte (cb), 2-byte (cw), 4-byte (cd), 6-byte (cp),
8-byte (co) or 10-byte (ct) value following the opcode. This value is used to
specify a code offset and possibly a hew value for the code segment register.

ib, iw, id, io — A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate
operand to the instruction that follows the opcode, ModR/M bytes or scale-
indexing bytes. The opcode determines if the operand is a signed value. All
words, doublewords and quadwords are given with the low-order byte first.

+rb, +rw, +rd, +ro — A register code, from 0 through 7, added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.
See Table 3-1 for the codes. The +ro columns in the table are applicable only in
64-bit mode.

4 — A number used in floating-point instructions when one of the operands is
ST(i) from the FPU register stack. The number i (which can range from 0 to 7) is
added to the hexadecimal byte given at the left of the plus sign to form a single
opcode byte.

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register
(64-Bit Mode only)
[© [© [© [©
o oQ o |2 oQ o |2 oQ o 2 o o
et B BB OB BB OB OB B OBOE
(=] (=] (=] o
g = g &~ @& = & | [~ |2
AL None 0 AX None 0 EAX None 0 RAX None 0
CL None 1 X None 1 ECX None 1 RCX None 1
DL None 2 DX None 2 EDX None 2 RDX None 2
3-2 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro (Contd.)

byte register word register dword register quadword register
(64-Bit Mode only)
S | 3 |8 @ 3 |8 @ 3 g @ S
& K 5 B B & B 5 B B %
g = g e = g @@ = g | [|
BL None 3 BX None 3 EBX None 3 RBX None 3
AH Not 4 SP None | 4 ESP None | 4 N/A N/A N/A
encod
able
(N.E)
CH N.E. 5 BP None | 5 EBP None 5 N/A N/A N/A
DH N.E. 6 S| None | 6 sl None | 6 N/A N/A N/A
BH N.E. 7 DI None | 7 EDI None 7 N/A N/A N/A
SPL Yes 4 SP None 4 ESP None 4 RSP None 4
BPL Yes 5 BP None 5 EBP None 5 RBP None 5
SIL Yes 6 SI None 6 €SI None 6 RSI None 6
DIL Yes 7 DI None 7 EDI None 7 RDI None 7
Registers R8 - R15 (see below): Available in 64-Bit Mode Only
R8L Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0
ROL Yes 1 ROW Yes 1 RSD Yes 1 R9 Yes 1
R10L | Yes 2 R10W | Yes 2 R10D Yes 2 R10 Yes 2
R11L | Yes 3 R11W | Yes 3 R11D Yes 3 R11 Yes 3
R12L | Yes 4 R12W | Yes 4 R12D Yes 4 R12 Yes 4
R13L | Yes 5 R13W | Yes 5 R13D Yes 5 R13 Yes 5
R14L | Yes 6 R14W | Yes 6 R14D Yes 6 R14 Yes 6
R15L | Yes 7 R15W | Yes 7 R15D Yes 7 R15 Yes 7

3.1.1.2 Instruction Column in the Opcode Summary Table

The “Instruction” column gives the syntax of the instruction statement as it would
appear in an ASM386 program. The following is a list of the symbols used to repre-
sent operands in the instruction statements:

®* rel8 — A relative address in the range from 128 bytes before the end of the
instruction to 127 bytes after the end of the instruction.

®* rell6, rel32, rel64 — A relative address within the same code segment as the
instruction assembled. The rel16 symbol applies to instructions with an operand-
size attribute of 16 bits; the rel32 symbol applies to instructions with an
operand-size attribute of 32 bits; the rel64 symbol applies to instructions with an
operand-size attribute of 64 bits.

Vol.2A 3-3

INSTRUCTION SET REFERENCE, A-M

®* ptr16:16, ptr16:32 and ptr16:64 — A far pointer, typically to a code segment
different from that of the instruction. The notation 16:16 indicates that the value
of the pointer has two parts. The value to the left of the colon is a 16-bit selector
or value destined for the code segment register. The value to the right
corresponds to the offset within the destination segment. The ptr16:16 symbol is
used when the instruction's operand-size attribute is 16 bits; the ptr16:32
symbol is used when the operand-size attribute is 32 bits; the ptr16:64 symbol is
used when the operand-size attribute is 64 bits.

®* 8 — One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH, BH,
BPL, SPL, DIL and SIL; or one of the byte registers (R8L - R15L) available when
using REX.R and 64-bit mode.

®* r16 — One of the word general-purpose registers: AX, CX, DX, BX, SP, BP, SI, DI;
or one of the word registers (R8-R15) available when using REX.R and 64-bit
mode.

®* r32 — One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX,
ESP, EBP, ESI, EDI; or one of the doubleword registers (R8D - R15D) available
when using REX.R in 64-bit mode.

® r64 — One of the quadword general-purpose registers: RAX, RBX, RCX, RDX,
RDI, RSI, RBP, RSP, R8-R15. These are available when using REX.R and 64-bit
mode.

®* imm8 — An immediate byte value. The imm8 symbol is a signed number
between -128 and +127 inclusive. For instructions in which imm8 is combined
with a word or doubleword operand, the immediate value is sign-extended to
form a word or doubleword. The upper byte of the word is filled with the topmost
bit of the immediate value.

* imm16 — An immediate word value used for instructions whose operand-size
attribute is 16 bits. This is a number between -32,768 and +32,767 inclusive.

®* imm32 — An immediate doubleword value used for instructions whose
operand-size attribute is 32 bits. It allows the use of a number between
+2,147,483,647 and -2,147,483,648 inclusive.

* imm64 — An immediate quadword value used for instructions whose
operand-size attribute is 64 bits. The value allows the use of a number
between +9,223,372,036,854,775,807 and -9,223,372,036,854,775,808
inclusive.

* r/m8 — A byte operand that is either the contents of a byte general-purpose
register (AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPL, DIL and SIL) or a byte from
memory. Byte registers R8L - R15L are available using REX.R in 64-bit mode.

®* r/m16 — A word general-purpose register or memory operand used for instruc-
tions whose operand-size attribute is 16 bits. The word general-purpose registers
are: AX, CX, DX, BX, SP, BP, SI, DI. The contents of memory are found at the
address provided by the effective address computation. Word registers R8W -
R15W are available using REX.R in 64-bit mode.

3-4 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

r/m32 — A doubleword general-purpose register or memory operand used for
instructions whose operand-size attribute is 32 bits. The doubleword general-
purpose registers are: EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI. The contents of
memory are found at the address provided by the effective address computation.
Doubleword registers R8D - R15D are available when using REX.R in 64-bit
mode.

r/m64 — A quadword general-purpose register or memory operand used for
instructions whose operand-size attribute is 64 bits when using REX.W.
Quadword general-purpose registers are: RAX, RBX, RCX, RDX, RDI, RSI, RBP,
RSP, R8-R15; these are available only in 64-bit mode. The contents of memory
are found at the address provided by the effective address computation.

m — A 16-, 32- or 64-bit operand in memory.

m8 — A byte operand in memory, usually expressed as a variable or array hame,
but pointed to by the DS:(E)SI or ES:(E)DI registers. In 64-bit mode, it is pointed
to by the RSI or RDI registers.

m16 — A word operand in memory, usually expressed as a variable or array
name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is
used only with the string instructions.

m32 — A doubleword operand in memory, usually expressed as a variable or
array name, but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomen-
clature is used only with the string instructions.

m64 — A memory quadword operand in memory.

m128 — A memory double quadword operand in memory. This nomenclature is
used only with SSE and SSE?2 instructions.

m16:16, m16:32 & m16:64 — A memory operand containing a far pointer
composed of two numbers. The number to the left of the colon corresponds to the
pointer's segment selector. The number to the right corresponds to its offset.

m1l6&32, m16&16, m32&32, m16&64 — A memory operand consisting of
data item pairs whose sizes are indicated on the left and the right side of the
ampersand. All memory addressing modes are allowed. The m16&16 and
m32&32 operands are used by the BOUND instruction to provide an operand
containing an upper and lower bounds for array indices. The m16&32 operand is
used by LIDT and LGDT to provide a word with which to load the limit field, and a
doubleword with which to load the base field of the corresponding GDTR and
IDTR registers. The m16&64 operand is used by LIDT and LGDT in 64-bit mode to
provide a word with which to load the limit field, and a quadword with which to
load the base field of the corresponding GDTR and IDTR registers.

moffs8, moffs16, moffs32, moffs64 — A simple memory variable (memory
offset) of type byte, word, or doubleword used by some variants of the MOV
instruction. The actual address is given by a simple offset relative to the segment
base. No ModR/M byte is used in the instruction. The number shown with moffs
indicates its size, which is determined by the address-size attribute of the
instruction.

Vol.2A 3-5

INSTRUCTION SET REFERENCE, A-M

® Sreg — A segment register. The segment register bit assignments are ES = 0,
CS=1,SS=2,DS=3,FS=4,and GS = 5.

* m32fp, m64fp, m80fp — A single-precision, double-precision, and double
extended-precision (respectively) floating-point operand in memory. These
symbols designate floating-point values that are used as operands for x87 FPU
floating-point instructions.

* m16int, m32int, m64int — A word, doubleword, and quadword integer
(respectively) operand in memory. These symbols designate integers that are
used as operands for x87 FPU integer instructions.

® ST or ST(0) — The top element of the FPU register stack.
* ST(i) — The ith element from the top of the FPU register stack (i <0 through 7).
®* mm — An MMX register. The 64-bit MMX registers are: MMO through MM7.

* mm/m32 — The low order 32 bits of an MMX register or a 32-bit memory
operand. The 64-bit MMX registers are: MMO through MM7. The contents of
memory are found at the address provided by the effective address computation.

* mm/m64 — An MMX register or a 64-bit memory operand. The 64-bit MMX
registers are: MMO through MM7. The contents of memory are found at the
address provided by the effective address computation.

* xmm — An XMM register. The 128-bit XMM registers are: XMMO through XMM7;
XMM8 through XMM15 are available using REX.R in 64-bit mode.

* xmm/m32— An XMM register or a 32-bit memory operand. The 128-bit XMM
registers are XMMO through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.

* xmm/m64 — An XMM register or a 64-bit memory operand. The 128-bit SIMD
floating-point registers are XMMO through XMM7; XMM8 through XMM15 are
available using REX.R in 64-bit mode. The contents of memory are found at the
address provided by the effective address computation.

* xmm/m128 — An XMM register or a 128-bit memory operand. The 128-bit XMM
registers are XMMO through XMM7; XMM8 through XMM15 are available using
REX.R in 64-bit mode. The contents of memory are found at the address provided
by the effective address computation.

® <XMMO>: indicates implied use of the XMMO register.

When there is ambiguity, xmm1 indicates the first source operand using an XMM
register and xmm2 the second source operand using an XMM register.

Some instructions use the XMMO register as the third source operand, indicated
by <XMMO0O>. The use of the third XMM register operand is implicit in the instruc-
tion encoding and does not affect the ModR/M encoding.

3-6 Vol.2A

INSTRUCTION SET REFERENCE, A-M

3.1.1.3 64-bit Mode Column in the Instruction Summary Table

The “64-bit Mode” column indicates whether the opcode sequence is supported in
64-bit mode. The column uses the following notation:

* Valid — Supported.
¢ Invalid — Not supported.

®* N.E. — Indicates an instruction syntax is not encodable in 64-bit mode (it may
represent part of a sequence of valid instructions in other modes).

®* N.P. — Indicates the REX prefix does not affect the legacy instruction in 64-bit
mode.

®* N.I. — Indicates the opcode is treated as a new instruction in 64-bit mode.

®* N.S. — Indicates an instruction syntax that requires an address override prefix in
64-bit mode and is not supported. Using an address override prefix in 64-bit
mode may result in model-specific execution behavior.

3.1.1.4 Compatibility/Legacy Mode Column in the Instruction Summary
Table

The “Compatibility/Legacy Mode” column provides information on the opcode
sequence in either the compatibility mode or other IA-32 modes. The column uses
the following notation:

®* Valid — Supported.
¢ Invalid — Not supported.

® N.E. — Indicates an Intel 64 instruction mnemonics/syntax that is not
encodable; the opcode sequence is not applicable as an individual instruction in
compatibility mode or IA-32 mode. The opcode may represent a valid sequence
of legacy IA-32 instructions.

3.1.1.5 Description Column in the Instruction Summary Table

The “Description” column briefly explains forms of the instruction.

3.1.1.6 Description Section

Each instruction is then described by number of information sections. The “Descrip-
tion” section describes the purpose of the instructions and required operands in more
detail.

3.1.1.7 Operation Section

The “Operation” section contains an algorithm description (frequently written in
pseudo-code) for the instruction. Algorithms are composed of the following
elements:

Vol.2A 3-7

INSTRUCTION SET REFERENCE, A-M

Comments are enclosed within the symbol pairs “(*” and “*)".

Compound statements are enclosed in keywords, such as: IF, THEN, ELSE and FI
for an if statement; DO and OD for a do statement; or CASE... OF for a case
statement.

A register name implies the contents of the register. A register name enclosed in
brackets implies the contents of the location whose address is contained in that
register. For example, ES:[DI] indicates the contents of the location whose ES
segment relative address is in register DI. [SI] indicates the contents of the
address contained in register SI relative to the SI register’s default segment (DS)
or the overridden segment.

Parentheses around the “E” in a general-purpose register name, such as (E)SI,
indicates that the offset is read from the SI register if the address-size attribute
is 16, from the ESI register if the address-size attribute is 32. Parentheses
around the “R” in a general-purpose register name, (R)SI, in the presence of a
64-bit register definition such as (R)SI, indicates that the offset is read from the
64-bit RSI register if the address-size attribute is 64.

Brackets are used for memory operands where they mean that the contents of
the memory location is a segment-relative offset. For example, [SRC] indicates
that the content of the source operand is a segment-relative offset.

A «B indicates that the value of B is assigned to A.

The symbols =, #, >, <, >, and <are relational operators used to compare two
values: meaning equal, not equal, greater or equal, less or equal, respectively. A
relational expression such as A «B is TRUE if the value of A is equal to B;
otherwise it is FALSE.

The expression "<< COUNT” and “>> COUNT" indicates that the destination
operand should be shifted left or right by the number of bits indicated by the
count operand.

The following identifiers are used in the algorithmic descriptions:

OperandSize and AddressSize — The OperandSize identifier represents the
operand-size attribute of the instruction, which is 16, 32 or 64-bits. The
AddressSize identifier represents the address-size attribute, which is 16, 32 or
64-bits. For example, the following pseudo-code indicates that the operand-size
attribute depends on the form of the MOV instruction used.

IF Instruction «<MOVW
THEN OperandSize «-16;
ELSE
IF Instruction <MOVD
THEN OperandSize «32;
ELSE
IF Instruction <M0OVQ
THEN OperandSize «64;
Fl;

3-8 Vol.2A

INSTRUCTION SET REFERENCE, A-M

Fl;

Fl;
See “"Operand-Size and Address-Size Attributes” in Chapter 3 of the Inte/l® 64
and IA-32 Architectures Software Developer’s Manual, Volume 1, for guidelines
on how these attributes are determined.
StackAddrSize — Represents the stack address-size attribute associated with
the instruction, which has a value of 16, 32 or 64-bits. See “"Address-Size
Attribute for Stack” in Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1.

SRC — Represents the source operand.
DEST — Represents the destination operand.

The following functions are used in the algorithmic descriptions:

ZeroExtend(value) — Returns a value zero-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, zero
extending a byte value of -10 converts the byte from F6H to a doubleword value
of 000000F6H. If the value passed to the ZeroExtend function and the operand-
size attribute are the same size, ZeroExtend returns the value unaltered.

SignExtend(value) — Returns a value sign-extended to the operand-size
attribute of the instruction. For example, if the operand-size attribute is 32, sign
extending a byte containing the value -10 converts the byte from F6H to a
doubleword value of FFFFFFF6H. If the value passed to the SignExtend function
and the operand-size attribute are the same size, SignExtend returns the value
unaltered.

SaturateSignedWordToSignedByte — Converts a signed 16-bit value to a
signed 8-bit value. If the signed 16-bit value is less than -128, it is represented
by the saturated value -128 (80H); if it is greater than 127, it is represented by
the saturated value 127 (7FH).

SaturateSignedDwordToSignedWord — Converts a signed 32-bit value to a
signed 16-bit value. If the signed 32-bit value is less than -32768, it is
represented by the saturated value -32768 (8000H); if it is greater than 32767,
it is represented by the saturated value 32767 (7FFFH).

SaturateSignedWordToUnsignedByte — Converts a signed 16-bit value to an
unsigned 8-bit value. If the signed 16-bit value is less than zero, it is represented
by the saturated value zero (00H); if it is greater than 255, it is represented by
the saturated value 255 (FFH).

SaturateToSignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than -128, it is represented by the saturated value
-128 (80H); if it is greater than 127, it is represented by the saturated value 127
(7FH).

SaturateToSignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than —-32768, it is represented by the saturated
value -32768 (8000H); if it is greater than 32767, it is represented by the
saturated value 32767 (7FFFH).

Vol.2A 3-9

INSTRUCTION SET REFERENCE, A-M

* SaturateToUnsignedByte — Represents the result of an operation as a signed
8-bit value. If the result is less than zero it is represented by the saturated value
zero (O0H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

* SaturateToUnsignedWord — Represents the result of an operation as a signed
16-bit value. If the result is less than zero it is represented by the saturated value
zero (O0H); if it is greater than 65535, it is represented by the saturated value
65535 (FFFFH).

* LowOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the least significant word of the doubleword result in the destination
operand.

* HighOrderWord(DEST * SRC) — Multiplies a word operand by a word operand
and stores the most significant word of the doubleword result in the destination
operand.

®* Push(value) — Pushes a value onto the stack. The number of bytes pushed is
determined by the operand-size attribute of the instruction. See the “Operation”
subsection of the "PUSH—Push Word, Doubleword or Quadword Onto the Stack”
section in Chapter 4 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

®* Pop() removes the value from the top of the stack and returns it. The statement
EAX «Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will
return either a word, a doubleword or a quadword depending on the operand-size
attribute. See the “Operation” subsection in the "POP—Pop a Value from the
Stack” section of Chapter 4 of the Inte/l® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

* PopRegisterStack — Marks the FPU ST(0) register as empty and increments
the FPU register stack pointer (TOP) by 1.

® Switch-Tasks — Performs a task switch.

* Bit(BitBase, BitOffset) — Returns the value of a bit within a bit string. The bit
string is a sequence of bits in memory or a register. Bits are humbered from low-
order to high-order within registers and within memory bytes. If the BitBase is a
register, the BitOffset can be in the range 0 to [15, 31, 63] depending on the
mode and register size. See Figure 3-1: the function Bit[RAX, 21] is illustrated.

63 31 21 0

T—Bit Offset «21 A

Figure 3-1. Bit Offset for BIT[RAX, 21]

3-10 Vol.2A

INSTRUCTION SET REFERENCE, A-M

If BitBase is a memory address, the BitOffset can range has different ranges
depending on the operand size (see Table 3-2).

Table 3-2. Range of Bit Positions Specified by Bit Offset Operands

Operand Size Immediate BitOffset | Register BitOffset
16 0to15 2150215 -1
32 0to31 23110 231 -1
64 0to 63 263 t0 263 -1

The addressed bit is numbered (Offset MOD 8) within the byte at address
(BitBase + (BitOffset DIV 8)) where DIV is signed division with rounding towards
negative infinity and MOD returns a positive number (see Figure 3-2).

BitBase +1 BitBase J BitBase -1

LBitOffset «A3

07

BitBase BitBase -1 BitBase -2

BitOffset «11 J

3.1.1.8

Figure 3-2. Memory Bit Indexing

Intel® C/C+Compiler Intrinsics Equivalents Section

The Intel C/C+compiler intrinsics equivalents are special C/C+coding extensions that
allow using the syntax of C function calls and C variables instead of hardware regis-
ters. Using these intrinsics frees programmers from having to manage registers and
assembly programming. Further, the compiler optimizes the instruction scheduling

so that executable run faster.

The following sections discuss the intrinsics API and the MMX technology and SIMD
floating-point intrinsics. Each intrinsic equivalent is listed with the instruction
description. There may be additional intrinsics that do not have an instruction equiv-

Vol.2A 3-11

INSTRUCTION SET REFERENCE, A-M

alent. It is strongly recommended that the reader reference the compiler documen-
tation for the complete list of supported intrinsics.

See Appendix C, “InteL® C/C++ Compiler Intrinsics and Functional Equivalents,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for
more information on using intrinsics.

Intrinsics API

The benefit of coding with MMX technology intrinsics and the SSE/SSE2/SSE3 intrin-
sics is that you can use the syntax of C function calls and C variables instead of hard-
ware registers. This frees you from managing registers and programming assembly.
Further, the compiler optimizes the instruction scheduling so that your executable
runs faster. For each computational and data manipulation instruction in the new
instruction set, there is a corresponding C intrinsic that implements it directly. The
intrinsics allow you to specify the underlying implementation (instruction selection)
of an algorithm yet leave instruction scheduling and register allocation to the
compiler.

MMX™ Technology Intrinsics

The MMX technology intrinsics are based on a __m64 data type that represents the

specific contents of an MMX technology register. You can specify values in bytes,

short integers, 32-bit values, or a 64-bit object. The __m64 data type, however, is

not a basic ANSI C data type, and therefore you must observe the following usage

restrictions:

®* Use _ _m64 data only on the left-hand side of an assignment, as a return value,
or as a parameter. You cannot use it with other arithmetic expressions (*+, “>",
and so on).

®* Use _ _m64 objects in aggregates, such as unions to access the byte elements
and structures; the address of an __m64 object may be taken.

® Use__ _m64 data only with the MMX technology intrinsics described in this manual
and Intel® C/C++ compiler documentation.

¢ See:
— http://www.intel.com/support/performancetools/

— Appendix C, “InteL® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, for more information on using intrinsics.

— SSE/SSE2/SSE3 Intrinsics

— SSE/SSE2/SSE3 intrinsics all make use of the XMM registers of the Pentium
lll, Pentium 4, and Intel Xeon processors. There are three data types
supported by these intrinsics: _ _m128, _ m128d, and _ _m128i.

3-12 Vol.2A

INSTRUCTION SET REFERENCE, A-M

®* The_ _m128 data type is used to represent the contents of an XMM register used
by an SSE intrinsic. This is either four packed single-precision floating-point
values or a scalar single-precision floating-point value.

® The_ _m128d data type holds two packed double-precision floating-point values
or a scalar double-precision floating-point value.

®* The __m128idata type can hold sixteen byte, eight word, or four doubleword, or
two quadword integer values.

The compiler aligns __m128, _ m128d, and __m128i local and global data to
16-byte boundaries on the stack. To align integer, float, or double arrays, use the
declspec statement as described in Intel C/C++ compiler documentation. See
http://www.intel.com/support/performancetools/.

The _ _m128, _ m128d, and __m128i data types are not basic ANSI C data types
and therefore some restrictions are placed on its usage:

® Use_ ml128, __m128d, and _ _m128i only on the left-hand side of an
assignment, as a return value, or as a parameter. Do not use it in other arithmetic
expressions such as “+ and “>>."

®* Do notinitialize __m128, _ m128d, and __m128i with literals; there is no way to
express 128-bit constants.

® Use_ m128,_m128d, and __m128i objects in aggregates, such as unions (for
example, to access the float elements) and structures. The address of these
objects may be taken.

® Use_ mi128, __m128d, and __m128i data only with the intrinsics described in
this user’s guide. See Appendix C, “InteL® C/C++ Compiler Intrinsics and
Functional Equivalents,” in the Inte/l® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B, for more information on using intrinsics.

The compiler aligns __m128, _ m128d, and __m128i local data to 16-byte bound-
aries on the stack. Global __m128 data is also aligned on 16-byte boundaries. (To
align float arrays, you can use the alignment declspec described in the following
section.) Because the new instruction set treats the SIMD floating-point registers in
the same way whether you are using packed or scalar data, there is no __m32 data
type to represent scalar data as you might expect. For scalar operations, you should
use the __m128 objects and the “scalar” forms of the intrinsics; the compiler and the
processor implement these operations with 32-bit memory references.

The suffixes ps and ss are used to denote “packed single” and “scalar single” preci-
sion operations. The packed floats are represented in right-to-left order, with the
lowest word (right-most) being used for scalar operations: [z, y, X, w]. To explain
how memory storage reflects this, consider the following example.

The operation:

float a[4] «{ 1.0,2.0,3.0,40};
__m128t« mm_load_ps(a);

Produces the same result as follows:

Vol.2A 3-13

INSTRUCTION SET REFERENCE, A-M

__m128t« mm_set_ps(4.0, 3.0, 2.0, 1.0);
In other words:

t«{4.0,3.0,20,1.0]
Where the “scalar” element is 1.0.

Some intrinsics are “composites” because they require more than one instruction to
implement them. You should be familiar with the hardware features provided by the
SSE, SSE2, SSE3, and MMX technology when writing programs with the intrinsics.

Keep the following important issues in mind:

® Certain intrinsics, such as _mm_loadr_ps and _mm_cmpgt_ss, are not directly
supported by the instruction set. While these intrinsics are convenient
programming aids, be mindful of their implementation cost.

®* Data loaded or stored as __m128 objects must generally be 16-byte-aligned.

® Some intrinsics require that their argument be immediates, that is, constant
integers (literals), due to the nature of the instruction.

® The result of arithmetic operations acting on two NaN (Not a Number) arguments
is undefined. Therefore, floating-point operations using NaN arguments may not
match the expected behavior of the corresponding assembly instructions.

For a more detailed description of each intrinsic and additional information related to
its usage, refer to Intel C/C++ compiler documentation. See:

— http://www.intel.com/support/performancetools/

— Appendix C, “Intel® C/C++ Compiler Intrinsics and Functional Equivalents,”
in the Inte/l® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, for more information on using intrinsics.

3.1.1.9 Flags Affected Section

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by
the instruction. When a flag is cleared, it is equal to 0; when it is set, it is equal to 1.
The arithmetic and logical instructions usually assign values to the status flags in a
uniform manner (see Appendix A, “Eflags Cross-Reference,” in the Inte/® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1). Non-conventional
assignments are described in the “"Operation” section. The values of flags listed as
undefined may be changed by the instruction in an indeterminate manner. Flags
that are not listed are unchanged by the instruction.

3.1.1.10 FPU Flags Affected Section

The floating-point instructions have an “FPU Flags Affected” section that describes
how each instruction can affect the four condition code flags of the FPU status word.

3-14 Vol.2A

INSTRUCTION SET REFERENCE, A-M

3.1.1.11

The “Protected Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in protected mode and the reasons for the exceptions. Each
exception is given a mnemonic that consists of a pound sign (#) followed by two
letters and an optional error code in parentheses. For example, #GP(0) denotes a
general protection exception with an error code of 0. Table 3-3 associates each two-
letter mnemonic with the corresponding interrupt vector number and exception
name. See Chapter 5, “Interrupt and Exception Handling,” in the Inte/® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A, for a detailed description of
the exceptions.

Protected Mode Exceptions Section

Application programmers should consult the documentation provided with their oper-

ating systems to determine the actions taken when exceptions occur.

Table 3-3. Intel 64 and IA-32 General Exceptions
Vector | Name Source Protected | Real Virtual
No. Mode! Address | 8086
Mode Mode
0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes
1 #DB—Debug Any code or data reference. Yes Yes Yes
3 #BP—Breakpoint INT 3 instruction. Yes Yes Yes
4 #0OF—OQverflow INTO instruction. Yes Yes Yes
5 #BR—BOUNDRange | BOUND instruction. Yes Yes Yes
Exceeded
6 #UD—Invalid UDZ instruction or reserved Yes Yes Yes
Opcode (Undefined | opcode.
Opcode)
7 #NM—Device Not Floating-point or WAIT/FWAIT Yes Yes Yes
Available (No Math | instruction.
Coprocessor)
8 #DF—Double Fault | Any instruction that can Yes Yes Yes
generate an exception, an
NMI, or an INTR.
10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved | Yes
11 #NP—Segment Not | Loading segment registers or Yes Reserved | Yes
Present accessing system segments.
12 #SS—Stack Stack operations and SS Yes Yes Yes
Segment Fault register loads.
13 #GP—General Any memory reference and Yes Yes Yes
Protection? other protection checks.

Vol.2A 3-15

INSTRUCTION SET REFERENCE, A-M

Table 3-3. Intel 64 and IA-32 General Exceptions (Contd.)

Vector | Name Source Protected | Real Virtual
No. Mode! Address | 8086
Mode Mode
14 #PF—Page Fault Any memory reference. Yes Reserved | Yes
16 #MF—Floating-Point | Floating-point or WAIT/FWAIT Yes Yes Yes
Error (Math Fault) instruction.
17 #AC—Alignment Any data reference in Yes Reserved | Yes
Check memory.
18 #MC—Machine Model dependent machine Yes Yes Yes
Check check errors.
19 #XM—SIMD SSE/SSE2/SSE3 floating-point Yes Yes Yes
Floating-Point instructions.
Numeric Error

NOTES:
1. Apply to protected mode, compatibility mode, and 64-bit mode.
2. In the real-address mode, vector 13 is the segment overrun exception.

3.1.1.12 Real-Address Mode Exceptions Section

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in real-address mode (see Table 3-3).

3.1.1.13 Virtual-8086 Mode Exceptions Section

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when
the instruction is executed in virtual-8086 mode (see Table 3-3).

3.1.1.14 Floating-Point Exceptions Section

The “Floating-Point Exceptions” section lists exceptions that can occur when an x87
FPU floating-point instruction is executed. All of these exception conditions result in
a floating-point error exception (#MF, vector number 16) being generated. Table 3-4
associates a one- or two-letter mnemonic with the corresponding exception name.
See “Floating-Point Exception Conditions” in Chapter 8 of the Inte/l® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for a detailed description of
these exceptions.

3-16 Vol. 2A

INSTRUCTION SET REFERENCE, A-M

Table 3-4. x87 FPU Floating-Point Exceptions

Mnemonic Name Source
Floating-point invalid operation:
Z:i - Stack overflow or underflow - x87 FPU stack overflow or underflow
- Invalid arithmetic operation - Invalid FPU arithmetic operation
#Z Floating-point divide-by-zero Divide-by-zero
#D Floating-point denormal operand Source operand that is a denormal number
#0O Floating-point numeric overflow Overflow in result
#U Floating-point numeric underflow Underflow in result
#P Floating-point inexact result Inexact result (precision)
(precision)

3.1.1.15 SIMD Floating-Point Exceptions Section

The “SIMD Floating-Point Exceptions” section lists exceptions that can occur when an
SSE/SSE2/SSE3 floating-point instruction is executed. All of these exception condi-
tions result in a SIMD floating-point error exception (#XM, vector number 19) being
generated. Table 3-5 associates a one-letter mnemonic with the corresponding
exception name. For a detailed description of these exceptions, refer to “SSE and
SSE2 Exceptions”, in Chapter 11 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1.

Table 3-5. SIMD Floating-Point Exceptions

Mnemonic Name Source
#l Floating-point invalid operation Invalid arithmetic operation or source operand
#Z Floating-point divide-by-zero Divide-by-zero
#D Floating-point denormal operand | Source operand that is a denormal number
#0O Floating-point numeric overflow | Overflow in result
#U Floating-point numeric underflow | Underflow in result
#P Floating-point inexact result Inexact result (precision)

3.1.1.16 Compatibility Mode Exceptions Section

This section lists exception that occur within compatibility mode.

3.1.1.17 64-Bit Mode Exceptions Section

This section lists exception that occur within 64-bit mode.

Vol.2A 3-17

INSTRUCTION SET REFERENCE, A-M

3.1.2 Imm8 Control Byte Operation for PCMPESTRI / PCMPESTRM /
PCMPISTRI / PCMPISTRM

The notations introduced in this section are referenced in the reference pages of
PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM. The operation of the immediate
control byte is common to these four string text processing instructions of SSE4.2,
see Chapter 4, “Instruction Set Reference, N-Z,”. This section describes the common
operations.

3.1.2.1 General Description

The operation of PCMPESTRI, PCMPESTRM, PCMPISTRI, PCMPISTRM is defined by
the combination of the respective opcode and the interpretation of an immediate
control byte that is part of the instruction encoding.

The opcode controls the relationship of input bytes/words to each other (determines
whether the inputs terminated strings or whether lengths are expressed explicitly) as
well as the desired output (index or mask).

The Imm8 Control Byte for PCMPESTRM/PCMPESTRI/PCMPISTRM/PCMPISTRI
encodes a significant amount of programmable control over the functionality of those
instructions. Some functionality is unique to each instruction while some is common
across some or all of the four instructions. This section describes functionality which
is common across the four instructions.

The arithmetic flags (ZF, CF, SF, OF, AF, PF) are set as a result of these instructions.

However, the meanings of the flags have been overloaded from their typical mean-

ings in order to provide additional information regarding the relationships of the two
inputs.

PCMPxSTRXx instructions perform arithmetic comparisons between all possible pairs
of bytes or words, one from each packed input source operand. The boolean results
of those comparisons are then aggregated in order to produce meaningful results.
The Imm8 Control Byte is used to affect the interpretation of individual input
elements as well as control the arithmetic comparisons used and the specific aggre-
gation scheme.

Specifically, the Imm8 Control Byte consists of bit fields that control the following
attributes:

®* Source data format — Byte/word data element granularity, signed or unsigned
elements

* Aggregation operation — Encodes the mode of per-element comparison
operation and the aggregation of per-element comparisons into an intermediate
result

3-18 Vol.2A

INSTRUCTION SET REFERENCE, A-M

®* Polarity — Specifies intermediate processing to be performed on the interme-
diate result

®* Output selection — Specifies final operation to produce the output (depending
on index or mask) from the intermediate result

3.1.2.2 Source Data Format
Table 3-6. Source Data Format

Imm38[1:

0] Meaning Description

00b Unsigned bytes | Both 128-bit sources are treated as packed, unsigned
bytes.

01b Unsigned words | Both 128-bit sources are treated as packed, unsigned
words.

10b Signed bytes Both 128-bit sources are treated as packed, signed bytes.

11b Signed words Both 128-bit sources are treated as packed, signed words.

If the Imm8 Control Byte has bit[0] cleared, each source contains 16 packed bytes.
If the bit is set each source contains 8 packed words. If the Imm8 Control Byte has
bit[1] cleared, each input contains unsigned data. If the bit is set each source
contains signed data.

Vol.2A 3-19

INSTRUCTION SET REFERENCE, A-M

3.1.2.3 Aggregation Operation
Table 3-7. Aggregation Operation

Imm8[3:2

] Mode Comparison

00b Equal any The arithmetic comparison is “equal.”

01b Ranges Arithmetic comparison is “greater than or equal” between
even indexed bytes/words of reg and each byte/word of
reg/mem.
Arithmetic comparison is “less than or equal” between odd
indexed bytes/words of reg and each byte/word of reg/mem.
(reg/mem[m] >= reg[n] for n = even, reg/mem[m] <= reg[n]
for n = odd)

10b Equal each The arithmetic comparison is “equal.”

11b Equal ordered | The arithmetic comparison is “equal.”

All 256 (64) possible comparisons are always performed. The individual Boolean
results of those comparisons are referred by “BoolRes[Reg/Mem element index, Reg
element index].” Comparisons evaluating to “True” are represented with a 1, False
with a 0 (positive logic). The initial results are then aggregated into a 16-bit (8-bit)
intermediate result (IntRes1) using one of the modes described in the table below, as
determined by Imm8 Control Byte bit[3:2].

See Section 3.1.2.6 for a description of the overrideIfDatalnvalid() function used in
Table 3-8.

Table 3-8. Aggregation Operation

Mode Pseudocode
Equal any UpperBound =imm8[0]? 7: 15;
(find characters from a set) IntRes1 =0;

For j = 0 to UpperBound, j++
For i = 0 to UpperBound, i++
IntRes 1[j] OR= overridelfDatalnvalid(BoolRes]j,i])

3-20 Vol.2A

INSTRUCTION SET REFERENCE, A-M

Table 3-8. Aggregation Operation (Contd.)

Ranges
(find characters from ranges)

Equal each
(string compare)

Equal ordered
(substring search)

UpperBound =imm8[0]? 7:15;

IntRes1 =0;

For j = 0 to UpperBound, j++

For i = 0 to UpperBound, i+=2

IntRes1[j] OR= (overridelfDatalnvalid(BoolRes[j,i]) AND
overridelfDatalnvalid(BoolRes[j,i+1]))

UpperBound =imm8[0]? 7: 15;

IntRes1 = 0;

For i = 0 to UpperBound, i++

IntRes1[i] = overridelfDatalnvalid(BoolResi,i])

UpperBound =imm8[0]? 7 :15;

IntRes1 = imm8[0] ? OXFF : OxFFFF

For j = 0 to UpperBound, j++

For i = 0 to UpperBound-j, k=j to UpperBound, k++, i++
IntRes 1[j] AND= overridelfDatalnvalid(BoolRes[k,i])

3.1.24 Polarity

IntRes1 may then be further modified by performing a 1’s compliment, according to
the value of the Imm8 Control Byte bit[4]. Optionally, a mask may be used such that
only those IntRes1 bits which correspond to “valid” reg/mem input elements are
complimented (note that the definition of a valid input element is dependant on the
specific opcode and is defined in each opcode’s description). The result of the
possible negation is referred to as IntRes2.

Table 3-9. Polarity

Description

Imm8[5:4] Operation
00b Positive Polarity (+)
01b Negative Polarity (-)
10b Masked (+)
11b Masked (-)

IntRes2 = IntRes1
IntRes2 = -1 XOR IntRes1
IntRes2 = IntRes1

IntRes2[i] = IntRes1[i] if reg/meml[i] invalid, else =
~IntRes1[i]

3.1.25 Output Selection

Table 3-10. Ouput Selection

Imm8[6 | Operation Description

Vol.2A 3-21

INSTRUCTION SET REFERENCE, A-M

Table 3-10. Ouput Selection

Ob Least significant index | The index returned to ECX is of the least significant set bit in
IntRes2.

1b Most significant index | The index returned to ECX is of the most significant set bit in
IntRes2.

For PCMPESTRI/PCMPISTRI, the Imm8 Control Byte bit[6] is used to determine if the
index is of the least significant or most significant bit of IntRes2.

Table 3-11. Output Selection

Imm8[6] | Operation Description

0b Bit mask IntRes?2 is returned as the mask to the least significant bits of
XMMO with zero extension to 128 bits.

1b Byte/word mask IntRes2 is expanded into a byte/word mask (based on imm8[1])
and placed in XMMO. The expansion is performed by replicating
each bit into all of the bits of the byte/word of the same index.

Specifically for PCMPESTRM/PCMPISTRM, the Imm8 Control Byte bit[6] is used to
determine if the mask is a 16 (8) bit mask or a 128 bit byte/word mask.

3.1.2.6

PCMPxSTRx instructions allow for the possibility that an end-of-string (EOS) situation
may occur within the 128-bit packed data value (see the instruction descriptions
below for details). Any data elements on either source that are determined to be past
the EOS are considered to be invalid, and the treatment of invalid data within a
comparison pair varies depending on the aggregation function being performed.

Valid/Invalid Override of Comparisons

In general, the individual comparison result for each element pair BoolRes[i.j] can be
forced true or false if one or more elements in the pair are invalid. See Table 3-12.

Table 3-12. Comparison Result for Each Element Pair BoolRes]i.]

xmm2/ Imm8[3:2] = | Imm8[3:2]= | Imm8[3:2] =
xmm1 m128 00b 01b 10b Imm8[3:2]=11b
byte/ word | byte/word (equal any) (ranges) (equal each) (equal ordered)
Invalid Invalid Force false Force false Force true Force true
Invalid Valid Force false Force false Force false Force true
Valid Invalid Force false Force false Force false Force false
Valid Valid Do not force | Do not force | Do not force Do not force

3-22 Vol.2A

3.1.2.7

INSTRUCTION SET REFERENCE, A-M

Summary of Im8 Control byte

Table 3-13. Summary of Imm8 Control Byte

Description

----00--b
-—--01--b
----10--b
———-11--b

128-bit sources treated as 16 packed bytes.
128-bit sources treated as 8 packed words.
Packed bytes/words are unsigned.

Packed bytes/words are signed.

Mode is equal any.

Mode is ranges.

Mode is equal each.

Mode is equal ordered.

IntRes1 is unmodified.

IntRes1 is negated (1's compliment).
Negation of IntRes1 is for all 16 (8) bits.
Negation of IntRes1 is masked by reg/mem validity.

Index of the least significant, set, bit is used (regardless of corresponding
input element validity).
IntRes?2 is returned in least significant bits of XMMO.

Index of the most significant, set, bit is used (regardless of corresponding
input element validity).
€ach bit of IntRes2 is expanded to byte/word.

This bit currently has no defined effect, should be O.
This bit currently has no defined effect, should be O.

Vol.2A 3-23

INSTRUCTION SET REFERENCE, A-M

3.1.2.8 Diagram Comparison and Aggregation Process
String A (xmm1) String B (xmm2/mem)
ImTTTTTTT y Y
: | imm8[1:0] =
EAX/RAX Determine end -of- i 00B: unsigned byte compares
: | string and mark Compare all pairs of 01B: unsigned word compares
\ EDX/RDX] invalid elements (A, By) 10B: signed byte compares
:] 11B: signed word compares
__________ | ,
PCMPESTR* only BoolRes]i,j]
imm8[3:2] =
00B: Equal any
Aggregation function 01B: Ranges

4

imma8[6] =

0: index encodes least signift
cant true bit of IntRes 2

1: index encodes most signift
cant true bit of IntRes 2

Generate index

ECX(RCX)

PCMP*STRI only

Optional boolean
negation

10B: Equal each
11B: Equal ordered

IntRes1

imm8[6:5] =
x0B: don’t negate IntRes1
01B: negate all bits of IntRes1
11B: negate only bits of IntRes1
corresponding to valid
elements in String B

IntRes2

imm8[6] =
0: Return zero-extended IntRes2
1: expand IntRe<2 to byte (word)

mask

Generate mask

PCMP*STRM only

Figure 3-3. Operation of

3.2 INSTRUCTIONS (A-M)

The remainder of this chapter provides descriptions of Intel 64 and IA-32 instructions

(A-M). See also: Chapter 4, “Instruction

PCMPSTRx and PCMPESTRX

Set Reference, N-Z,” in the Intel® 64 and

IA-32 Architectures Software Developer’s Manual, Volume 2B.

3-24 Vol.2A

INSTRUCTION SET REFERENCE, A-M

AAA—ASCII Adjust After Addition

Opcode Instruction 64-Bit Mode Compat/ Description

Leg Mode
37 AAA Invalid Valid ASCII adjust AL after addition.
Description

Adjusts the sum of two unpacked BCD values to create an unpacked BCD result. The
AL register is the implied source and destination operand for this instruction. The AAA
instruction is only useful when it follows an ADD instruction that adds (binary addi-
tion) two unpacked BCD values and stores a byte result in the AL register. The AAA
instruction then adjusts the contents of the AL register to contain the correct 1-digit
unpacked BCD result.

If the addition produces a decimal carry, the AH register increments by 1, and the CF
and AF flags are set. If there was no decimal carry, the CF and AF flags are cleared
and the AH register is unchanged. In either case, bits 4 through 7 of the AL register
are set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation
IF 64-Bit Mode
THEN
#UD;
ELSE
IF (AL AND OFH) >9) or (AF = 1)
THEN
AL <AL +6;
AH «AH +1;
AF «1;
CF «1;
AL « AL AND OFH;
ELSE
AF «0;
CF «0;
AL < AL AND OFH;
FI;
Fl;

Flags Affected

The AF and CF flags are set to 1 if the adjustment results in a decimal carry; other-
wise they are set to 0. The OF, SF, ZF, and PF flags are undefined.

AAA—ASCII Adjust After Addition Vol.2A 3-25

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-26 Vol.2A AAA—ASCII Adjust After Addition

INSTRUCTION SET REFERENCE, A-M

AAD—ASCII Adjust AX Before Division

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
D5 0A AAD Invalid Valid ASCII adjust AX before division.
D5 ib (No mnemonic) Invalid Valid Adjust AX before division to
number base imm8.

Description

Adjusts two unpacked BCD digits (the least-significant digit in the AL register and the
most-significant digit in the AH register) so that a division operation performed on
the result will yield a correct unpacked BCD value. The AAD instruction is only useful
when it precedes a DIV instruction that divides (binary division) the adjusted value in
the AX register by an unpacked BCD value.

The AAD instruction sets the value in the AL register to (AL +(10 * AH)), and then
clears the AH register to 00H. The value in the AX register is then equal to the binary
equivalent of the original unpacked two-digit (base 10) number in registers AH

and AL.

The generalized version of this instruction allows adjustment of two unpacked digits
of any number base (see the “"Operation” section below), by setting the imm8 byte to
the selected number base (for example, 08H for octal, 0AH for decimal, or OCH for
base 12 numbers). The AAD mnemonic is interpreted by all assemblers to mean
adjust ASCII (base 10) values. To adjust values in another number base, the instruc-
tion must be hand coded in machine code (D5 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
tempAL <AL
tempAH <-AH;
AL «(tempAL H{tempAH * imm8)) AND FFH;
(* imm8is set to OAH for the AAD mnemonic.*)
AH «0;
Fl;

The immediate value (imm8) is taken from the second byte of the instruction.

AAD—ASCII Adjust AX Before Division Vol.2A 3-27

INSTRUCTION SET REFERENCE, A-M

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register; the OF, AF, and CF flags are undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-28 Vol. 2A AAD—ASCII Adjust AX Before Division

INSTRUCTION SET REFERENCE, A-M

AAM—ASCII Adjust AX After Multiply

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
D4 OA AAM Invalid Valid ASCII adjust AX after multiply.
D4 ib (No mnemonic) Invalid Valid Adjust AX after multiply to number
base imm8.
Description

Adjusts the result of the multiplication of two unpacked BCD values to create a pair
of unpacked (base 10) BCD values. The AX register is the implied source and desti-
nation operand for this instruction. The AAM instruction is only useful when it follows
an MUL instruction that multiplies (binary multiplication) two unpacked BCD values
and stores a word result in the AX register. The AAM instruction then adjusts the
contents of the AX register to contain the correct 2-digit unpacked (base 10) BCD
result.

The generalized version of this instruction allows adjustment of the contents of the
AX to create two unpacked digits of any number base (see the “Operation” section
below). Here, the imm8 byte is set to the selected number base (for example, 08H
for octal, OAH for decimal, or OCH for base 12 numbers). The AAM mnemonic is inter-
preted by all assemblers to mean adjust to ASCII (base 10) values. To adjust to
values in another number base, the instruction must be hand coded in machine code
(D4 imm8).

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
tempAL <AL
AH «tempAL / imm8; (* imm8is set to OAH for the AAM mnemonic *)
AL «<tempAL MOD imm8;
Fl;

The immediate value (imm8) is taken from the second byte of the instruction.

Flags Affected

The SF, ZF, and PF flags are set according to the resulting binary value in the AL
register. The OF, AF, and CF flags are undefined.

AAM—ASCII Adjust AX After Multiply Vol.2A 3-29

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions
#DE If an immediate value of 0 is used.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-30 Vol.2A AAM—ASCII Adjust AX After Multiply

INSTRUCTION SET REFERENCE, A-M

AAS—ASCII Adjust AL After Subtraction

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

3F AAS Invalid Valid ASCII adjust AL after subtraction.

Description

Adjusts the result of the subtraction of two unpacked BCD values to create a
unpacked BCD result. The AL register is the implied source and destination operand
for this instruction. The AAS instruction is only useful when it follows a SUB instruc-
tion that subtracts (binary subtraction) one unpacked BCD value from another and
stores a byte result in the AL register. The AAA instruction then adjusts the contents
of the AL register to contain the correct 1-digit unpacked BCD result.

If the subtraction produced a decimal carry, the AH register decrements by 1, and the
CF and AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared,
and the AH register is unchanged. In either case, the AL register is left with its top
nibble set to 0.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation
IF 64-bit mode
THEN
#UD;
ELSE
IF (AL AND OFH) >9) or (AF = 1)
THEN
AL <AL - 6;
AH <AH-1;
AF 1;
CF «1;
AL <AL AND OFH;
ELSE
CF «0;
AF «0;
AL <AL AND OFH;
Fl;
Fl;
Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

AAS—ASCII Adjust AL After Subtraction Vol. 2A 3-31

INSTRUCTION SET REFERENCE, A-M
Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as protected mode.

Compatibility Mode Exceptions
Same exceptions as protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-32 Vol.2A AAS—ASCII Adjust AL After Subtraction

ADC—Add with Carry

INSTRUCTION SET REFERENCE, A-M

Opcode

14 ib

15 iw

15id

REXW + 15 id
80/2ib
REX+80/2ib
81 /2 iw
81/2id

REXW +81 /2 id
83/2ib

83/2ib

REXW +83 /2 ib
10/r

REX+10/r

111/r
111/r
REXW +11/r
12/r

REX+12/r

13/r

Instruction

ADC AL, imm8
ADCAX, imm16

ADC EAX,
imm32

ADC RAX,
imm32

ADC r/m8,
imm8

ADC r/m§,
imm8

ADC r/m16,
imm16

ADC r/m32,
imm32

ADC r/m64,
imm32

ADC r/m16,
imm8

ADC r/m32,
imm8

ADC r/m64,
imm8

ADC r/m8, r8

ADC r/m8’, 8

ADC r/m16,r16
ADC r/m32, r32
ADC r/m64, r64
ADC r8, r/m8

ADC 8, r/m8’

ADCr16, r/m16

64-Bit
Mode

Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid

Valid

Valid

Compat/
Leg Mode

Valid
Valid
Valid

N.E.
Valid
N.E.
Valid
Valid
N.E.
Valid
Valid
N.E.
Valid
N.E.

Valid
Valid
N.E.

Valid

N.E.

Valid

Description

Add with carry imm8 to AL.
Add with carry imm16 to AX.
Add with carry imm32 to EAX.

Add with carry imm32 sign
extended to 64-bits to RAX.

Add with carry imm8 to r/m8.
Add with carry imm8 to r/m8.
Add with carry imm16 to r/m16.
Add with CF imm32 to r/m32.

Add with CF imm32 sign
extended to 64-bits to r/m64.

Add with CF sign-extended
imm8to r/m16.

Add with CF sign-extended
imm8into r/m32.

Add with CF sign-extended
imm8into r/m64.

Add with carry byte register to
r/m8.

Add with carry byte register to
r/m64.

Add with carry r16 to r/m16.
Add with CF r32 to r/m32.
Add with CF r64 to r/m64.

Add with carry r/m8 to byte
register.

Add with carry r/m64 to byte
register.

Add with carry /m16to r16.

ADC—Add with Carry

Vol.2A 3-33

INSTRUCTION SET REFERENCE, A-M

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
13/r ADC r32, r/m32 Valid Valid Add with CF r/m32 to r32.
REXW + 13 /r ADC r64, r/mé64 Valid N.E. Add with CF r/m64 to r64.
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Adds the destination operand (first operand), the source operand (second operand),
and the carry (CF) flag and stores the result in the destination operand. The destina-
tion operand can be a register or a memory location; the source operand can be an
immediate, a register, or a memory location. (However, two memory operands
cannot be used in one instruction.) The state of the CF flag represents a carry from a
previous addition. When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands.
Instead, the processor evaluates the result for both data types and sets the OF and
CF flags to indicate a carry in the signed or unsigned result, respectively. The SF flag
indicates the sign of the signed result.

The ADC instruction is usually executed as part of a multibyte or multiword addition
in which an ADD instruction is followed by an ADC instruction.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST «DEST +SRC +CF;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

3-34 Vol.2A ADC—Add with Carry

#55(0)

#PF(fault-code)
#AC(0)

#UD

INSTRUCTION SET REFERENCE, A-M

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#PF(fault-code)
#AC(0)

#UD

ADC—Add with Carry

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a hon-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2A 3-35

INSTRUCTION SET REFERENCE, A-M

ADD—Add
Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
04 ib ADD AL, imm8 Valid Valid Add imm8 to AL.
05 iw ADD AX, imm16 Valid Valid Add imm16 to AX.
05 id ADD EAX, imm32 Valid Valid Add imm32 to EAX.
REX.W + 05 id ADD RAX, imm32 Valid N.E. Add imm32 sign-
extended to 64-bits
to RAX.
80/0ib ADD r/m8, imm8 Valid Valid Add imm8 to r/m8.
REX +80 /0 ib ADD r/m8’, imm8 Valid N.E. Add sign-extended
imm8 to r/mé64.
81 /0 iw ADD r/m16, imm16 Valid Valid Add imm16 to r/m16.
81 /0 id ADD r/m32, imm32 Valid Valid Add imm32 to r/m32.
REXW +81/0id ADD r/m64, imm32 Valid N.E. Add imm32 sign-
extended to 64-bits
to r/m64.
83/0ib ADD r/m16, imm8 Valid Valid Add sign-extended
imm8to r/m16.
83/0ib ADD r/m32, imm8 Valid Valid Add sign-extended
imm81to r/m32.
REXW +83/0ib ADD r/m64, imm8 Valid N.E. Add sign-extended
imm8 to r/mé64.
00/r ADD r/m8, r8 Valid Valid Add r8to r/m8.
REX + 00 /r ADD r/m8’, r8 Valid N.E. Add r8to r/m8.
01 /r ADD r/m16,r16 Valid Valid Add r16to r/m1i6.
o1/r ADD r/m32, r32 Valid Valid Add r32 to /m32.
REXW +01/r ADD r/m64, r64 Valid N.E. Add r64 to r/m64.
02/r ADD r8, r/m8 Valid Valid Add r/m8+to r8.
REX+02/r ADD r8*, r/m8 Valid N.E. Add r/m8+to r8.
03/r ADDr16, r/m16 Valid Valid Add r/mi16torie6.
03/r ADD r32, r/m32 Valid Valid Add r/m32 to r32.
REXW +03/r ADD r64, r/m64 Valid N.E. Add r/m64 to ré64.
NOTES:

* |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

3-36 Vol. 2A

ADD—Add

INSTRUCTION SET REFERENCE, A-M

Description

Adds the destination operand (first operand) and the source operand (second
operand) and then stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an imme-
diate, a register, or a memory location. (However, two memory operands cannot be
used in one instruction.) When an immediate value is used as an operand, it is sign-
extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed
and unsigned integer operands and sets the OF and CF flags to indicate a carry (over-
flow) in the signed or unsigned result, respectively. The SF flag indicates the sign of
the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX a
REX prefix in the form of REX.W promotes operation to 64 bits. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

DEST «DEST +SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

ADD—Add Vol.2A 3-37

INSTRUCTION SET REFERENCE, A-M

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-38 Vol.2A ADD—Add

INSTRUCTION SET REFERENCE, A-M

ADDPD—Add Packed Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 58 /r ADDPD xmm1, Valid Valid Add packed double-precision floating-
xmmZ2/m128 point values from xmmZ2/m128 to
xmm1.
Description

Performs a SIMD add of the two packed double-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed double-precision floating-point results in the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. See Chapter 11 in the Intel® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of SIMD double-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «DEST[63:0] + SRC[63:0];
DEST[127:64] < DEST[127:64] + SRC[127:64];

Intel C/C+Compiler Intrinsic Equivalent
ADDPD __m128d_mm_add_pd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

ADDPD—Add Packed Double-Precision Floating-Point Values Vol.2A 3-39

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

3-40 Vol.2A ADDPD—Add Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

ADDPD—Add Packed Double-Precision Floating-Point Values Vol.2A 3-41

INSTRUCTION SET REFERENCE, A-M

ADDPS—Add Packed Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 58 /r ADDPS xmm1, xmmZ2/m128 \Valid Valid Add packed single-precision

floating-point values from
xmmZ2/m128 to xmm]1.

Description

Performs a SIMD add of the four packed single-precision floating-point values from
the source operand (second operand) and the destination operand (first operand),
and stores the packed single-precision floating-point results in the destination
operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. See Chapter 10 in the Inte/® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 1, for an overview of SIMD single-
precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] < DEST[31:0] + SRC[31:0];
DEST[63:32] <« DEST[63:32] + SRC[63:32];
DEST[95:64] « DEST[95:64] + SRC[95:64];
DEST[127:96] «DEST[127:96] + SRC[127:96];

Intel C/C+Compiler Intrinsic Equivalent
ADDPS __m128 _mm_add_ps(__m128a,__m128Db)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

3-42 Vol.2A ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

ADDPS—Add Packed Single-Precision Floating-Point Values Vol.2A 3-43

INSTRUCTION SET REFERENCE, A-M

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

3-44 Vol. 2A ADDPS—Add Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

ADDSD—Add Scalar Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2 OF 58 /r ADDSD xmm1, xmmZ2/m64 Valid Valid Add the low double-

precision floating-point
value from xmmZ2/m64 to
xmm1.

Description

Adds the low double-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the double-preci-
sion floating-point result in the destination operand.

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. The high quadword of the destination operand
remains unchanged. See Chapter 11 in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for an overview of a scalar double-precision
floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[63:0] «-DEST[63:0] + SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C+Compiler Intrinsic Equivalent
ADDSD __m128d_mm_add_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

ADDSD—Add Scalar Double-Precision Floating-Point Values Vol.2A 3-45

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

3-46 Vol.2A ADDSD—Add Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

ADDSD—Add Scalar Double-Precision Floating-Point Values Vol.2A 3-47

INSTRUCTION SET REFERENCE, A-M

ADDSS—Add Scalar Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F30F58/r ADDSS xmm1, xmmZ2/m32 Valid Valid Add the low single-

precision floating-point
value from xmm2/m32 to
xmm1.

Description

Adds the low single-precision floating-point values from the source operand (second
operand) and the destination operand (first operand), and stores the single-precision
floating-point result in the destination operand.

The source operand can be an XMM register or a 32-bit memory location. The desti-
nation operand is an XMM register. The three high-order doublewords of the destina-
tion operand remain unchanged. See Chapter 10 in the Inte/l® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an overview of a scalar
single-precision floating-point operation.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[31:0] «-DEST[31:0] +SRC[31:0];
(* DEST[127:32] unchanged *)

Intel C/C+Compiler Intrinsic Equivalent
ADDSS __m128 _mm_add_ss(__m128a,__m128Db)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

3-48 Vol. 2A ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

ADDSS—Add Scalar Single-Precision Floating-Point Values Vol.2A 3-49

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-50 Vol.2A ADDSS—Add Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

ADDSUBPD—Packed Double-FP Add/Subtract

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF DO /r ADDSUBPD xmm1, xmm2/m128 \Valid Valid Add/subtract

double-precision
floating-point values
from xmm2/m128
to xmm1.

Description

Adds the double-precision floating-point values in the high quadword of the source
and destination operands and stores the result in the high quadword of the destina-
tion operand.

Subtracts the double-precision floating-point value in the low quadword of the source

operand from the low quadword of the destination operand and stores the result in
the low quadword of the destination operand. See Figure 3-4.

The source operand can be a 128-bit memory location or an XMM register. The desti-
nation operand is an XMM register.

ADDSUBPD xmm1, xmm2/m128

[127:64] [63:0] xmm2/m128
A A
xmm1[127:64] + xmm2/m128[127:64] xmm1[63:0] - xmm2/m128[63:0] sgiﬁ’m

[127:64] [63:0]

OM15991

Figure 3-4. ADDSUBPD—Packed Double-FP Add/Subtract

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

ADDSUBPD—Packed Double-FP Add/Subtract Vol.2A 3-51

INSTRUCTION SET REFERENCE, A-M

Operation

xmm1[63:0] = xmm1[63:0] - xmm2/m128[63:0];
xmm1[127:64] = xmm1[127:64] + xmm2/m128[127:64];

Intel C/C+Compiler Intrinsic Equivalent
ADDSUBPD __m128d _mm_addsub_pd(__m128d a, __m128d b)

Exceptions

When the source operand is a memory operand, it must be aligned on a 16-byte
boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM is 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If TS bit in CRO is 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

3-52 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.

If the LOCK prefix is used.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

ADDSUBPD—Packed Double-FP Add/Subtract Vol.2A 3-53

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

3-54 Vol. 2A ADDSUBPD—Packed Double-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M

ADDSUBPS—Packed Single-FP Add/Subtract

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F20FDO/r ADDSUBPS xmm1, xmm2/m128 Valid Valid Add/subtract single-

precision floating-
point values from
xmmZ2/m128to
xmm1.

Description

Adds odd-numbered single-precision floating-point values of the source operand
(second operand) with the corresponding single-precision floating-point values from
the destination operand (first operand); stores the result in the odd-numbered
values of the destination operand.

Subtracts the even-numbered single-precision floating-point values in the source
operand from the corresponding single-precision floating values in the destination
operand; stores the result into the even-numbered values of the destination
operand.

The source operand can be a 128-bit memory location or an XMM register. The desti-
nation operand is an XMM register. See Figure 3-5.

ADDSUBPS xmm1, xmm2/m128
. . . . xmm2/
[127:96] [95:64] [63:32] [31:0] m128
A A A A
xmm1[127:96] + xmm1[95:64] - xmm2/ xmm1[63:32] + xmm1[31:0] - RESULT:
xmm2/m128[127:96] m128[95:64] xmm2/m128[63:32] xmm2/m128[31:0] | xmm1
[127:96] [95:64] [63:32] [31:0]

OM15992

Figure 3-5. ADDSUBPS—Packed Single-FP Add/Subtract

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

ADDSUBPS—Packed Single-FP Add/Subtract Vol.2A 3-55

INSTRUCTION SET REFERENCE, A-M

Operation

xmm1[31:0] = xmm1[31:0] - xmm2/m128[31:0];
xmm1[63:32] = xmm1[63:32] + xmm2/m128[63:32];
xmm1[95:64] = xmm1[95:64] - xmm2/m128[95:64];
xmm1[127:96] = xmm1[127:96] + xmm2/m128[127:96];

Intel C/C+Compiler Intrinsic Equivalent
ADDSUBPS __m128 _mm_addsub_ps(__m128a,__m128b)

Exceptions

When the source operand is a memory operand, the operand must be aligned on a
16-byte boundary or a general-protection exception (#GP) will be generated.

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Real Address Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

3-56 Vol. 2A ADDSUBPS—Packed Single-FP Add/Subtract

INSTRUCTION SET REFERENCE, A-M

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.
#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Virtual 8086 Mode Exceptions

GP(0) If any part of the operand would lie outside of the effective
address space from 0 to OFFFFH.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#XM For an unmasked Streaming SIMD Extensions numeric excep-
tion, CR4.0SXMMEXCPT[bit 10] = 1.

#UD If CRO.EM[bit 2] = 1.

For an unmasked Streaming SIMD Extensions numeric excep-
tion (CR4.0SXMMEXCPT[bit 10] = 0).

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

ADDSUBPS—Packed Single-FP Add/Subtract Vol.2A 3-57

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE3[bit 0] = 0.
If the LOCK prefix is used.

3-58 Vol. 2A ADDSUBPS—Packed Single-FP Add/Subtract

AND—Logical AND

INSTRUCTION SET REFERENCE, A-M

Opcode Instruction 64-Bit Comp/Leg Description
Mode Mode

24 ib AND AL, imm8 Valid Valid AL AND imm8.

25 iw AND AX, imm16 Valid Valid AX AND imm16.

25 id AND EAX, imm32 Valid Valid EAX AND imm32.

REXW +25id AND RAX, imm32 Valid N.E. RAX AND imm32 sign-
extended to 64-bits.

80/4 ib AND r/m8, imm8 Valid Valid r/m8 AND imm8.

REX+80/4ib AND r/m8, imm8 Valid N.E. r/m64 AND imm8 (sign-
extended).

81 /4 iw AND r/m16, imm16 Valid Valid r/m16 AND imm16.

81 /4 id AND r/m32, imm32 Valid Valid r/m32 AND imm32.

REXW +81/4 AND r/m64, imm32 Valid N.E. r/m64 AND imm32 sign

id extended to 64-bits.

83/4ib AND r/m16, imm8 Valid Valid r/m16 AND imm8 (sign-
extended).

83/4ib AND r/m32, imm8 Valid Valid r/m32 AND imm8 (sign-
extended).

REXW +83/4 AND r/m64, imm8 Valid N.E. r/m64 AND imm8 (sign-

ib extended).

20 /r AND r/m8, r8 Valid Valid r/m8 AND r8.

REX + 20 /r AND r/m8’, r8 Valid N.E. r/m64 AND r8 (sign-
extended).

21/r AND r/m16,r16 Valid Valid r/m16 AND r16.

211/r AND r/m32, r32 Valid Valid r/m32 AND r32.

REXW +21/r AND r/m64, r64 Valid N.E. r/m64 AND r32.

221r AND r8, r/m8 Valid Valid r8 AND r/m8.

REX +22/r AND 18, r/m8 Valid N.E. r/m64 AND r8 (sign-
extended).

23/r AND r16, r/m16 Valid Valid r16 AND r/m16.

23/r AND r32, r/m32 Valid Valid r32 AND r/m32.

REXW +23/r AND r64, r/m64 Valid N.E. r64 AND r/m64.

NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

AND—Logical AND

Vol.2A 3-59

INSTRUCTION SET REFERENCE, A-M

Description

Performs a bitwise AND operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source
operand can be an immediate, a register, or a memory location; the destination
operand can be a register or a memory location. (However, two memory operands
cannot be used in one instruction.) Each bit of the result is set to 1 if both corre-
sponding bits of the first and second operands are 1; otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the it to be executed atomi-
cally.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

DEST «DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the
result. The state of the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

3-60 Vol. 2A AND—Logical AND

#UD

INSTRUCTION SET REFERENCE, A-M

If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)
#AC(0)

#UD

AND—Logical AND

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2A 3-61

INSTRUCTION SET REFERENCE, A-M

ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-
Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 54 /r ANDPD xmm1, Valid Valid Bitwise logical AND of xmmZ2/m128 and
xmm2/m128 xmm1.
Description

Performs a bitwise logical AND of the two packed double-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] «<-DEST[127:0] BitwiseAND SRC[127:0];

Intel C/C+Compiler Intrinsic Equivalent
ANDPD __m128d_mm_and_pd(__m128da, __m128dDb)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

3-62 Vol.2A ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

ANDPD—Bitwise Logical AND of Packed Double-Precision Floating-Point Values Vol.2A 3-63

INSTRUCTION SET REFERENCE, A-M

ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point
Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 54 /r ANDPS xmm1, xmm2/m128 Valid Valid Bitwise logical AND of
xmmZ2/m128and xmm1.

Description

Performs a bitwise logical AND of the four packed single-precision floating-point
values from the source operand (second operand) and the destination operand (first
operand), and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] «<DEST[127:0] BitwiseAND SRC[127:0];

Intel C/C+Compiler Intrinsic Equivalent
ANDPS __m128 _mm_and_ps(__m1283a,__m128b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

3-64 Vol.2A ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

ANDPS—Bitwise Logical AND of Packed Single-Precision Floating-Point Values Vol.2A 3-65

INSTRUCTION SET REFERENCE, A-M

ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision
Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 55 /r ANDNPD xmm1, xmm2/m128 Valid Valid Bitwise logical AND
NOT of xmm2/m128
and xmm1.
Description

Inverts the bits of the two packed double-precision floating-point values in the desti-
nation operand (first operand), performs a bitwise logical AND of the two packed
double-precision floating-point values in the source operand (second operand) and
the temporary inverted result, and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] «{NOT(DEST[127:0])) BitwiseAND (SRC[127:0]);

Intel C/C+Compiler Intrinsic Equivalent
ANDNPD __m128d _mm_andnot_pd(__m128da, __m128d b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

3-66 Vol.2A ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

ANDNPD—Bitwise Logical AND NOT of Packed Double-Precision Floating-Point Values Vol. 2A 3-67

INSTRUCTION SET REFERENCE, A-M

ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision
Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 55 /r ANDNPS xmm1, xmm2/m128 Valid Valid Bitwise logical AND NOT of
xmmZ2/m128 and xmm1.

Description

Inverts the bits of the four packed single-precision floating-point values in the desti-
nation operand (first operand), performs a bitwise logical AND of the four packed
single-precision floating-point values in the source operand (second operand) and
the temporary inverted result, and stores the result in the destination operand.

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.

In 64-bit mode, using a REX prefix in the form of REX.R permits this instruction to
access additional registers (XMM8-XMM15).

Operation

DEST[127:0] «(NOT(DEST[127:0])) BitwiseAND (SRC[127:0]);

Intel C/C+Compiler Intrinsic Equivalent
ANDNPS __m128 _mm_andnot_ps(__m128a,__m128b)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

3-68 Vol.2A ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

ANDNPS—Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values Vol.2A 3-69

INSTRUCTION SET REFERENCE, A-M

ARPL—Adjust RPL Field of Segment Selector

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
63/r ARPL r/m16,r16 N.E Valid Adjust RPL of r/m16 to not less
than RPL of r76.

Description

Compares the RPL fields of two segment selectors. The first operand (the destination
operand) contains one segment selector and the second operand (source operand)
contains the other. (The RPL field is located in bits 0 and 1 of each operand.) If the
RPL field of the destination operand is less than the RPL field of the source operand,
the ZF flag is set and the RPL field of the destination operand is increased to match
that of the source operand. Otherwise, the ZF flag is cleared and no change is made
to the destination operand. (The destination operand can be a word register or a
memory location; the source operand must be a word register.)

The ARPL instruction is provided for use by operating-system procedures (however, it
can also be used by applications). It is generally used to adjust the RPL of a segment
selector that has been passed to the operating system by an application program to
match the privilege level of the application program. Here the segment selector
passed to the operating system is placed in the destination operand and segment
selector for the application program’s code segment is placed in the source operand.
(The RPL field in the source operand represents the privilege level of the application
program.) Execution of the ARPL instruction then insures that the RPL of the segment
selector received by the operating system is no lower (does not have a higher privi-
lege) than the privilege level of the application program (the segment selector for the
application program’s code segment can be read from the stack following a proce-
dure call).

This instruction executes as described in compatibility mode and legacy mode. It is
not encodable in 64-bit mode.

See “Checking Caller Access Privileges” in Chapter 3, “Protected-Mode Memory
Management,” of the Inte/l® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, for more information about the use of this instruction.

Operation

IF 64-BIT MODE
THEN
See MOVSXD;
ELSE
IF DEST[RPL) < SRC[RPL)
THEN
2F 1;
DEST[RPL) «<SRC[RPL);

3-70 Vol.2A ARPL—Adjust RPL Field of Segment Selector

INSTRUCTION SET REFERENCE, A-M

ELSE
ZF «0;
Fl;
Fl;

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of
the source operand; otherwise, it is set to 0.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD The ARPL instruction is not recognized in virtual-8086 mode.
If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Not applicable.

ARPL—Adjust RPL Field of Segment Selector Vol.2A 3-71

INSTRUCTION SET REFERENCE, A-M

BLENDPD — Blend Packed Double Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF BA0OD BLENDPD xmml, Valid Valid Select packed DP-FP values from
Irib xmmZ2/m128, imm8 xmm71 and xmmZ2/m128 from mask

specified in imm8 and store the
values into xmm1.

Description

Packed double-precision floating-point values from the source operand (second
operand) are conditionally copied to the destination operand depending on the mask
bits in the immediate operand. The mask bits are bits [1:0] of the immediate byte
(third operand). Each mask bit corresponds to a quadword element in a 128-bit
operand.

If a mask bitis“1", then the corresponding quadword in the source operand is copied
to the destination, else the quadword element in the destination operand is left
unchanged.

Operation

IF (imm8[0] == 1)
THEN DEST[63:0] €« SRC[63:0];
ELSE DEST[63:0] < DEST[63:0]; FI;
IF (imm8[1] == 1)
THEN DEST[127:64] €< SRC[127:64];
ELSE DEST[127:64] < DEST[127:64]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPD __m128d _mm_blend_pd (__m128d v1, __m128d vZ, const int mask);

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

3-72 Vol.2A BLENDPD — Blend Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

BLENDPD — Blend Packed Double Precision Floating-Point Values Vol.2A 3-73

INSTRUCTION SET REFERENCE, A-M

BLENDPS — Blend Packed Single Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3A0C BLENDPS xmm1, Valid Valid Select packed single precision
Irib xmmZ2/m128, floating-point values from xmm1 and
imm8 xmmZ2/m128 from mask specified in

imm8 and store the values into
xmm1.

Description

Packed single-precision floating-point values from the source operand (second
operand) are conditionally copied to the destination operand (first operand)
depending on the mask bits in the immediate operand. The mask bits are bits [3:0]
of the immediate byte (third operand). Each mask bit corresponds to a dword
element in a 128-bit operand.

If a mask bit is "1", then the corresponding dword in the source operand is copied to
the destination, else the dword element in the destination operand is left unchanged.

Operation

IF (imm8[0] == 1)
THEN DEST[31:0] €« SRC[31:0];
ELSE DEST[31:0] €« DEST[31:0]; FI;
IF (imm8[1] == 1)
THEN DEST[63:32] € SRC[63:32];
ELSE DEST[63:32] €« DEST[63:32]; FI;
IF (imm8[2] == 1)
THEN DEST[95:64] € SRC[95:64];
ELSE DEST[95:64] €« DEST[95:64]; FI;
IF (imm8[3] == 1)
THEN DEST[127:96] € SRC[127:96];
ELSE DEST[127:96] < DEST[127:96]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

BLENDPS __m128 _mm_blend_ps (_m128 v1,__m128 v2, const int mask);

SIMD Floating-Point Exceptions
None

3-74 Vol. 2A BLENDPS — Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If not aligned on 16-byte boundary, regardless of segment
#NM If CRO.TS[bit 3] = 1.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit9] =0

If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.

If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If the memory address is in a non-canonical form.
If not aligned on 16-byte boundary, regardless of segment
#SS(0) If a memory address referencing the SS segment is in a non-

canonical form.
#PF(fault-code) For a page fault.
#NM If TS in CRO is set.
#UD If EM in CRO is set.

BLENDPS — Blend Packed Single Precision Floating-Point Values Vol.2A 3-75

INSTRUCTION SET REFERENCE, A-M

If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

3-76 Vol.2A BLENDPS — Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

BLENDVPD — Variable Blend Packed Double Precision Floating-Point
Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 0F 3815 BLENDVPD xmm1, Valid Valid Select packed DP FP values
Ir xmm2/m128, <XMMQ0> from xmm1 and xmmZ2 from

mask specified in XMMO0 and
store the values in xmm1.

Description

Packed double-precision floating-point values from the source operand (second argu-
ment) are conditionally copied to the destination operand (first argument) depending
on the mask bits in the implicit third register argument, XMMO. The mask bits are the
most significant bit in each gqword element of XMMO0. Each mask bit corresponds to a
quadword element in a 128-bit operand.

If a mask bit is 1", then the corresponding quadword element in the source operand

is copied to the destination, else the quadword element in the destination operand is
left unchanged.

The register assignment of the third operand is defined to be the architectural
register XMMO.

Operation

MASK < XMMO;
IF (MASK[63] == 1)
THEN DEST[63:0] < SRC[63:0];
ELSE DEST[63:0] < DEST[63:0]; FI;
IF (MASK[127] == 1)
THEN DEST[127:64] < SRC[127:64];
ELSE DEST[127:64] < DEST[127:64]; FI;

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPD __m128d _mm_blendv_pd(__m128dv1,__m128dv2,_ m128dv3);

SIMD Floating-Point Exceptions

None

BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values Vol.2A 3-77

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.

3-78 Vol.2A BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

BLENDVPD — Variable Blend Packed Double Precision Floating-Point Values Vol.2A 3-79

INSTRUCTION SET REFERENCE, A-M

BLENDVPS — Variable Blend Packed Single Precision Floating-Point
Values

Opcode Instruction 64-bit Compat/ Description

Mode Leg Mode
66 OF 38 BLENDVPS xmm1, Valid Valid Select packed single precision
14 /r xmm2/m128, <XMMO> floating-point values from xmm1

and xmmZ2/m128 from mask
specified in XMMO and store the
values into xmm1.

Description

Packed single-precision floating-point values from the source operand (second argu-
ment) are conditionally written to the destination operand (first argument)
depending on the mask bits in the third register argument. The mask bits are the
most significant bit in each dword element of XMMO0. Each mask bit corresponds to a
dword element in a 128-bit operand.

If a mask bit is 1", then the corresponding dword element in the source operand is

copied to the destination, else the dword element in the destination operand is left
unchanged.

The register assignment of the third operand is defined to be the architectural
register XMMO.

Operation

MASK & XMMO;
IF (MASK[31] == 1)
THEN DEST[31:0] < SRC[31:0];
ELSE DEST[31:0] & DEST[31:0]); FI:
IF (MASK[63] == 1)
THEN DEST[63:32] < SRC[63:32]);
ELSE DEST[63:32] < DEST[63:32]); FI;
IF (MASK[95] == 1)
THEN DEST[95:64] < SRC[95:64]);
ELSE DEST[95:64] < DEST[95:64]); FI;
IF (MASK[127] == 1)
THEN DEST[127:96] < SRC[127:96]);
ELSE DEST[127:96] < DEST[127:96]); F;

3-80 Vol.2A BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Intel C/C++ Compiler Intrinsic Equivalent

BLENDVPS __m128 _mm_blendv_ps(__m128v1,_m128v2, __m128v3),

SIMD Floating-Point Exceptions
None

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.O1H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values Vol.2A 3-81

INSTRUCTION SET REFERENCE, A-M

64-Bit Mode Exceptions
#GP(0) If the memory address is in a nhon-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

3-82 Vol.2A BLENDVPS — Variable Blend Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

BOUND—Check Array Index Against Bounds

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

62/r BOUND r16, m16&16 Invalid Valid Check if r16 (array index) is
within bounds specified by
m16&16.

62/r BOUND r32, m32&32 Invalid Valid Check if r32 (array index) is
within bounds specified by
m16&16.

Description

BOUND determines if the first operand (array index) is within the bounds of an array
specified the second operand (bounds operand). The array index is a signed integer
located in a register. The bounds operand is a memory location that contains a pair of
signed doubleword-integers (when the operand-size attribute is 32) or a pair of
signed word-integers (when the operand-size attribute is 16). The first doubleword
(or word) is the lower bound of the array and the second doubleword (or word) is the
upper bound of the array. The array index must be greater than or equal to the lower
bound and less than or equal to the upper bound plus the operand size in bytes. If the
index is not within bounds, a BOUND range exceeded exception (#BR) is signaled.
When this exception is generated, the saved return instruction pointer points to the
BOUND instruction.

The bounds limit data structure (two words or doublewords containing the lower and
upper limits of the array) is usually placed just before the array itself, making the
limits addressable via a constant offset from the beginning of the array. Because the
address of the array already will be present in a register, this practice avoids extra
bus cycles to obtain the effective address of the array bounds.

This instruction executes as described in compatibility mode and legacy mode. It is
not valid in 64-bit mode.

Operation

IF 64bit Mode
THEN
#UD;
ELSE
IF (Arraylndex < LowerBound OR Arraylndex >UpperBound)
(* Below lower bound or above upper bound *)
THEN #BR; Fl;
Fl;

BOUND—Check Array Index Against Bounds Vol.2A 3-83

INSTRUCTION SET REFERENCE, A-M

Flags Affected
None.

Protected Mode Exceptions

#BR If the bounds test fails.
#UD If second operand is not a memory location.
If the LOCK prefix is used.
#GP(0) If a memory operand effective address is outside the CS, DS,

ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.
If the LOCK prefix is used.

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS

segment limit.

Virtual-8086 Mode Exceptions

#BR If the bounds test fails.

#UD If second operand is not a memory location.
If the LOCK prefix is used.

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

3-84 Vol.2A BOUND—Check Array Index Against Bounds

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

BOUND—Check Array Index Against Bounds Vol.2A 3-85

INSTRUCTION SET REFERENCE, A-M

BSF—BIt Scan Forward

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
OFBC/r BSF r16, r/m16 Valid Valid Bit scan forward on r/m16.
OFBC/r BSF r32, r/m32 Valid Valid Bit scan forward on r/m32.
REX.W + OF BC BSF r64, r/m64 Valid N.E. Bit scan forward on r/mé64.
Description

Searches the source operand (second operand) for the least significant set bit (1 bit).
If a least significant 1 bit is found, its bit index is stored in the destination operand
(first operand). The source operand can be a register or a memory location; the
destination operand is a register. The bit index is an unsigned offset from bit 0 of the
source operand. If the content of the source operand is 0, the content of the destina-
tion operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IFSRC=0
THEN
ZF «1;
DEST is undefined;
ELSE
ZF <0;
temp «0;
WHILE Bit(SRC, temp) =0
DO
temp «temp + 1;
DEST «temp;
0D;
Fl;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

3-86 Vol. 2A BSF—Bit Scan Forward

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#PF(fault-code)
#AC(0)

#UD

BSF—Bit Scan Forward

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Vol.2A 3-87

INSTRUCTION SET REFERENCE, A-M

BSR—Bit Scan Reverse

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
OFBD /r BSR r16, r/m16 Valid Valid Bit scan reverse on r/m16.
OFBD /r BSR r32, r/m32 Valid Valid Bit scan reverse on r/m32.
REXW +0OFBD BSR r64, r/m64 Valid N.E. Bit scan reverse on r/m64.
Description

Searches the source operand (second operand) for the most significant set bit (1 bit).
If a most significant 1 bit is found, its bit index is stored in the destination operand
(first operand). The source operand can be a register or a memory location; the
destination operand is a register. The bit index is an unsigned offset from bit 0 of the
source operand. If the content source operand is 0, the content of the destination
operand is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

IFSRC=0
THEN
ZF «1;
DEST is undefined;
ELSE
ZF <0;
temp «OperandSize - 1;
WHILE Bit(SRC, temp) = 0
DO
temp «temp - 1;
DEST «temp;
0D;
Fl;

Flags Affected

The ZF flag is set to 1 if all the source operand is 0; otherwise, the ZF flag is cleared.
The CF, OF, SF, AF, and PF, flags are undefined.

3-88 Vol. 2A BSR—BIt Scan Reverse

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP

#SS

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#55(0)

#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#PF(fault-code)
#AC(0)

#UD

BSR—BIt Scan Reverse

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Vol.2A 3-89

INSTRUCTION SET REFERENCE, A-M

BSWAP—Byte Swap

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF C8+rd BSWAP r32 Valid* Valid Reverses the byte order of a 32-
bit register.
REX.W + OF BSWAP r64 Valid N.E. Reverses the byte order of a 64-
C8+rd bit register.
NOTES:

* See IA-32 Architecture Compatibility section below.

Description

Reverses the byte order of a 32-bit or 64-bit (destination) register. This instruction is
provided for converting little-endian values to big-endian format and vice versa. To
swap bytes in a word value (16-bit register), use the XCHG instruction. When the
BSWAP instruction references a 16-bit register, the result is undefined.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

IA-32 Architecture Legacy Compatibility

The BSWAP instruction is not supported on IA-32 processors earlier than the
Intel486™ processor family. For compatibility with this instruction, software
should include functionally equivalent code for execution on Intel processors earlier
than the Intel486 processor family.

Operation

TEMP «DEST
IF 64-bit mode AND OperandSize = 64
THEN
DEST[7:0] < TEMP[63:56];
DEST[15:8] «-TEMP[55:48];
DEST[23:16] «TEMP[47:40];
DEST[31:24] «TEMP[39:32];
DEST[39:32] «TEMP[31:24];
DEST[47:40] «TEMP[23:16];
DEST[55:48] «TEMP[15:8];
DEST[63:56] «TEMP[7:0];
ELSE
DEST[7:0] < TEMP[31:24];

3-90 Vol.2A BSWAP—Byte Swap

INSTRUCTION SET REFERENCE, A-M

DEST[15:8] < TEMP[23:16];

DEST[23:16] «TEMP[15:8];

DEST[31:24] «TEMP[7:0];
Fl;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

BSWAP—Byte Swap Vol.2A 3-91

INSTRUCTION SET REFERENCE, A-M

BT—Bit Test
Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF A3 BT r/m16,r16 Valid Valid Store selected bit in CF
flag.

OF A3 BT r/m32, r32 Valid Valid Store selected bit in CF
flag.

REX.W + OF A3 BT r/m64, r64 Valid N.E. Store selected bit in CF
flag.

OFBA/4ib BT r/m16, imm8 Valid Valid Store selected bit in CF
flag.

OFBA /4 ib BT r/m32, imm8 Valid Valid Store selected bit in CF
flag.

REXW + OF BA /4 ib BT r/m64, imm8 Valid N.E. Store selected bit in CF
flag.

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset (specified by the second operand) and
stores the value of the bit in the CF flag. The bit base operand can be a register or a
memory location; the bit offset operand can be a register or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode).

* If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. In this case, the low-order 3 or 5 bits (3 for 16-bit operands, 5 for 32-bit
operands) of the immediate bit offset are stored in the immediate bit offset field, and
the high-order bits are shifted and combined with the byte displacement in the
addressing mode by the assembler. The processor will ignore the high order bits if
they are not zero.

When accessing a bit in memory, the processor may access 4 bytes starting from the
memory address for a 32-bit operand size, using by the following relationship:

Effective Address +4 = (BitOffset DIV 32))

3-92 Vol.2A BT—Bit Test

INSTRUCTION SET REFERENCE, A-M

Or, it may access 2 bytes starting from the memory address for a 16-bit operand,
using this relationship:

Effective Address H2 * (BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given
bit. When using this bit addressing mechanism, software should avoid referencing
areas of memory close to address space holes. In particular, it should avoid refer-
ences to memory-mapped I/0 registers. Instead, software should use the MOV
instructions to load from or store to these addresses, and use the register form of
these instructions to manipulate the data.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX
prefix in the form of REX.W promotes operation to 64 bit operands. See the summary
chart at the beginning of this section for encoding data and limits.

Operation

CF «Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

BT—Bit Test Vol.2A 3-93

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

3-94 Vol. 2A BT—Bit Test

INSTRUCTION SET REFERENCE, A-M

BTC—Bit Test and Complement

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF BB BTC r/m16,r16 Valid Valid Store selected bit in CF flag
and complement.

OF BB BTC r/m32, r32 Valid Valid Store selected bit in CF flag
and complement.

REX.W + OF BB BTC r/m64, r64 Valid N.E. Store selected bit in CF flag
and complement.

OFBA /7 ib BTC r/m16, imm8 Valid Valid Store selected bit in CF flag
and complement.

OFBA/7 ib BTC r/m32, imm8 Valid Valid Store selected bit in CF flag
and complement.

REXW +0FBA /7 ib BTC r/m64, imm8 Valid N.E. Store selected bit in CF flag
and complement.

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and complements the selected bit in the bit string. The
bit base operand can be a register or a memory location; the bit offset operand can
be a register or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

* If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “"BT—Bit Test” in this chapter for more information on this addressing
mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX

BTC—Bit Test and Complement Vol.2A 3-95

INSTRUCTION SET REFERENCE, A-M

prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF «Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) «NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF,
SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

3-96 Vol.2A BTC—Bit Test and Complement

INSTRUCTION SET REFERENCE, A-M

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

BTC—Bit Test and Complement Vol.2A 3-97

INSTRUCTION SET REFERENCE, A-M

BTR—BIt Test and Reset

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF B3 BTR /m16,r16 Valid Valid Store selected bit in CF flag
and clear.

OF B3 BTR r/m32,r32 Valid Valid Store selected bit in CF flag
and clear.

REX.W + OF B3 BTR r/m64, r64 Valid N.E. Store selected bit in CF flag
and clear.

OFBA/6ib BTR r/m16, imm8 Valid Valid Store selected bit in CF flag
and clear.

OFBA/6ib BTR r/m32, imm8 Valid Valid Store selected bit in CF flag
and clear.

REXW +0OFBA /6 ib BTR r/m64, imm8 Valid N.E. Store selected bit in CF flag
and clear.

DESCRIPTION

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and clears the selected bit in the bit string to 0. The bit
base operand can be a register or a memory location; the bit offset operand can be a
register or an immediate value:

® If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

* If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “"BT—Bit Test” in this chapter for more information on this addressing
mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX

3-98 Vol. 2A BTR—BIt Test and Reset

INSTRUCTION SET REFERENCE, A-M

prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF «Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) «<-0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF,
AF, and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

BTR—Bit Test and Reset Vol.2A 3-99

INSTRUCTION SET REFERENCE, A-M

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-100 Vol. 2A BTR—BIt Test and Reset

INSTRUCTION SET REFERENCE, A-M

BTS—Bit Test and Set

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

OF AB BTS r/m16, r16 Valid Valid Store selected bit in CF
flag and set.

OF AB BTS r/m32, r32 Valid Valid Store selected bit in CF
flag and set.

REX.W + OF AB BTS r/m64, r64 Valid N.E. Store selected bit in CF
flag and set.

OFBA/5ib BTS r/m16, imm8 Valid Valid Store selected bit in CF
flag and set.

OFBA/5ib BTS r/m32, imm8 Valid Valid Store selected bit in CF
flag and set.

REXW +0FBA/5ib BTS r/m64, imm8 Valid N.E. Store selected bit in CF
flag and set.

Description

Selects the bit in a bit string (specified with the first operand, called the bit base) at
the bit-position designated by the bit offset operand (second operand), stores the
value of the bit in the CF flag, and sets the selected bit in the bit string to 1. The bit
base operand can be a register or a memory location; the bit offset operand can be a
register or an immediate value:

* If the bit base operand specifies a register, the instruction takes the modulo 16,
32, or 64 of the bit offset operand (modulo size depends on the mode and
register size; 64-bit operands are available only in 64-bit mode). This allows any
bit position to be selected.

* If the bit base operand specifies a memory location, the operand represents the
address of the byte in memory that contains the bit base (bit 0 of the specified
byte) of the bit string. The range of the bit position that can be referenced by the
offset operand depends on the operand size.

See also: Bit(BitBase, BitOffset) on page 3-10.

Some assemblers support immediate bit offsets larger than 31 by using the imme-
diate bit offset field in combination with the displacement field of the memory
operand. See “"BT—Bit Test” in this chapter for more information on this addressing
mechanism.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, the instruction’s default operation size is 32 bits. Using a REX prefix
in the form of REX.R permits access to additional registers (R8-R15). Using a REX

BTS—Bit Test and Set Vol. 2A 3-101

INSTRUCTION SET REFERENCE, A-M

prefix in the form of REX.W promotes operation to 64 bits. See the summary chart at
the beginning of this section for encoding data and limits.

Operation

CF «<Bit(BitBase, BitOffset);
Bit(BitBase, BitOffset) «1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF,
and PF flags are undefined.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

3-102 Vol.2A BTS—Bit Test and Set

#AC(0)

#UD

INSTRUCTION SET REFERENCE, A-M

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#PF(fault-code)
#AC(0)

#UD

BTS—Bit Test and Set

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used but the destination is not a memory
operand.

Vol.2A 3-103

INSTRUCTION SET REFERENCE, A-M

CALL—Call Procedure

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
€8 cw CALL rel16 N.S. Valid Call near, relative, displacement relative

to next instruction.

€8 cd CALL rel32 Valid Valid Call near, relative, displacement relative
to next instruction. 32-bit
displacement sign extended to 64-bits

in 64-bit mode.
FF /2 CALL /m16 N.E Valid Call near, absolute indirect, address
givenin r/m16.
FF /2 CALL /m32 N.E Valid Call near, absolute indirect, address
given in r/m32.
FF /2 CALL /m64 Valid N.E. Call near, absolute indirect, address
given in r/m64.
9A cd CALL Invalid Valid Call far, absolute, address given in
ptr16:16 operand.
9A cp CALL Invalid Valid Call far, absolute, address given in
ptr16:32 operand.
FF/3 CALL m16:16 Valid Valid Call far, absolute indirect address given
inm16:16.

In 32-bit mode: if selector points to a
gate, then RIP = 32-bit zero extended
displacement taken from gate; else RIP
= zero extended 16-bit offset from far
pointer referenced in the instruction.

FF/3 CALL m16:32 Valid Valid In 64-bit mode: If selector points to a
gate, then RIP = 64-bit displacement
taken from gate; else RIP = zero
extended 32-bit offset from far
pointer referenced in the instruction.

REXW +FF/3 CALLmM16:64 Valid N.E. In 64-bit mode: If selector points to a
gate, then RIP = 64-bit displacement
taken from gate; else RIP = 64-bit
offset from far pointer referenced in
the instruction.

Description

Saves procedure linking information on the stack and branches to the called proce-
dure specified using the target operand. The target operand specifies the address of

3-104 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

the first instruction in the called procedure. The operand can be an immediate value,
a general-purpose register, or a memory location.

This instruction can be used to execute four types of calls:

® Near Call — A call to a procedure in the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intra-
segment call.

®* Far Call — A call to a procedure located in a different segment than the current
code segment, sometimes referred to as an inter-segment call.

* Inter-privilege-level far call — A far call to a procedure in a segment at a
different privilege level than that of the currently executing program or
procedure.

®* Task switch — A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be
executed in protected mode. See “Calling Procedures Using Call and RET” in Chapter
6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1,
for additional information on near, far, and inter-privilege-level calls. See Chapter 6,
“Task Management,” in the Inte/l® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A, for information on performing task switches with the
CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP
register (which contains the offset of the instruction following the CALL instruction)
on the stack (for use later as a return-instruction pointer). The processor then
branches to the address in the current code segment specified by the target operand.
The target operand specifies either an absolute offset in the code segment (an offset
from the base of the code segment) or a relative offset (a signed displacement rela-
tive to the current value of the instruction pointer in the EIP register; this value
points to the instruction following the CALL instruction). The CS register is not
changed on near calls.

For a near call absolute, an absolute offset is specified indirectly in a general-purpose
register or a memory location (r/m16, r/m32, or /mé64). The operand-size attribute
determines the size of the target operand (16, 32 or 64 bits). When in 64-bit mode,
the operand size for near call (and all near branches) is forced to 64-bits. Absolute
offsets are loaded directly into the EIP(RIP) register. If the operand size attribute is
16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits. When accessing an absolute offset indirectly using
the stack pointer [ESP] as the base register, the base value used is the value of the
ESP before the instruction executes.

A relative offset (re/16 or re/32) is generally specified as a label in assembly code. But
at the machine code level, it is encoded as a signed, 16- or 32-bit immediate value.
This value is added to the value in the EIP(RIP) register. In 64-bit mode the relative
offset is always a 32-bit immediate value which is sign extended to 64-bits before it
is added to the value in the RIP register for the target calculation. As with absolute
offsets, the operand-size attribute determines the size of the target operand (16, 32,

CALL—Call Procedure Vol. 2A 3-105

INSTRUCTION SET REFERENCE, A-M

or 64 bits). In 64-bit mode the target operand will always be 64-bits because the
operand size is forced to 64-bits for near branches.

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS
and EIP registers on the stack for use as a return-instruction pointer. The processor
then performs a “far branch” to the code segment and offset specified with the target
operand for the called procedure. The target operand specifies an absolute far
address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a
memory location (m16:16 or m16:32). With the pointer method, the segment and
offset of the called procedure is encoded in the instruction using a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address immediate. With the indi-
rect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The operand-size
attribute determines the size of the offset (16 or 32 bits) in the far address. The far
address is loaded directly into the CS and EIP registers. If the operand-size attribute
is 16, the upper two bytes of the EIP register are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the
CALL instruction can be used to perform the following types of far calls:

® Far call to the same privilege level
® Far call to a different privilege level (inter-privilege level call)
® Task switch (far call to another task)

In protected mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate, task gate, or TSS) and access rights determine the
type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in protected mode is very similar
to one carried out in real-address or virtual-8086 mode. The target operand specifies
an absolute far address either directly with a pointer (ptr16:16 or ptri16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The operand- size attribute
determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register; the offset from the
instruction is loaded into the EIP register.

A call gate (described in the next paragraph) can also be used to perform a far call to
a code segment at the same privilege level. Using this mechanism provides an extra
level of indirection and is the preferred method of making calls between 16-bit and
32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a call gate. The segment selector specified by
the target operand identifies the call gate. The target operand can specify the call
gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or indi-
rectly with a memory location (m16:16 or m16:32). The processor obtains the

3-106 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

segment selector for the new code segment and the new instruction pointer (offset)
from the call gate descriptor. (The offset from the target operand is ignored when a
call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is
specified in the TSS for the currently running task. The branch to the new code
segment occurs after the stack switch. (Note that when using a call gate to perform
a far call to a segment at the same privilege level, no stack switch occurs.) On the
new stack, the processor pushes the segment selector and stack pointer for the
calling procedure’s stack, an optional set of parameters from the calling procedures
stack, and the segment selector and instruction pointer for the calling procedure’s
code segment. (A value in the call gate descriptor determines how many parameters
to copy to the new stack.) Finally, the processor branches to the address of the
procedure being called within the new code segment.

Executing a task switch with the CALL instruction is similar to executing a call
through a call gate. The target operand specifies the segment selector of the task
gate for the new task activated by the switch (the offset in the target operand is
ignored). The task gate in turn points to the TSS for the new task, which contains the
segment selectors for the task’s code and stack segments. Note that the TSS also
contains the EIP value for the next instruction that was to be executed before the
calling task was suspended. This instruction pointer value is loaded into the EIP
register to re-start the calling task.

The CALL instruction can also specify the segment selector of the TSS directly, which
eliminates the indirection of the task gate. See Chapter 6, “Task Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for
information on the mechanics of a task switch.

When you execute at task switch with a CALL instruction, the nested task flag (NT) is
set in the EFLAGS register and the new TSS's previous task link field is loaded with
the old task’s TSS selector. Code is expected to suspend this nested task by executing
an IRET instruction which, because the NT flag is set, automatically uses the previous
task link to return to the calling task. (See “Task Linking” in Chapter 6 of the Inte/®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for information
on nested tasks.) Switching tasks with the CALL instruction differs in this regard from
JMP instruction. JMP does not set the NT flag and therefore does not expect an IRET
instruction to suspend the task.

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, use a call gate. If the far call is from a 32-bit code segment to a 16-bit
code segment, the call should be made from the first 64 KBytes of the 32-bit code
segment. This is because the operand-size attribute of the instruction is set to 16, so
only a 16-bit return address offset can be saved. Also, the call should be made using
a 16-bit call gate so that 16-bit values can be pushed on the stack. See Chapter 16,
“Mixing 16-Bit and 32-Bit Code,” in the Inte/® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A, for more information.

CALL—Call Procedure Vol. 2A 3-107

INSTRUCTION SET REFERENCE, A-M

Far Calls in Compatibility Mode. When the processor is operating in compatibility
mode, the CALL instruction can be used to perform the following types of far calls:

® Far call to the same privilege level, remaining in compatibility mode
® Far call to the same privilege level, transitioning to 64-bit mode

®* Far call to a different privilege level (inter-privilege level call), transitioning to 64-
bit mode

Note that a CALL instruction can not be used to cause a task switch in compatibility
mode since task switches are not supported in IA-32e mode.

In compatibility mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate) and access rights determine the type of call operation
to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is hon-conforming, a general-protection exception
is generated.) A far call to the same privilege level in compatibility mode is very
similar to one carried out in protected mode. The target operand specifies an abso-
lute far address either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with
a memory location (m16:16 or m16:32). The operand-size attribute determines the
size of the offset (16 or 32 bits) in the far address. The new code segment selector
and its descriptor are loaded into CS register and the offset from the instruction is
loaded into the EIP register. The difference is that 64-bit mode may be entered. This
specified by the L bit in the new code segment descriptor.

Note that a 64-bit call gate (described in the next paragraph) can also be used to
perform a far call to a code segment at the same privilege level. However, using this
mechanism requires that the target code segment descriptor have the L bit set,
causing an entry to 64-bit mode.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can specify the
call gate segment selector either directly with a pointer (ptr16:16 or ptr16:32) or
indirectly with a memory location (mi16:16 or m16:32). The processor obtains the
segment selector for the new code segment and the new instruction pointer (offset)
from the 16-byte call gate descriptor. (The offset from the target operand is ignored
when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is set
to NULL. The new stack pointer is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch. (Note that when
using a call gate to perform a far call to a segment at the same privilege level, an
implicit stack switch occurs as a result of entering 64-bit mode. The SS selector is
unchanged, but stack segment accesses use a segment base of 0x0, the limit is
ignored, and the default stack size is 64-bits. The full value of RSP is used for the
offset, of which the upper 32-bits are undefined.) On the new stack, the processor

3-108 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

pushes the segment selector and stack pointer for the calling procedure’s stack and
the segment selector and instruction pointer for the calling procedure’s code
segment. (Parameter copy is not supported in IA-32e mode.) Finally, the processor
branches to the address of the procedure being called within the new code segment.

Near/(Far) Calls in 64-bit Mode. When the processor is operating in 64-bit mode, the
CALL instruction can be used to perform the following types of far calls:

® Far call to the same privilege level, transitioning to compatibility mode
® Far call to the same privilege level, remaining in 64-bit mode

® Far call to a different privilege level (inter-privilege level call), remaining in 64-bit
mode

Note that in this mode the CALL instruction can not be used to cause a task switch in
64-bit mode since task switches are not supported in IA-32e mode.

In 64-bit mode, the processor always uses the segment selector part of the far
address to access the corresponding descriptor in the GDT or LDT. The descriptor
type (code segment, call gate) and access rights determine the type of call operation
to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the
same privilege level is performed. (If the selected code segment is at a different priv-
ilege level and the code segment is non-conforming, a general-protection exception
is generated.) A far call to the same privilege level in 64-bit mode is very similar to
one carried out in compatibility mode. The target operand specifies an absolute far
address indirectly with a memory location (m16:16, m16:32 or m16:64). The form
of CALL with a direct specification of absolute far address is not defined in 64-bit
mode. The operand-size attribute determines the size of the offset (16, 32, or 64
bits) in the far address. The new code segment selector and its descriptor are loaded
into the CS register; the offset from the instruction is loaded into the EIP register. The
new code segment may specify entry either into compatibility or 64-bit mode, based
on the L bit value.

A 64-bit call gate (described in the next paragraph) can also be used to perform a far
call to a code segment at the same privilege level. However, using this mechanism
requires that the target code segment descriptor have the L bit set.

When executing an inter-privilege-level far call, the code segment for the procedure
being called must be accessed through a 64-bit call gate. The segment selector spec-
ified by the target operand identifies the call gate. The target operand can only
specify the call gate segment selector indirectly with a memory location (m16:16,
m16:32 or m16:64). The processor obtains the segment selector for the new code
segment and the new instruction pointer (offset) from the 16-byte call gate
descriptor. (The offset from the target operand is ignored when a call gate is used.)

On inter-privilege-level calls, the processor switches to the stack for the privilege
level of the called procedure. The segment selector for the new stack segment is set
to NULL. The new stack pointer is specified in the TSS for the currently running task.
The branch to the new code segment occurs after the stack switch.

CALL—Call Procedure Vol. 2A 3-109

INSTRUCTION SET REFERENCE, A-M

Note that when using a call gate to perform a far call to a segment at the same priv-
ilege level, an implicit stack switch occurs as a result of entering 64-bit mode. The SS
selector is unchanged, but stack segment accesses use a segment base of 0x0, the
limit is ignored, and the default stack size is 64-bits. (The full value of RSP is used for
the offset.) On the new stack, the processor pushes the segment selector and stack
pointer for the calling procedure’s stack and the segment selector and instruction
pointer for the calling procedure’s code segment. (Parameter copy is not supported in
IA-32e mode.) Finally, the processor branches to the address of the procedure being
called within the new code segment.

Operation

IF near call
THEN IF near relative call
THEN
IF OperandSize = 64
THEN
tempDEST «SignExtend(DEST); (* DEST is rel32 *)
tempRIP «RIP +tempDEST;
IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;
Push(RIP);
RIP «<tempRIP;
FI;
IF OperandSize = 32
THEN
tempEIP «E£IP +DEST,; (* DEST is rel32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(EIP);
EIP «tempEIP;
Fl;
IF OperandSize = 16
THEN
tempEIP «{EIP +DEST) AND O000FFFFH; (* DEST is rel16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;
Push(IP);
EIP «tempéEIP;
FI;
ELSE (* Near absolute call *)
IF OperandSize = 64

3-110 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

THEN
tempRIP «DEST; (* DEST is /m64 *)
IF stack not large enough for a 8-byte return address
THEN #SS(0); FI;

Push(RIP);
RIP «tempRIP;

Fl;

IF OperandSize = 32

THEN
tempEIP «DEST; (* DEST is r/m32 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;

Push(EIP);
EIP «tempEIP;

Fl;

IF OperandSize = 16

THEN
tempEIP «DEST AND OO0O0FFFFH; (* DEST is /m16 *)
IF tempEIP is not within code segment limit THEN #GP(0); FI;
IF stack not large enough for a 2-byte return address
THEN #SS(0); FI;

Push(IP);
EIP «tempEIP;

Fl;

Fl;rel/abs

Fl; near

IF far call and (PE = 0 or (PE = 1 and VM = 1)) (* Real-address or virtual-8086 mode *)
THEN
IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address
THEN #SS(0); FI;
IF DEST[31:16] is not zero THEN #GP(0); FI;
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS «DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP «DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address
THEN #SS(0); FI;
Push(CS);

CALL—Call Procedure Vol.2A 3-111

INSTRUCTION SET REFERENCE, A-M

Push(IP);
CS «DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP «DEST[15:0]; (* DEST is ptr16:16 or [m16:16]; clear upper 16 bits *)
FI;
Fl;

IF far call and (PE = 1 and VM = 0) (* Protected mode or IA-32e Mode, not virtual-8086 mode*)
THEN
IF segment selector in target operand NULL
THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector); Fl;
Read type and access rights of selected segment descriptor;
IFIA32_EFERLMA =0
THEN
IF segment type is not a conforming or nonconforming code segment, call
gate, task gate, or TSS
THEN #GP(segment selector); Fl;
ELSE
IF segment type is not a conforming or nonconforming code segment or
64-bit call gate,
THEN #GP(segment selector); Fl;
Fl;
Depending on type and access rights:
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
Fl;

CONFORMING-CODE-SEGMENT:
IFL-Bit=1and D-BIT = 1 and IA32_EFER.LMA =1
THEN GP(new code segment selector); Fl;
IF DPL >CPL
THEN #GP(new code segment selector); Fl;
IF segment not present
THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address
THEN #SS(0); FI;
tempEIP «DEST(Offset);
IF OperandSize = 16
THEN

3-112 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

tempEIP «tempEIP AND O000FFFFH; FI; (* Clear upper 16 bits *)
IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code
segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(0); FI;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS «DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) «CPL;
EIP «tempEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS «DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) «CPL;
EIP «tempEIP;
ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS «DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) «CPL;
RIP «tempéElP;
Fl;
Fl;
END;

NONCONFORMING-CODE-SEGMENT:

IF L-Bit = 1 and D-BIT = 1 and IA32_EFER.LMA = 1
THEN GP(new code segment selector); FI;

IF (RPL >CPL) or (DPL %4 CPL)
THEN #GP(new code segment selector); Fl;

IF segment not present
THEN #NP(new code segment selector); Fl;

IF stack not large enough for return address
THEN #SS(0); FI;

CALL—Call Procedure Vol.2A 3-113

INSTRUCTION SET REFERENCE, A-M

tempEIP «DEST(Offset);
IF OperandSize = 16
THEN tempEIP «tempEIP AND 0000FFFFH; FI; (* Clear upper 16 bits *)

IF (EFER.LMA = 0 or target mode = Compatibility mode) and (tempEIP outside new code

segment limit)
THEN #GP(0); FI;
IF tempEIP is non-canonical
THEN #GP(0); FI;
IF OperandSize = 32
THEN
Push(CS); (* Padded with 16 high-order bits *)
Push(EIP);
CS «DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) «CPL;
EIP «tempEIP;
ELSE
IF OperandSize = 16
THEN
Push(CS);
Push(IP);
CS «DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)
CS(RPL) «CPL;
EIP «tempEIP;
ELSE (* OperandSize = 64 *)
Push(CS); (* Padded with 48 high-order bits *)
Push(RIP);
CS «DEST(CodeSegmentSelector);
(* Segment descriptor information also loaded *)

CS(RPL) «CPL;
RIP «temp€EIP;
FI;
Fl;
END;
CALL-GATE:

IF call gate (DPL < CPL) or (RPL > DPL)
THEN #GP(call gate selector); Fl;
IF call gate not present
THEN #NP(call gate selector); Fl;
IF call gate code-segment selector is NULL
THEN #GP(0); FI;
IF call gate code-segment selector index is outside descriptor table limits

3-114 Vol.2A

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

THEN #GP(code segment selector); FI;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
or code-segment segment descriptor DPL >CPL
THEN #GP(code segment selector); FI;
IF IA32_EFER.LMA =1 AND (code-segment segment descriptor is
not a 64-bit code segment or code-segment descriptor has both L-Bit and D-bit set)
THEN #GP(code segment selector); FI;
IF code segment not present
THEN #NP(new code segment selector); F;
IF code segment is non-conforming and DPL < CPL
THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;
FI;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS
THEN
TSSstackAddress «<new code segment (DPL * 8) +4;
IF (TSSstackAddress +7) >TSS limit
THEN #TS(current TSS selector); FI;
newsSS «TSSstackAddress +4;
newESP «stack address;
ELSE
IF current TSS is 16-bit TSS
THEN
TSSstackAddress «<new code segment (DPL * 4) +2;
IF (TSSstackAddress +4) >TSS limit
THEN #TS(current TSS selector); FI;
newESP «TSSstackAddress;
newSsS «TSSstackAddress +2;
ELSE (* TSS is 64-bit *)
TSSstackAddress «<new code segment (DPL * 8) +4;
IF (TSSstackAddress +8) >TSS limit
THEN #TS(current TSS selector); FI;
newESP «TSSstackAddress;
newSS «NULL;
Fl;
FI;
IF IA32_EFER.LMA = 0 and stack segment selector = NULL
THEN #TS(stack segment selector); Fl;
Read code segment descriptor;
IF IA32_EFER.LMA = 0 and (stack segment selector’s RPL 4 DPL of code segment

CALL—Call Procedure Vol.2A 3-115

INSTRUCTION SET REFERENCE, A-M

or stack segment DPL 4 DPL of code segment or stack segment is not a
writable data segment)
THEN #TS(SS selector); Fl
IF IA32_EFER.LMA = 0 and stack segment not present
THEN #SS(SS selector); Fl;
IF CallGateSize = 32
THEN
IF stack does not have room for parameters plus 16 bytes
THEN #SS(SS selector); Fl;
IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;
SS «newsSsS;
(* Segment descriptor information also loaded *)
ESP «newESP;
CS:EIP «CallGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp «parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE
IF CallGateSize = 16
THEN
IF stack does not have room for parameters plus 8 bytes
THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) AND FFFFH) not in code segment limit
THEN #GP(0); FI;
SS «newsSsS;
(* Segment descriptor information also loaded *)
ESP «<newESP;
CS:IP «L(allGate(CS:InstructionPointer);
(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
temp «parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64 *)
IF pushing 32 bytes on the stack touches non-canonical addresses
THEN #SS(SS selector); FI;
IF (CallGate(InstructionPointer) is non-canonical)
THEN #GP(0); FI;
SS «newsSsS; (* New SS is NULL)
RSP «newESP;
CS:IP «LCallGate(CS:InstructionPointer);

3-116 Vol. 2A CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

(* Segment descriptor information also loaded *)
Push(oldSS:oldESP); (* From calling procedure *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
Fl;

Fl;

CPL «CodeSegment(DPL)

CS(RPL) «CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32
THEN
IF stack does not have room for 8 bytes
THEN #SS(O); FI;
IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;
CS:EIP «CallGate(CS:EIP) (* Segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* Return address to calling procedure *)
ELSE
If CallGateSize = 16
THEN
IF stack does not have room for 4 bytes
THEN #SS(0); FI;
IF CallGate(InstructionPointer) not within code segment limit
THEN #GP(0); FI;
CS:IP «CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)
ELSE (* CallGateSize = 64)
IF pushing 16 bytes on the stack touches non-canonical addresses
THEN #SS(O); FI;
IF RIP non-canonical
THEN #GP(0); FI;
CS:IP «CallGate(CS:instruction pointer);
(* Segment descriptor information also loaded *)
Push(oldCS:oldIP); (* Return address to calling procedure *)
FI;
FI;
CS(RPL) «LCPL
END;

TASK-GATE:
IF task gate DPL < CPL or RPL

CALL—Call Procedure Vol.2A 3-117

INSTRUCTION SET REFERENCE, A-M

THEN #GP(task gate selector); Fl;
IF task gate not present
THEN #NP(task gate selector); Fl;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
or index not within GDT limits
THEN #GP(TSS selector); FI;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector); FI;
IF TSS not present
THEN #NP(TSS selector); Fl;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
or TSS descriptor indicates TSS not available
THEN #GP(TSS selector); FI;
IF TSS is not present
THEN #NP(TSS selector); FI;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0); FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does
not occur.

Protected Mode Exceptions

#GP(0) If the target offset in destination operand is beyond the new
code segment limit.

If the segment selector in the destination operand is NULL.
If the code segment selector in the gate is NULL.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

3-118 Vol. 2A CALL—Call Procedure

#GP(selector)

#55(0)

#SS(selector)

#NP(selector)

#TS(selector)

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

If a code segment or gate or TSS selector index is outside
descriptor table limits.

If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, call gate, task gate, or task state
segment.

If the DPL for a nonconforming-code segment is not equal to the
CPL or the RPL for the segment’s segment selector is greater
than the CPL.

If the DPL for a conforming-code segment is greater than the
CPL.

If the DPL from a call-gate, task-gate, or TSS segment
descriptor is less than the CPL or than the RPL of the call-gate,
task-gate, or TSS’s segment selector.

If the segment descriptor for a segment selector from a call gate
does not indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor
table limits.

If the DPL for a code-segment obtained from a call gate is
greater than the CPL.

If the segment selector for a TSS has its local/global bit set for
local.

If a TSS segment descriptor specifies that the TSS is busy or not
available.

If pushing the return address, parameters, or stack segment
pointer onto the stack exceeds the bounds of the stack segment,
when no stack switch occurs.

If a memory operand effective address is outside the SS
segment limit.

If pushing the return address, parameters, or stack segment
pointer onto the stack exceeds the bounds of the stack segment,
when a stack switch occurs.

If the SS register is being loaded as part of a stack switch and
the segment pointed to is marked not present.

If stack segment does not have room for the return address,
parameters, or stack segment pointer, when stack switch
occurs.

If a code segment, data segment, stack segment, call gate, task
gate, or TSS is not present.

If the new stack segment selector and ESP are beyond the end
of the TSS.

If the new stack segment selector is NULL.

Vol.2A 3-119

INSTRUCTION SET REFERENCE, A-M

If the RPL of the new stack segment selector in the TSS is not
equal to the DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack
segment is not equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside
descriptor table limits.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the target offset is beyond the code segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

#GP(selector) If a memory address accessed by the selector is in non-canon-
ical space.
#GP(0) If the target offset in the destination operand is non-canonical.

64-Bit Mode Exceptions

#GP(0) If a memory address is non-canonical.
If target offset in destination operand is non-canonical.
If the segment selector in the destination operand is NULL.
If the code segment selector in the 64-bit gate is NULL.

#GP(selector) If code segment or 64-bit call gate is outside descriptor table
limits.

3-120 Vol.2A CALL—Call Procedure

#55(0)

#SS(selector)

#NP(selector)
#TS(selector)
#UD

#PF(fault-code)
#AC(0)

CALL—Call Procedure

INSTRUCTION SET REFERENCE, A-M

If code segment or 64-bit call gate overlaps non-canonical
space.

If the segment descriptor pointed to by the segment selector in
the destination operand is not for a conforming-code segment,
nonconforming-code segment, or 64-bit call gate.

If the segment descriptor pointed to by the segment selector in
the destination operand is a code segment and has both the D-
bit and the L- bit set.

If the DPL for a nonconforming-code segment is not equal to the
CPL, or the RPL for the segment’s segment selector is greater
than the CPL.

If the DPL for a conforming-code segment is greater than the
CPL.

If the DPL from a 64-bit call-gate is less than the CPL or than the
RPL of the 64-bit call-gate.

If the upper type field of a 64-bit call gate is not 0x0.

If the segment selector from a 64-bit call gate is beyond the
descriptor table limits.

If the DPL for a code-segment obtained from a 64-bit call gate is
greater than the CPL.

If the code segment descriptor pointed to by the selector in the
64-bit gate doesn't have the L-bit set and the D-bit clear.

If the segment descriptor for a segment selector from the 64-bit
call gate does not indicate it is a code segment.

If pushing the return offset or CS selector onto the stack
exceeds the bounds of the stack segment when no stack switch
occurs.

If a memory operand effective address is outside the SS
segment limit.

If the stack address is in a non-canonical form.

If pushing the old values of SS selector, stack pointer, EFLAGS,
CS selector, offset, or error code onto the stack violates the
canonical boundary when a stack switch occurs.

If a code segment or 64-bit call gate is not present.
If the load of the new RSP exceeds the limit of the TSS.

(64-bit mode only) If a far call is direct to an absolute address in
memory.

If the LOCK prefix is used.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Vol.2A 3-121

INSTRUCTION SET REFERENCE, A-M

CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to
Doubleword/Convert Doubleword to Quadword

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
98 CBW Valid Valid AX «sign-extend of AL.
98 CwDE Valid Valid EAX «sign-extend of AX.
REXW +98 (CDQE Valid N.E. RAX «sign-extend of EAX.
Description

Double the size of the source operand by means of sign extension. The CBW (convert
byte to word) instruction copies the sign (bit 7) in the source operand into every bit
in the AH register. The CWDE (convert word to doubleword) instruction copies the
sign (bit 15) of the word in the AX register into the high 16 bits of the EAX register.

CBW and CWDE reference the same opcode. The CBW instruction is intended for use
when the operand-size attribute is 16; CWDE is intended for use when the operand-
size attribute is 32. Some assemblers may force the operand size. Others may treat
these two mnemonics as synonyms (CBW/CWDE) and use the setting of the
operand-size attribute to determine the size of values to be converted.

In 64-bit mode, the default operation size is the size of the destination register. Use
of the REX.W prefix promotes this instruction (CDQE when promoted) to operate on
64-bit operands. In which case, CDQE copies the sign (bit 31) of the doubleword in
the EAX register into the high 32 bits of RAX.

Operation

IF OperandSize = 16 (* Instruction = CBW *)
THEN
AX «SignExtend(AL);
ELSE IF (OperandSize = 32, Instruction = CWDE)
EAX «<SignExtend(AX); FI;
ELSE (* 64-Bit Mode, OperandSize = 64, Instruction = CDQE*)
RAX «SignExtend(EAX);
Fl;

Flags Affected
None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

3-122 Vol. 2A CBW/CWDE/CDQE—Convert Byte to Word/Convert Word to Doubleword/Convert Double-
word to Quadword

INSTRUCTION SET REFERENCE, A-M

CLC—Clear Carry Flag

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

F8 CLC Valid Valid Clear CF flag.

Description

Clears the CF flag in the EFLAGS register. Operation is the same in all non-64-bit
modes and 64-bit mode.

Operation

CF «0;

Flags Affected
The CF flag is set to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

CLC—Clear Carry Flag Vol.2A 3-123

INSTRUCTION SET REFERENCE, A-M

CLD—Clear Direction Flag

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

FC CLD Valid Valid Clear DF flag.

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string opera-
tions increment the index registers (ESI and/or EDI). Operation is the same in all
non-64-bit modes and 64-bit mode.

Operation

DF «0;

Flags Affected
The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

3-124 Vol. 2A CLD—Clear Direction Flag

INSTRUCTION SET REFERENCE, A-M

CLFLUSH—FIlush Cache Line

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
OF AE/7 CLFLUSH m8 Valid Valid Flushes cache line
containing m8.

Description

Invalidates the cache line that contains the linear address specified with the source
operand from all levels of the processor cache hierarchy (data and instruction). The
invalidation is broadcast throughout the cache coherence domain. If, at any level of
the cache hierarchy, the line is inconsistent with memory (dirty) it is written to
memory before invalidation. The source operand is a byte memory location.

The availability of CLFLUSH is indicated by the presence of the CPUID feature flag
CLFSH (bit 19 of the EDX register, see "CPUID—CPU Identification” in this chapter).
The aligned cache line size affected is also indicated with the CPUID instruction (bits
8 through 15 of the EBX register when the initial value in the EAX register is 1).

The memory attribute of the page containing the affected line has no effect on the
behavior of this instruction. It should be noted that processors are free to specula-
tively fetch and cache data from system memory regions assigned a memory-type
allowing for speculative reads (such as, the WB, WC, and WT memory types).
PREFETCHA instructions can be used to provide the processor with hints for this spec-
ulative behavior. Because this speculative fetching can occur at any time and is not
tied to instruction execution, the CLFLUSH instruction is not ordered with respect to
PREFETCHA instructions or any of the speculative fetching mechanisms (that is, data
can be speculatively loaded into a cache line just before, during, or after the execu-
tion of a CLFLUSH instruction that references the cache line).

CLFLUSH is only ordered by the MFENCE instruction. It is not guaranteed to be
ordered by any other fencing or serializing instructions or by another CLFLUSH
instruction. For example, software can use an MFENCE instruction to insure that
previous stores are included in the write-back.

The CLFLUSH instruction can be used at all privilege levels and is subject to all
permission checking and faults associated with a byte load (and in addition, a
CLFLUSH instruction is allowed to flush a linear address in an execute-only segment).
Like a load, the CLFLUSH instruction sets the A bit but not the D bit in the page
tables.

The CLFLUSH instruction was introduced with the SSE2 extensions;
however, because it has its own CPUID feature flag, it can be implemented in
IA-32 processors that do not include the SSE2 extensions. Also, detecting
the presence of the SSE2 extensions with the CPUID instruction does not
guarantee that the CLFLUSH instruction is implemented in the processor.

CLFLUSH operation is the same in non-64-bit modes and 64-bit mode.

CLFLUSH—FIlush Cache Line Vol. 2A 3-125

INSTRUCTION SET REFERENCE, A-M

Operation

Flush_Cache_Line(SRC);

Intel C/C+Compiler Intrinsic Equivalents
CLFLUSH void _mm_clflush(void const *p)

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.
#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:EDX.CLFSH[bit 19] = 0.

If the LOCK prefix is used.

3-126 Vol.2A CLFLUSH—FIlush Cache Line

CLI — Clear Interrupt Flag

INSTRUCTION SET REFERENCE, A-M

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
FA cu Valid Valid Clear interrupt flag; interrupts disabled
when interrupt flag cleared.
Description

If protected-mode virtual interrupts are not enabled, CLI clears the IF flag in the
EFLAGS register. No other flags are affected. Clearing the IF flag causes the
processor to ignore maskable external interrupts. The IF flag and the CLI and STI
instruction have no affect on the generation of exceptions and NMI interrupts.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected. Table 3-14
indicates the action of the CLI instruction depending on the processor operating
mode and the CPL/IOPL of the running program or procedure.

CLI operation is the same in non-64-bit modes and 64-bit mode.

Table 3-14. Decision Table for CLI Results

PE VM I0PL CPL PVI VIP VME CU Result
0 X X X X X X IF=0
1 0 S CPL X X X X IF=0
1 0 < CPL 3 1 X X VIF=0
1 0 <CPL <3 X X X GP Fault
1 0 <CPL X 0 X X GP Fault
1 1 3 X X X X IF=0
1 1 <3 X X X 1 VIF=0
1 1 <3 X X X 0 GP Fault
NOTES:
* X = This setting has no impact.
Operation
IFPE=0
THEN
IE " O; (* Reset Interrupt Flag *)
ELSE
IF VM = 0;
THEN
CLI — Clear Interrupt Flag Vol.2A 3-127

INSTRUCTION SET REFERENCE, A-M

IF IOPL " CPL
THEN
IE " O; (* Reset Interrupt Flag *)
ELSE
IF (IOPL < CPL) and (CPL = 3) and (PVI = 1))
THEN
VIF " O; (* Reset Virtual Interrupt Flag *)
ELSE
#GP(0);
Fl;
Fl;
ELSE (*VM =1 *)
IFIOPL=3
THEN
IE " O; (* Reset Interrupt Flag *)
ELSE
IF (IOPL < 3) AND (VME = 1)
THEN
VIF " 0; (* Reset Virtual Interrupt Flag *)
ELSE
#GP(0);
Fl;
Fl;
Fl;
Fl;
Flags Affected

If protected-mode virtual interrupts are not enabled, IF is set to 0 if the CPL is equal
to or less than the IOPL; otherwise, it is not affected. The other flags in the EFLAGS
register are unaffected.

When protected-mode virtual interrupts are enabled, CPL is 3, and IOPL is less than
3; CLI clears the VIF flag in the EFLAGS register, leaving IF unaffected.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

3-128 Vol. 2A CLI — Clear Interrupt Flag

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the
current program or procedure.
#UD If the LOCK prefix is used.

CLI — Clear Interrupt Flag Vol.2A 3-129

INSTRUCTION SET REFERENCE, A-M

CLTS—Clear Task-Switched Flag in CRO

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
OF 06 CLTS Valid Valid Clears TS flag in CRO.
Description

Clears the task-switched (TS) flag in the CRO register. This instruction is intended for
use in operating-system procedures. It is a privileged instruction that can only be
executed at a CPL of 0. It is allowed to be executed in real-address mode to allow
initialization for protected mode.

The processor sets the TS flag every time a task switch occurs. The flag is used to
synchronize the saving of FPU context in multitasking applications. See the descrip-
tion of the TS flag in the section titled “"Control Registers” in Chapter 2 of the Inte/®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A, for more infor-
mation about this flag.

CLTS operation is the same in non-64-bit modes and 64-bit mode.

See Chapter 21, "WMX Non-Root Operation,” of the Intel/® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 3B, for more information about the behavior
of this instruction in VMX non-root operation.

Operation
CRO.TS[bit 3] «<-0;

Flags Affected
The TS flag in CRO register is cleared.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#GP(0) CLTS is not recognized in virtual-8086 mode.
#UD If the LOCK prefix is used.

3-130 Vol.2A CLTS—Clear Task-Switched Flag in CRO

INSTRUCTION SET REFERENCE, A-M
Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the CPL is greater than 0.
#UD If the LOCK prefix is used.

CLTS—Clear Task-Switched Flag in CRO Vol.2A 3-131

INSTRUCTION SET REFERENCE, A-M

CMC—Complement Carry Flag

Opcode Instruction 64-Bit Mode Compat/ Description

Leg Mode
F5 CMC Valid Valid Complement CF flag.
Description

Complements the CF flag in the EFLAGS register. CMC operation is the same in non-
64-bit modes and 64-bit mode.

Operation

EFLAGS.CF[bit 0]<-NOT EFLAGS.CF[bit OJ;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF
flags are unaffected.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

3-132 Vol. 2A CMC—Complement Carry Flag

CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-M

Opcode
OF 47 /r
OF 47 /r
REXW +0OF 47 /r
OF 43 /r
OF 43 /r
REXW +0F 43 /r

OF 42 /r
OF 42 /r
REX.W + OF 42 /r
OF 46 /r

OF 46 /r

REX.W + OF 46 /r

OF 42 /r
OF 42 /r
REXW + OF 42 /r
OF 44 /r
OF 44 /r
REX.W + OF 44 /r
OF 4F /r

OF 4F /r

REX.W + OF 4F /r

OF 4D /r

Instruction

CMOVA r16, r/m16

CMOVA r32, r/m32

CMOVA r64, r/m64

CMOVAE r16, r/m16

CMOVAE r32, r/m32

CMOVAE r64, r/m64

CMOVB r16, /m16
CMOVB r32, r/m32
CMOVB r64, r/m64
CMOVBE r16, r/m16

CMOVBE r32, /m32

CMOVBE r64, r/m64

CMOVC ri16, r/m16
CMOVC r32, r/m32
CMOVC r64, r/m64
CMOVE r16, r/m16
CMOVE r32, r/m32
CMOVE r64, r/m64
CMOVG r16, r/m16

CMOVG r32, r/m32

CMOVG r64, r/m64

CMOVGE r16, r/m16

64-Bit

Mode

Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid

Valid

Valid

Valid
Valid
Valid
Valid
Valid
Valid
Valid

Valid

Valid

Valid

Compat/
Leg Mode
Valid

Valid

N.E.

Valid

Valid

N.E.

Valid
Valid
N.E.

Valid

Valid

N.E.

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid

Valid

N.E.

Valid

Description

Move if above (CF=0 and
ZF=0).

Move if above (CF=0 and
ZF=0).

Move if above (CF=0 and
ZF=0).

Move if above or equal
(CF=0).

Move if above or equal
(CF=0).

Move if above or equal
(CF=0).

Move if below (CF=1).
Move if below (CF=1).
Move if below (CF=1).

Move if below or equal
(CF=1 or ZF=1).

Move if below or equal
(CF=1 or ZF=1).

Move if below or equal
(CF=1 or ZF=1).

Move if carry (CF=1).
Move if carry (CF=1).
Move if carry (CF=1).
Move if equal (ZF=1).
Move if equal (ZF=1).
Move if equal (ZF=1).
Move if greater (ZF=0
and SF=0F).

Move if greater (ZF=0
and SF=0F).

Move if greater (ZF=0
and SF=0F).

Move if greater or equal
(SF=0F).

CMOVcc—Conditional Move

Vol.2A 3-133

INSTRUCTION SET REFERENCE, A-M

Opcode
OF 4D /r
REX.W + OF 4D /r

OF4C/r
OF 4C /r
REX.W + OF 4C /r
OF 4€ /r

OF 4E /r
REX.W + OF 4E /r
OF 46 /r
OF 46 /r
REX.W + OF 46 /r
OF 42 /r
OF 42 /r
REX.W + OF 42 /r
OF 43 /r
OF 43 /r
REX.W + OF 43 /r
OF 47 /r
OF 47 /r

REX.W + OF 47 /r

Instruction

CMOVGE r32, r/m32

CMOVGE r64, r/m64

CMOVL r16, /m16
CMOVL r32, r/m32
CMOVL r64, r/m64
CMOVLE r16, /m16

CMOVLE r32, r/m32

CMOVLE r64, r/m64

CMOVNA r16, /m16

CMOVNA r32, r/m32

CMOVNA r64, r/m64

CMOVNAE r16, /m16

CMOVNAE r32, r/m32

CMOVNAE r64, r/m64

CMOVNB 16, r/m16

CMOVNB r32, /m32

CMOVNB r64, r/m64

CMOVNBE r16, r/m16

CMOVNBE r32, r/m32

CMOVNBE r64, r/m64

64-Bit
Mode
Valid
Valid

Valid
Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode
Valid

N.E.

Valid
Valid
N.E.

Valid

Valid
N.E.
Valid
Valid
N.E.
Valid
Valid
N.E.
Valid
Valid
N.E.
Valid
Valid

N.E.

Description

Move if greater or equal
(SF=0F).

Move if greater or equal
(SF=OF).

Move if less (SF# OF).
Move if less (SF# OF).
Move if less (SF# OF).

Move if less or equal
(2F=1 or SF# OF).

Move if less or equal
(2F=1 or SF# OF).

Move if less or equal
(2F=1 or SF+ OF).

Move if not above (CF=1
or ZF=1).

Move if not above (CF=1
or ZF=1).

Move if not above (CF=1
or ZF=1).

Move if not above or
equal (CF=1).

Move if not above or
equal (CF=1).

Move if not above or
equal (CF=1).

Move if not below
(CF=0).

Move if not below
(CF=0).

Move if not below
(CF=0).

Move if not below or
equal (CF=0 and ZF=0).
Move if not below or
equal (CF=0 and ZF=0).

Move if not below or
equal (CF=0 and ZF=0).

3-134 Vol.2A

CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-M

Opcode

OF 43 /r
OF 43 /r
REX.W + OF 43 /r
OF 45 /r
OF 45 /r
REX.W + OF 45 /r
OF 4E /r

OF 4€ /r
REX.W + OF 4E /r
OF4C/r
OF 4C /r
REX.W + OF 4C /r

OF 4D /r
OF 4D /r
REXW + OF 4D /r
OF 4F /r

OF 4F /r
REXW + OF 4F /r
OF 41 /r
OF 41 /r
REXW + OF 41 /r
OF 4B /r

OF 4B /r

Instruction

CMOVNC r16, r/m16
CMOVNC r32, r/m32
CMOVNC r64, r/m64
CMOVNE r16, r/m16
CMOVNE r32, r/m32
CMOVNE r64, r/m64
CMOVNG r16, r/m16

CMOVNG r32, /m32

CMOVNG r64, r/m64

CMOVNGE r16, r/m16

CMOVNGE r32, r/m32

CMOVNGE r64, r/m64

CMOVNL r16, /m16
CMOVNL r32, /m32
CMOVNL r64, r/m64
CMOVNLE r16, r/m16

CMOVNLE r32, r/m32

CMOVNLE r64, r/m64

CMOVNO r16, r/m16

CMOVNO r32, r/m32

CMOVNO ré4, r/m64

CMOVNP r16, /m16

CMOVNP r32, r/m32

64-Bit
Mode

Valid
Valid
Valid
Valid
Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid
Valid
Valid
Valid

Valid

Valid

Valid

Valid

Valid

Valid

Valid

Compat/
Leg Mode

Valid
Valid
N.E.

Valid
Valid
N.E.

Valid

Valid
N.E.
Valid
Valid
N.E.

Valid
Valid
N.E.

Valid

Valid
N.E.
Valid
Valid
N.E.
Valid

Valid

Description

Move if not carry (CF=0).
Move if not carry (CF=0).
Move if not carry (CF=0).
Move if not equal (ZF=0).
Move if not equal (ZF=0).
Move if not equal (ZF=0).

Move if not greater
(ZF=1 or SF= OF).

Move if not greater
(2F=1 or SF# OF).

Move if not greater
(ZF=1 or SF= OF).

Move if not greater or
equal (SF# OF).

Move if not greater or
equal (SF# OF).

Move if not greater or
equal (SF# OF).

Move if not less (SF=0F).
Move if not less (SF=0F).
Move if not less (SF=0F).

Move if not less or equal
(2F=0 and SF=0F).
Move if not less or equal
(2F=0 and SF=0F).
Move if not less or equal
(2F=0 and SF=0F).
Move if not overflow
(OF=0).

Move if not overflow
(OF=0).

Move if not overflow
(OF=0).

Move if not parity
(PF=0).

Move if not parity
(PF=0).

CMOVcc—Conditional Move

Vol.2A 3-135

INSTRUCTION SET REFERENCE, A-M

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
REX.W + OF 4B /r CMOVNP r64, /m64 Valid N.E. Move if not parity
(PF=0).
OF 49 /r CMOVNS r16, /m16 Valid Valid Move if not sign (SF=0).
OF 49 /r CMOVNS r32, r/m32 Valid Valid Move if not sign (SF=0).
REXW +0F 49 /r CMOVNS r64, r/m64 Valid N.E. Move if not sign (SF=0).
OF 45 /r CMOVNZ r16, r/m16 Valid Valid Move if not zero (ZF=0).
OF 45 /r CMOVNZ r32, /m32 Valid Valid Move if not zero (ZF=0).
REXW + OF 45 /r CMOVNZ r64, /m64 Valid N.E. Move if not zero (ZF=0).
OF 40 /r CMOVO r16, /m16 Valid Valid Move if overflow (OF=0).
OF 40 /r CMOVO r32, r/m32 Valid Valid Move if overflow (OF=0).
REXW +0F 40 /r CMOVO r64, r/m64 Valid N.E. Move if overflow (OF=0).
OF 4A /r CMOVP r16, r/m16 Valid Valid Move if parity (PF=1).
OF 4A /r CMOVP r32, r/m32 Valid Valid Move if parity (PF=1).
REX.W + OF 4A /r CMOVP r64, r/m64 Valid N.E. Move if parity (PF=1).
OF 4A /r CMOVPE r16, r/m16 Valid Valid Move if parity even
(PF=1).
OF 4A /r CMOVPE r32, r/m32 Valid Valid Move if parity even
(PE=1).
REXW + OF 4A /r CMOVPE r64, r/m64 Valid N.E. Move if parity even
(PF=1).
OF 4B /r CMOVPO r16, /m16 Valid Valid Move if parity odd
(PF=0).
OF 4B /r CMOVPO r32, r/m32 Valid Valid Move if parity odd
(PF=0).
REXW +0F 4B /r CMOVPO r64, r/m64 Valid N.E. Move if parity odd
(PF=0).
OF 48 /r CMOVS r16, /m16 Valid Valid Move if sign (SF=1).
OF 48 /r CMOVS r32, r/m32 Valid Valid Move if sign (SF=1).
REXW +0F 48 /r CMOVS r64, r/m64 Valid N.E. Move if sign (SF=1).
OF 44 /r CMOVZ r16, r/m16 Valid Valid Move if zero (ZF=1).
OF 44 /r CMOVZ r32, r/m32 Valid Valid Move if zero (ZF=1).
REXW + OF 44 /r CMOVZ r64, r/m64 Valid N.E. Move if zero (ZF=1).
3-136 Vol.2A CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-M

Description

The CMOVcc instructions check the state of one or more of the status flags in the
EFLAGS register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are
in a specified state (or condition). A condition code (cc) is associated with each
instruction to indicate the condition being tested for. If the condition is not satisfied,
a move is not performed and execution continues with the instruction following the
CMOVcec instruction.

These instructions can move 16-bit, 32-bit or 64-bit values from memory to a
general-purpose register or from one general-purpose register to another. Condi-
tional moves of 8-bit register operands are not supported.

The condition for each CMOVcc mnemonic is given in the description column of the
above table. The terms “less” and “greater” are used for comparisons of signed inte-
gers and the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two
ways, two mnemonics are defined for some opcodes. For example, the CMOVA
(conditional move if above) instruction and the CMOVNBE (conditional move if not
below or equal) instruction are alternate mnemonics for the opcode OF 47H.

The CMOVcc instructions were introduced in P6 family processors; however, these
instructions may not be supported by all IA-32 processors. Software can determine if
the CMOVcc instructions are supported by checking the processor’s feature informa-
tion with the CPUID instruction (see "CPUID—CPU Identification” in this chapter).

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation
temp «SRC
IF (64-Bit Mode)
THEN
IF condition TRUE
THEN
IF (OperandSize = 64)
THEN
DEST «temp;
ELSE
DEST «temp AND 0x00000000_FFFFFFFF;
Fl;
Fl;
ELSE
IF condition TRUE
THEN

CMOVcc—Conditional Move Vol.2A 3-137

INSTRUCTION SET REFERENCE, A-M

DEST «temp;
Fl;
Fl;
Flags Affected
None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

3-138 Vol.2A CMOVcc—Conditional Move

INSTRUCTION SET REFERENCE, A-M

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

CMOVcc—Conditional Move Vol. 2A 3-139

INSTRUCTION SET REFERENCE, A-M

CMP—Compare Two Operands

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
3Cib CMP AL, imm8 Valid Valid Compare imm8 with AL.
3D iw CMP AX, imm16 Valid Valid Compare imm16 with AX.
3D id CMP EAX, imm32 Valid Valid Compare imm32 with EAX.
REX.W + 3D id CMP RAX, imm32 Valid N.E. Compare imm32 sign-
extended to 64-bits with
RAX.
80/7 ib CMP r/m8, imm8 Valid Valid Compare imm8 with r/m8.
REX +80/7 ib CMP r/m8*, imm8 Valid N.E. Compare imm8 with r/m8.
81/7 iw CMP r/m16, Valid Valid Compare imm16 with
imm16 r/m16.
81/7 id CMP r/m32, Valid Valid Compare imm32 with
imm32 r/m32.
REXW +81/7id CMP r/m64, Valid N.E. Compare imm32 sign-
imm32 extended to 64-bits with
r/mé4.
83/7ib CMP r/m16, imm8 Valid Valid Compare imm8 with r/m16.
83/7ib CMP r/m32, imm8 Valid Valid Compare imm8 with r/m32.
REXW +83/7ib CMP r/m64, imm8 Valid N.E. Compare imm8 with r/mé64.
38/r CMP r/m8, r8 Valid Valid Compare r8 with r/m8.
REX +38/r CMP /m8’, 8 Valid N.E. Compare r8 with r/m8.
39/r CMP r/m16,r16 Valid Valid Compare r16 with r/m16.
39/r CMP r/m32,r32 \Valid Valid Compare r32 with r/m32.
REXW +39/r CMP r/m64,r64 Valid N.E. Compare r64 with r/m64.
3A/r CMP r8, r/m8 Valid Valid Compare r/m8 with r8.
REX +3A/r CMP 8", /m8" Valid N.E. Compare r/m8 with r8.
3B/r CMP r16,r/m16 Valid Valid Compare r/m16 with r16.
3B/r CMP r32,r/m32 \Valid Valid Compare r/m32 with r32.
REXW +3B/r CMP r64, r/m64 Valid N.E. Compare r/m64 with ré4.
NOTES:

* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

3-140 Vol.2A

CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-M

Description

Compares the first source operand with the second source operand and sets the
status flags in the EFLAGS register according to the results. The comparison is
performed by subtracting the second operand from the first operand and then setting
the status flags in the same manner as the SUB instruction. When an immediate
value is used as an operand, it is sign-extended to the length of the first operand.

The condition codes used by the Jcc, CMOVcc, and SETcc instructions are based on
the results of a CMP instruction. Appendix B, "EFLAGS Condition Codes,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, shows
the relationship of the status flags and the condition codes.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

temp «SRC1 -SignExtend(SRC2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

CMP—Compare Two Operands Vol.2A 3-141

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

3-142 Vol. 2A CMP—Compare Two Operands

INSTRUCTION SET REFERENCE, A-M

CMPPD—Compare Packed Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 0FC2/rib CMPPD xmm1, Valid Valid Compare packed double-
xmmZ2/m128, imm8 precision floating-point

values in xmm2/m128 and
xmm1 using imm8 as
comparison predicate.

Description

Performs a SIMD compare of the two packed double-precision floating-point values in
the source operand (second operand) and the destination operand (first operand)
and returns the results of the comparison to the destination operand. The compar-
ison predicate operand (third operand) specifies the type of comparison performed
on each of the pairs of packed values. The result of each comparison is a quadword
mask of all 1s (comparison true) or all 0s (comparison false).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The comparison predicate operand is an 8-bit
immediate, the first 3 bits of which define the type of comparison to be made (see
Table 3-15). Bits 3 through 7 of the immediate are reserved.

Table 3-15. Comparison Predicate for CMPPD and CMPPS Instructions

Predi- |imm8 | Description Relation where: | Emulation | Result if | QNaN
cate Encod- Als 1st Operand NaN Oper-and
ing Bls 2nd Operand | Signals
Operand Invalid
€Q 000B | Equal A=B False No
LT 001B | Less-than A<B False Yes
LE 010B | Less-than-or-equal | A£B False Yes
Greater than A>B Swap False Yes
Operands,
Use LT
Greater-than-or- ASB Swap False Yes
equal Operands,
Use LE
UNORD | 011B | Unordered A, B = Unordered True No
NEQ 100B | Not-equal AY4aB True No
NLT 101B | Not-less-than NOT(A <B) True Yes

CMPPD—Compare Packed Double-Precision Floating-Point Values Vol.2A 3-143

INSTRUCTION SET REFERENCE, A-M

Table 3-15. Comparison Predicate for CMPPD and CMPPS Instructions (Contd.)

Predi- |imm8 | Description Relation where: | Emulation | Result if | QNaN
cate Encod- Als 1st Operand NaN Oper-and
ing Bls 2nd Operand | Signals
Operand Invalid
NLE 110B | Not-less-than-or- | NOT(A £ B) True Yes
equal
Not-greater-than | NOT(A > B) Swap True Yes
Operands,
Use NLT
Not-greater-than- | NOT(A S B) Swap True Yes
or-equal Operands,
Use NLE
ORD 111B | Ordered A, B = Ordered False No

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate an exception, because a mask of all Os
corresponds to a floating-point value of .0 and a mask of all 1s corresponds to a
QNaN.

Note that the processor does not implement the greater-than, greater-than-or-
equal, not-greater-than, and not-greater-than-or-equal relations. These compari-
sons can be made either by using the inverse relationship (that is, use the “not-less-
than-or-equal” to make a “greater-than” comparison) or by using software emula-
tion. When using software emulation, the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination), and
then perform the compare using a different predicate. The predicate to be used for
these emulations is listed in Table 3-15 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPPD instruction. See Table 3-8.

Table 3-16. Pseudo-Op and CMPPD Implementation

Pseudo-0p CMPPD Implementation
CMPEQPD xmm1, xmmZ2 CMPPD xmm1, xmmZ, O
CMPLTPD xmm1, xmm2 CMPPD xmm1, xmmz, 1

CMPLEPD xmm1, xmmZ2 CMPPD xmm1, xmmZ, 2
CMPUNORDPD xmm1, xmmZ2 CMPPD xmm1, xmmZ2, 3

CMPNEQPD xmm1, xmm2 CMPPD xmm1, xmmZ, 4
CMPNLTPD xmm1, xmmZ2 CMPPD xmm1, xmmZ2, 5

3-144 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Table 3-16. Pseudo-Op and CMPPD Implementation

Pseudo-Op CMPPD Implementation
CMPNLEPD xmm1, xmmZ2 CMPPD xmm1, xmmZ2, 6
CMPORDPD xmm1, xmm2 CMPPD xmm1, xmm2, 7

The greater-than relations that the processor does not implement require more than
one instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is

moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

CASE (COMPARISON PREDICATE) OF
: OP «EQ

OP L T;

OP «LE;

OP «UNORD;

OP «NEQ;

OP «NLT;

OP «NLE;

. OP «<ORD;

DEFAULT: Reserved;

QU hwWwN 2O

N

CMPO «DEST[63:0] OP SRC[63:0];
CMP1 «DEST[127:64] OP SRC[127:64];
IF CMPO = TRUE
THEN DEST[63:0] «FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] «<-0000000000000000H; FI;
IF CMP1 = TRUE
THEN DEST[127:64] < FFFFFFEFFFFFFFFFH;
ELSE DEST[127:64] «0000000000000000H; FI;

Intel C/C+Compiler Intrinsic Equivalents

CMPPD for equality __m128d _mm_cmpeq_pd(__m128da, __m128db)
CMPPD for less-than __m128d _mm_cmplt_pd(__m128da, __ m128db)
CMPPD for less-than-or-equal __m128d _mm_cmple_pd(_m128d a, __m128db)
CMPPD for greater-than __m128d _mm_cmpgt_pd(__m128da, __m128d b)

CMPPD for greater-than-or-equal__m128d _mm_cmpge_pd(__m128d a, __m128d b)

CMPPD—Compare Packed Double-Precision Floating-Point Values Vol. 2A 3-145

INSTRUCTION SET REFERENCE, A-M

CMPPD for inequality __m128d _mm_cmpneq_pd(__m128da, __m128db)
CMPPD for not-less-than __m128d _mm_cmpnlt_pd(__m128da, __m128d b)
CMPPD for not-greater-than __m128d _mm_cmpngt_pd(__m128da, __m128dDb)
CMPPD for not-greater-than-or-equal__m128d _mm_cmpnge_pd(__m128d a, __m128d b)
CMPPD for ordered __m128d _mm_cmpord_pd(__m128da, __m128d b)
CMPPD for unordered __m128d _mm_cmpunord_pd(__m128d a3, __m128db)

CMPPD for not-less-than-or-equal__m128d _mm_cmpnle_pd(__m128d a, __m128d b)

SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table,
Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

3-146 Vol. 2A CMPPD—Compare Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

CMPPD—Compare Packed Double-Precision Floating-Point Values Vol. 2A 3-147

INSTRUCTION SET REFERENCE, A-M

CMPPS—Compare Packed Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF C2/rib CMPPS xmm1, Valid Valid Compare packed single-
xmmZ2/m128, imm8 precision floating-point values

in xmmZ/mem and xmm1
using imma8 as comparison
predicate.

Description

Performs a SIMD compare of the four packed single-precision floating-point values in
the source operand (second operand) and the destination operand (first operand)
and returns the results of the comparison to the destination operand. The compar-
ison predicate operand (third operand) specifies the type of comparison performed
on each of the pairs of packed values. The result of each comparison is a doubleword
mask of all 1s (comparison true) or all 0s (comparison false).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The comparison predicate operand is an 8-bit
immediate, the first 3 bits of which define the type of comparison to be made (see
Table 3-15). Bits 3 through 7 of the immediate are reserved.

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, because a mask of all Os corre-
sponds to a floating-point value of 9.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-15 (such as the greater-than, greater-
than-or-equal, not-greater-than, and not-greater-than-or-equal relations) can be
made only through software emulation. For these comparisons the program must
swap the operands (copying registers when necessary to protect the data that will
now be in the destination), and then perform the compare using a different predi-
cate. The predicate to be used for these emulations is listed in Table 3-15 under the
heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPPS instruction. See Table 3-17.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

3-148 Vol.2A CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

Table 3-17. Pseudo-Ops and CMPPS

Pseudo-Op Implementation

CMPEQPS xmm1, xmmZ2 CMPPS xmm1, xmmZ, 0
CMPLTPS xmm1, xmmZ2 CMPPS xmm1, xmmZ, 1
CMPLEPS xmm1, xmmZ2 CMPPS xmm1, xmmZ2, 2
CMPUNORDPS xmm1, xmmZ2 CMPPS xmm1, xmmZ, 3
CMPNEQPS xmm1, xmm2 CMPPS xmm1, xmmZ, 4
CMPNLTPS xmm1, xmmZ2 CMPPS xmm1, xmmZ2, 5
CMPNLEPS xmm1, xmmZ2 CMPPS xmm1, xmmZ2, 6
CMPORDPS xmm1, xmmZ2 CMPPS xmm1, xmmZ, 7

The greater-than relations not implemented by the processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

Operation

CASE (COMPARISON PREDICATE) OF
: OP «EQ

OP L T;

OP «LE;

OP «UNORD;

OP «NE;

OP «NLT;

OP «NLE;

. OP «ORD;

EASC;

Nouhshwn 2O

CMPO «DEST[31:0] OP SRC[31:0];
CMP1 «DEST[63:32] OP SRC[63:32];
CMP2 «DEST [95:64] OP SRC[95:64];
CMP3 «DEST[127:96] OP SRC[127:96];

IF CMPO = TRUE
THEN DEST[31:0] «FFFFFFFFH;
ELSE DEST[31:0] «-00000000H; FI;
IF CMP1 = TRUE
THEN DEST[63:32] «FFFFFFFFH;
ELSE DEST[63:32] «-00000000H; FI;
IF CMP2 = TRUE

CMPPS—Compare Packed Single-Precision Floating-Point Values

Vol.2A 3-149

INSTRUCTION SET REFERENCE, A-M

THEN DEST95:64] «FFFFFFFFH;

ELSE DEST[95:64] «-00000000H; Fl;
IF CMP3 = TRUE

THEN DEST[127:96] «FFFFFFFFH;

ELSE DEST[127:96] «-00000000H; Fl;

Intel C/C+Compiler Intrinsic Equivalents

CMPPS for equality __m128 _mm_cmpeq_ps(__m128a,__m128Db)
CMPPS for less-than __m128 _mm_cmplt_ps(_m1283a, _m128Db)
CMPPS for less-than-or-equal __m128 _mm_cmple_ps(__m1283a,__m128Db)
CMPPS for greater-than __m128 _mm_cmpgt_ps(__m128a,__m128Db)
CMPPS for greater-than-or-equal__m128 _mm_cmpge_ps(__m128 3, __m128b)
CMPPS for inequality __m128 _mm_cmpneq_ps(__m128a, __m128Db)
CMPPS for not-less-than __m128 _mm_cmpnlt_ps(__m1283a,__m128b)
CMPPS for not-greater-than __m128 _mm_cmpngt_ps(__m128a,_m128b)
CMPPS for not-greater-than-or-equal__m128 _mm_cmpnge_ps(__m1283a,__m128Db)
CMPPS for ordered __m128 _mm_cmpord_ps(__m128a, __m128b)
CMPPS for unordered __m128 _mm_cmpunord_ps(__m128a,__m128Db)

CMPPS for not-less-than-or-equal__m128 _mm_cmpnle_ps(__m128 a,__m128b)

SIMD Floating-Point Exceptions

Invalid if SNaN operand and invalid if QNaN and predicate as listed in above table,
Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.

3-150 Vol. 2A CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

CMPPS—Compare Packed Single-Precision Floating-Point Values Vol.2A 3-151

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

3-152 Vol. 2A CMPPS—Compare Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

Opcode Instruction 64-Bit
Mode
A6 CMPS m8 m8 Valid
A7 CMPS m16, m16 Valid
A7 CMPS m32, m32 Valid

REXW + A7 CMPS m64, m64 Valid

A6 CMPSB Valid

Compat/ Description
Leg Mode
Valid For legacy mode, compare byte at

address DS:(E)SI with byte at
address ES:(E)DI; For 64-bit mode
compare byte at address (R|E)SI to
byte at address (R|E)DI. The status
flags are set accordingly.

Valid For legacy mode, compare word at
address DS:(€)SI with word at
address ES:(E)DI; For 64-bit mode
compare word at address (R|E)SI
with word at address (R|E)DI. The
status flags are set accordingly.

Valid For legacy mode, compare dword
at address DS:(E)SI at dword at
address ES:(E)DI; For 64-bit mode
compare dword at address (R|E)SI
at dword at address (R|E)DI. The
status flags are set accordingly.

N.E. Compares quadword at address
(RIE)SI with quadword at address
(RIE)DI and sets the status flags
accordingly.

Valid For legacy mode, compare byte at
address DS:(E)SI with byte at
address ES;(E)DI; For 64-bit mode
compare byte at address (R|E)SI
with byte at address (R|E)DI. The
status flags are set accordingly.

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands Vol.2A 3-153

INSTRUCTION SET REFERENCE, A-M

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
A7 CMPSW Valid Valid For legacy mode, compare word at

address DS:(E)SI with word at
address ES:(E)DI; For 64-bit mode
compare word at address (R|E)SI
with word at address (R|E)DI. The
status flags are set accordingly.

A7 CMPSD Valid Valid For legacy mode, compare dword
at address DS:(E)SI with dword at
address ES:(E)DI; For 64-bit mode
compare dword at address (R|E)SI
with dword at address (R|E)DI. The
status flags are set accordingly.

REXW +A7 CMPSQ Valid N.E. Compares quadword at address
(RIJE)SI with quadword at address
(R|E)DI and sets the status flags
accordingly.

Description

Compares the byte, word, doubleword, or quadword specified with the first source
operand with the byte, word, doubleword, or quadword specified with the second
source operand and sets the status flags in the EFLAGS register according to the
results.

Both source operands are located in memory. The address of the first source operand
is read from DS:SI, DS:ESI or RSI (depending on the address-size attribute of the
instruction is 16, 32, or 64, respectively). The address of the second source operand
is read from ES:DI, ES:EDI or RDI (again depending on the address-size attribute of
the instruction is 16, 32, or 64). The DS segment may be overridden with a segment
override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-
operands” form and the “no-operands” form. The explicit-operands form (specified
with the CMPS mnemonic) allows the two source operands to be specified explicitly.
Here, the source operands should be symbols that indicate the size and location of
the source values. This explicit-operand form is provided to allow documentation.
However, note that the documentation provided by this form can be misleading. That
is, the source operand symbols must specify the correct type (size) of the operands
(bytes, words, or doublewords, quadwords), but they do not have to specify the
correct location. Locations of the source operands are always specified by the
DS:(E)SI (or RSI) and ES:(E)DI (or RDI) registers, which must be loaded correctly
before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword
versions of the CMPS instructions. Here also the DS:(E)SI (or RSI) and ES:(E)DI (or

3-154 Vol.2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-M

RDI) registers are assumed by the processor to specify the location of the source
operands. The size of the source operands is selected with the mnemonic: CMPSB
(byte comparison), CMPSW (word comparison), CMPSD (doubleword comparison),
or CMPSQ (quadword comparison using REX.W).

After the comparison, the (E/R)SI and (E/R)DI registers increment or decrement
automatically according to the setting of the DF flag in the EFLAGS register. (If the DF
flag is 0, the (E/R)SI and (E/R)DI register increment; if the DF flag is 1, the registers
decrement.) The registers increment or decrement by 1 for byte operations, by 2 for
word operations, 4 for doubleword operations. If operand size is 64, RSI and RDI
registers increment by 8 for quadword operations.

The CMPS, CMPSB, CMPSW, CMPSD, and CMPSQ instructions can be preceded by the
REP prefix for block comparisons. More often, however, these instructions will be
used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See
“REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation Prefix” in Chapter 4, in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, for
a description of the REP prefix.

In 64-bit mode, the instruction’s default address size is 64 bits, 32 bit address size is
supported using the prefix 67H. Use of the REX.W prefix promotes doubleword oper-
ation to 64 bits (see CMPSQ). See the summary chart at the beginning of this section
for encoding data and limits.

Operation

temp SRC1 - SRC2;
SetStatusFlags(temp);

IF (64-Bit Mode)
THEN
IF (Byte comparison)
THEN IF DF =0
THEN
(RIE)SI «<«(R|E)SI +1;
(R|E)DI «~«R|E)DI +1;
ELSE
(RIE)SI «HRIE)SI - 1;
(RIE)DI «~RIE)DI - 1;
Fl;
ELSE IF (Word comparison)
THEN IFDF =0
THEN
(RIE)SI «<«(R|E)SI +2;
(R|E)DI «~«R|E)DI +2;
ELSE
(RIE)SI «HRIE)SI - 2;

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands Vol.2A 3-155

INSTRUCTION SET REFERENCE, A-M

(RIE)DI «~RIE)DI - 2;
Fl;
ELSE IF (Doubleword comparison)
THEN IFDF =0
THEN
(RIE)SI ««R|E)SI +4;
(RIE)DI ««R|E)DI +4;
ELSE
(RIE)SI «~HRIE)SI - 4;
(RIE)DI «~RIE)DI - 4;
Fl;
ELSE (* Quadword comparison *)
THEN IF DF =0
(RIE)SI ««R|E)SI +8;
(RIE)DI «R|E)DI +8;
ELSE
(RIE)SI <~HRIE)SI - 8;
(RIE)DI «~RIE)DI - &;
Fl;
Fl;
ELSE (* Non-64-bit Mode *)
IF (byte comparison)
THEN IF DF =0
THEN
(E)SI <HE)SI +1;
(E)DI «{E)DI +1;
ELSE
(E)SI «HE)SI - 1;
(E)DI «~HE)DI - 1;
Fl;
ELSE IF (Word comparison)
THEN IF DF =0
(E)SI «HE)SI +2;
(E)DI «{E)DI +2;
ELSE
(E)SI «HE)SI - 2;
(E)DI «HE)DI - 2;
Fl;
ELSE (* Doubleword comparison *)
THEN IF DF =0
(E)SI <HE)SI +4;
(E)DI «{E)DI +4;
ELSE

3-156 Vol.2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-M

(E)SI «~HE)SI - 4;
(E)DI «HE)DI - 4;
Fl;
Fl;
Fl;

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the
comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands Vol.2A 3-157

INSTRUCTION SET REFERENCE, A-M

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

3-158 Vol.2A CMPS/CMPSB/CMPSW/CMPSD/CMPSQ—Compare String Operands

INSTRUCTION SET REFERENCE, A-M

CMPSD—Compare Scalar Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F20FC2/rib CMPSD xmm1, Valid Valid Compare low double-
xmmZ2/m64, imm8 precision floating-point

value in xmmZ2/m64 and
xmm1 using imm8 as
comparison predicate.

Description

Compares the low double-precision floating-point values in the source operand
(second operand) and the destination operand (first operand) and returns the results
of the comparison to the destination operand. The comparison predicate operand
(third operand) specifies the type of comparison performed. The comparison result is
a quadword mask of all 1s (comparison true) or all 0s (comparison false).

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low quadword of the
destination operand; the high quadword remains unchanged. The comparison predi-
cate operand is an 8-bit immediate, the first 3 bits of which define the type of
comparison to be made (see Table 3-15). Bits 3 through 7 of the immediate are
reserved.

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN.

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, because a mask of all Os corre-
sponds to a floating-point value of 4.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-15 can be achieved only through software
emulation. For these comparisons the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination
operand), and then perform the compare using a different predicate. The predicate
to be used for these emulations is listed in Table 3-15 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPSD instruction. See Table 3-18.

Table 3-18. Pseudo-Ops and CMPSD

Pseudo-Op Implementation

CMPEQSD xmm1, xmm2 CMPSD xmm1,xmmZ, 0
CMPLTSD xmm1, xmmZ2 CMPSD xmm1,xmm2, 1
CMPLESD xmm1, xmmZ2 CMPSD xmm1,xmmZ2, 2

CMPSD—Compare Scalar Double-Precision Floating-Point Values Vol.2A 3-159

INSTRUCTION SET REFERENCE, A-M

Table 3-18. Pseudo-Ops and CMPSD (Contd.)

Pseudo-0Op Implementation

CMPUNORDSD xmm1, xmmZ2 CMPSD xmm1,xmmZ2, 3
CMPNEQSD xmm1, xmmZ2 CMPSD xmm1,xmm2, 4
CMPNLTSD xmm1, xmmZ2 CMPSD xmm1,xmmZ2, 5
CMPNLESD xmm1, xmmZ2 CMPSD xmm1,xmmZ2, 6
CMPORDSD xmm1, xmmZ2 CMPSD xmm1,xmmZ, 7

The greater-than relations not implemented in the processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

CASE (COMPARISON PREDICATE) OF
. OP «EQ

OP LT;

OP «LE;

OP «UNORD;

OP «NEQ;

OP «NLT;

OP «NLE;

. OP «ORD;

DEFAULT: Reserved;

Nowuhwn =20

CMPO «DEST[63:0] OP SRC[63:0];

IF CMPO = TRUE
THEN DEST[63:0] «FFFFFFFFFFFFFFFFH;
ELSE DEST[63:0] «+~0000000000000000H; FI;
(* DEST[127:64] unchanged *)

Intel C/C+Compiler Intrinsic Equivalents

CMPSD for equality __m128d _mm_cmpeq_sd(__m128d a, __m128db)
CMPSD for less-than __m128d _mm_cmplt_sd(__m128da, __m128d b)
CMPSD for less-than-or-equal __m128d _mm_cmple_sd(__m128da, __m128d b)
CMPSD for greater-than __m128d _mm_cmpgt_sd(__m128d a, __m128d b)

3-160 Vol. 2A CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

CMPSD for greater-than-or-equal__m128d _mm_cmpge_sd(__m128d a, __m128db)

CMPSD for inequality __m128d _mm_cmpneq_sd(__m128da, __m128dDb)
CMPSD for not-less-than __m128d _mm_cmpnlt_sd(__m128d a, __m128db)
CMPSD for not-greater-than __m128d _mm_cmpngt_sd(__m128da, __m128dDb)
CMPSD for not-greater-than-or-equal__m128d _mm_cmpnge_sd(__m128d a, __m128d b)
CMPSD for ordered __m128d _mm_cmpord_sd(__m128da,__m128db)
CMPSD for unordered __m128d _mm_cmpunord_sd(__m128da, __m128dDb)

CMPSD for not-less-than-or-equal__m128d _mm_cmpnle_sd(__m128d a3, __m128d b)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table,
Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
#UD If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.
If CRO.EM[bit 2] = 1.

CMPSD—Compare Scalar Double-Precision Floating-Point Values Vol.2A 3-161

INSTRUCTION SET REFERENCE, A-M

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-162 Vol. 2A CMPSD—Compare Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

CMPSS—Compare Scalar Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
F30FC2/rib CMPSS xmm]1, Valid Valid Compare low single-precision
xmmz2/m32, floating-point value in
imm8 xmmZ2/m32 and xmm1 using
imm8 as comparison
predicate.
Description

Compares the low single-precision floating-point values in the source operand
(second operand) and the destination operand (first operand) and returns the results
of the comparison to the destination operand. The comparison predicate operand
(third operand) specifies the type of comparison performed. The comparison result is
a doubleword mask of all 1s (comparison true) or all 0s (comparison false).

The source operand can be an XMM register or a 32-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low doubleword of the
destination operand; the 3 high-order doublewords remain unchanged. The compar-
ison predicate operand is an 8-bit immediate, the first 3 bits of which define the type
of comparison to be made (see Table 3-15). Bits 3 through 7 of the immediate are
reserved.

The unordered relationship is true when at least one of the two source operands
being compared is a NaN; the ordered relationship is true when neither source
operand is a NaN

A subsequent computational instruction that uses the mask result in the destination
operand as an input operand will not generate a fault, since a mask of all Os corre-
sponds to a floating-point value of 4.0 and a mask of all 1s corresponds to a QNaN.

Some of the comparisons listed in Table 3-15 can be achieved only through software
emulation. For these comparisons the program must swap the operands (copying
registers when necessary to protect the data that will now be in the destination
operand), and then perform the compare using a different predicate. The predicate
to be used for these emulations is listed in Table 3-15 under the heading Emulation.

Compilers and assemblers may implement the following two-operand pseudo-ops in
addition to the three-operand CMPSS instruction. See Table 3-19.

CMPSS—Compare Scalar Single-Precision Floating-Point Values Vol.2A 3-163

INSTRUCTION SET REFERENCE, A-M

Table 3-19. Pseudo-Ops and CMPSS

Pseudo-0p CMPSS Implementation
CMPEQSS xmm1, xmmZ2 CMPSS xmm1, xmmZ2, 0
CMPLTSS xmm1, xmm2 CMPSS xmm1, xmmZ, 1
CMPLESS xmm1, xmmZ2 CMPSS xmm1, xmmZ2, 2
CMPUNORDSS xmm1, xmmZ2 CMPSS xmm1, xmmZ, 3
CMPNEQSS xmm1, xmmZ2 CMPSS xmm1, xmm2Z, 4
CMPNLTSS xmm1, xmm2 CMPSS xmm1, xmmZ, 5
CMPNLESS xmm1, xmmZ2 CMPSS xmm1, xmmZ, 6
CMPORDSS xmm1, xmmZ2 CMPSS xmm1, xmmZ2, 7

The greater-than relations not implemented in the processor require more than one
instruction to emulate in software and therefore should not be implemented as
pseudo-ops. (For these, the programmer should reverse the operands of the corre-
sponding less than relations and use move instructions to ensure that the mask is
moved to the correct destination register and that the source operand is left intact.)

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

CASE (COMPARISON PREDICATE) OF
OP «€Q;

OP LT;

OP «LE;

OP «UNORD;

OP «NEQ;

OP «NLT;

OP «NLE;

OP «ORD;

DEFAULT Reserved;

Nowuhwn =20

CMPO «DEST[31:0] OP SRC[31:0];

IF CMPO = TRUE
THEN DEST[31:0] «FFFFFFFFH;
ELSE DEST[31:0] «-00000000H; FI;
(* DEST[127:32] unchanged *)

Intel C/C+Compiler Intrinsic Equivalents

CMPSS for equality __m128 _mm_cmpeq_ss(__m128a,__m128Db)

3-164 Vol. 2A CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

CMPSS for less-than __m128 _mm_cmplt_ss(_m128a,_m128Db)
CMPSS for less-than-or-equal _m128 _mm_cmple_ss(__m128a,__m128 b)
CMPSS for greater-than __m128 _mm_cmpgt_ss(__m1284a,_m128b)
CMPSS for greater-than-or-equal__m128 _mm_cmpge_ss(__m128 a, __m128b)
CMPSS for inequality __m128 _mm_cmpneq_ss(__m1283a,__m128b)
CMPSS for not-less-than __m128 _mm_cmpnlt_ss(__m1283a,_m128Db)
CMPSS for not-greater-than __m128 _mm_cmpngt_ss(__m128 3, __m128b)
CMPSS for not-greater-than-or-equal__m128 _mm_cmpnge_ss(__m128a, __m128b)
CMPSS for ordered __m128 _mm_cmpord_ss(__m128a,__m128Db)
CMPSS for unordered __m128 _mm_cmpunord_ss(__m128a,__m128b)

CMPSS for not-less-than-or-equal__m128 _mm_cmpnle_ss(__m128 a3, __m128 b)

SIMD Floating-Point Exceptions

Invalid if SNaN operand, Invalid if QNaN and predicate as listed in above table,
Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
#UD If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

CMPSS—Compare Scalar Single-Precision Floating-Point Values Vol.2A 3-165

INSTRUCTION SET REFERENCE, A-M

#UD

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

If alignment checking is enabled and an unaligned memory
reference is made.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)

#NM
#XM

#UD

#AC(0)

3-166 Vol.2A

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CMPSS—Compare Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

CMPXCHG—Compare and Exchange

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF BO/r CMPXCHG r/m8, r8 Valid Valid* Compare AL with r/m8. If

equal, ZF is set and r8is
loaded into r/m8. Else, clear
ZF and load r/m8into AL.

REX + OF BO/r CMPXCHG Valid N.E. Compare AL with /m8. If
r/m8**r8 equal, ZF is set and r8is
loaded into r/m8. Else, clear
ZF and load r/m8into AL.

OF B1/r CMPXCHG r/m16, Valid Valid* Compare AX with r/m16. If
rie equal, ZFissetand r16is
loaded into r/m16. Else,
clear ZF and load r/m16

into AX.
OF B1/r CMPXCHG r/m32, Valid Valid* Compare EAX with r/m32.
r32 If equal, ZF is set and r32is

loaded into r/m32. Else,
clear ZF and load r/m32

into EAX.
REXW + OF B1/r CMPXCHG r/m64, Valid N.E. Compare RAX with r/m64.
re4 If equal, ZF is set and r64is

loaded into r/m64. Else,
clear ZF and load r/m64
into RAX.

NOTES:
* See the IA-32 Architecture Compatibility section below.

** |In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Compares the value in the AL, AX, EAX, or RAX register with the first operand (desti-
nation operand). If the two values are equal, the second operand (source operand) is
loaded into the destination operand. Otherwise, the destination operand is loaded
into the AL, AX, EAX or RAX register. RAX register is available only in 64-bit mode.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically. To simplify the interface to the processor’s bus, the destination
operand receives a write cycle without regard to the result of the comparison. The
destination operand is written back if the comparison fails; otherwise, the source
operand is written into the destination. (The processor never produces a locked read
without also producing a locked write.)

CMPXCHG—Compare and Exchange Vol.2A 3-167

INSTRUCTION SET REFERENCE, A-M

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. See the summary chart at the beginning of this
section for encoding data and limits.

IA-32 Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486 proces-
sors.

Operation

(* Accumulator = AL, AX, EAX, or RAX depending on whether a byte, word, doubleword, or
quadword comparison is being performed *)

IF accumulator = DEST
THEN
ZF «1;
DEST «SRC;
ELSE
ZF <0;
accumulator «DEST;
Fl;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX
are equal; otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to
the results of the comparison operation.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

3-168 Vol. 2A CMPXCHG—Compare and Exchange

INSTRUCTION SET REFERENCE, A-M

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

CMPXCHG—Compare and Exchange Vol.2A 3-169

INSTRUCTION SET REFERENCE, A-M

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF C7 /1 m64 CMPXCHGBB m64 Valid Valid* Compare EDX:EAX with

m64. If equal, set ZF and
load ECX:EBX into m64.
Else, clear ZF and load m64

into EDX:EAX.
REXW +0F C7 /7 CMPXCHG16B Valid N.E. Compare RDX:RAX with
m128 mi128 m128. If equal, set ZF and

load RCX:RBX into m128.
Else, clear ZF and load
m128into RDX:RAX.

NOTES:
* See |A-32 Architecture Compatibility section below.

Description

Compares the 64-bit value in EDX:EAX (or 128-bit value in RDX:RAX if operand size
is 128 bits) with the operand (destination operand). If the values are equal, the
64-bit value in ECX:EBX (or 128-bit value in RCX:RBX) is stored in the destination
operand. Otherwise, the value in the destination operand is loaded into EDX:EAX (or
RDX:RAX). The destination operand is an 8-byte memory location (or 16-byte
memory location if operand size is 128 bits). For the EDX:EAX and ECX:EBX register
pairs, EDX and ECX contain the high-order 32 bits and EAX and EBX contain the low-
order 32 bits of a 64-bit value. For the RDX:RAX and RCX:RBX register pairs, RDX
and RCX contain the high-order 64 bits and RAX and RBX contain the low-order
64bits of a 128-bit value.

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically. To simplify the interface to the processor’s bus, the destination
operand receives a write cycle without regard to the result of the comparison. The
destination operand is written back if the comparison fails; otherwise, the source
operand is written into the destination. (The processor never produces a locked read
without also producing a locked write.)

In 64-bit mode, default operation size is 64 bits. Use of the REX.W prefix promotes
operation to 128 bits. Note that CMPXCHG16B requires that the destination
(memory) operand be 16-byte aligned. See the summary chart at the beginning of
this section for encoding data and limits. For information on the CPUID flag that indi-
cates CMPXCHG16B, see page 3-192.

IA-32 Architecture Compatibility

This instruction encoding is not supported on Intel processors earlier than the
Pentium processors.

3-170 Vol. 2A CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

INSTRUCTION SET REFERENCE, A-M

Operation

IF (64-Bit Mode and OperandSize = 64)
THEN
IF (RDX:RAX = DEST)
ZF 1;
DEST «RCX:RBX;
ELSE
ZF <Q;
RDX:RAX «DEST;
Fl
ELSE
IF (EDX:EAX = DEST)
ZF 1;
DEST «ECX:EBX;
ELSE
ZF <0;
EDX:EAX «DEST;
Fl;
Fl;

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is
cleared. The CF, PF, AF, SF, and OF flags are unaffected.

Protected Mode Exceptions
#UD If the destination is not a memory operand.
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD If the destination operand is not a memory location.

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes Vol.2A 3-171

INSTRUCTION SET REFERENCE, A-M

#SS

If a memory operand effective address is outside the SS
segment limit.

Virtual-8086 Mode Exceptions

#UD
#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

If the destination operand is not a memory location.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#UD
#PF(fault-code)
#AC(0)

3-172 Vol. 2A

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If memory operand for CMPXCHG16B is not aligned on a 16-byte
boundary.

IfIf CPUID.01H:ECX.CMPXCHG16B[bit 13] = 0.
If the destination operand is not a memory location.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CMPXCHG8B/CMPXCHG16B—Compare and Exchange Bytes

INSTRUCTION SET REFERENCE, A-M

COMISD—Compare Scalar Ordered Double-Precision Floating-Point
Values and Set EFLAGS

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
66 OF 2F /r COMISD xmm1, Valid Valid Compare low double-precision
xmmZ2/m64 floating-point values in xmm1
and xmmZ2/mem64 and set
the EFLAGS flags accordingly.

Description

Compares the double-precision floating-point values in the low quadwords of
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and
CF flags in the EFLAGS register according to the result (unordered, greater than, less
than, or equal). The OF, SF and AF flags in the EFLAGS register are set to 0. The unor-
dered result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; operand 2 can be an XMM register or a 64 bit memory
location.

The COMISD instruction differs from the UCOMISD instruction in that it signals a
SIMD floating-point invalid operation exception (#I) when a source operand is either
a QNaN or SNaN. The UCOMISD instruction signals an invalid numeric exception only
if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

RESULT «OrderedCompare(DEST[63:0] <> SRC[63:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZFPFCF <111;
GREATER_THAN: ZF PF.,CF <000;
LESS_THAN: ZF PF,CF <001;
EQUAL: ZF PF,CF <-100;
ESAG;
OF, AF, SF <0;}

Intel C/C+Compiler Intrinsic Equivalents
int _mm_comieq_sd (__m128da, __m128db)

int _mm_comilt_sd (__m128da, __m128d b)

COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set Vol.2A 3-173
EFLAGS

INSTRUCTION SET REFERENCE, A-M

int _mm_comile_sd (__m128d a, __m128db)
int _mm_comigt_sd (__m128da, __m128d b)
int _mm_comige_sd (__m128d a, __m128db)

int _mm_comineq_sd (__m128da, __m128dDb)

SIMD Floating-Point Exceptions

Invalid (if SNaN or QNaN operands), Denormal.

Protected Mode Exceptions

#GP(0)
#SS(0)
#PF(fault-code)

#NM
#XM

#UD

#AC(0)

For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

For an illegal address in the SS segment.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0)

#NM
#XM

#UD

3-174 Vol. 2A

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set

EFLAGS

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

#UD

For a page fault.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#PF(fault-code)
#NM

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
For a page fault.
If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.
If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.
#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.
COMISD—Compare Scalar Ordered Double-Precision Floating-Point Values and Set Vol.2A 3-175

EFLAGS

INSTRUCTION SET REFERENCE, A-M

COMISS—Compare Scalar Ordered Single-Precision Floating-Point
Values and Set EFLAGS

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 2F /r COMISS xmm1, Valid Valid Compare low single-precision
xmmZ2/m32 floating-point values in xmm1 and
xmmZ/mem32 and set the EFLAGS
flags accordingly.

Description

Compares the single-precision floating-point values in the low doublewords of
operand 1 (first operand) and operand 2 (second operand), and sets the ZF, PF, and
CF flags in the EFLAGS register according to the result (unordered, greater than, less
than, or equal). The OF, SF, and AF flags in the EFLAGS register are set to 0. The
unordered result is returned if either source operand is a NaN (QNaN or SNaN).

Operand 1 is an XMM register; Operand 2 can be an XMM register or a 32 bit memory
location.

The COMISS instruction differs from the UCOMISS instruction in that it signals a
SIMD floating-point invalid operation exception (#I) when a source operand is either
a QNaN or SNaN. The UCOMISS instruction signals an invalid numeric exception only
if a source operand is an SNaN.

The EFLAGS register is not updated if an unmasked SIMD floating-point exception is
generated.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

RESULT «OrderedCompare(SRC1[31:0] <> SRC2[31:0]) {
(* Set EFLAGS *) CASE (RESULT) OF

UNORDERED: ZFPFCF <117;
GREATER_THAN: ZF PF,CF <000;
LESS_THAN: ZF PF,CF <001;
EQUAL; ZF PF,CF <100;

ESAG;

OF AF.SF < 0;}

Intel C/C+Compiler Intrinsic Equivalents
int _mm_comieq_ss (__m128a,__m128Db)

int _mm_comilt_ss (_m1283a,__m128Db)

3-176 Vol. 2A COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M

int _mm_comile_ss (__m128a,__m128Db)
int _mm_comigt_ss(_m1283a,__m128b)
int _mm_comige_ss (__m1283a,__m128Db)
int _mm_comineq_ss (_m1284a,_m128b)

SIMD Floating-Point Exceptions
Invalid (if SNaN or QNaN operands), Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS Vol.2A 3-177

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-178 Vol. 2A COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M

CPUID—CPU Identification

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
OF A2 CPUID Valid Valid Returns processor identification

and feature information to the
EAX, EBX, ECX, and EDX registers,
as determined by input entered in
EAX (in some cases, ECX as well).

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruc-
tion. If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction. This instruction operates the same in non-
64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX,
and EDX registers.! The instruction’s output is dependent on the contents of the EAX
register upon execution (in some cases, ECX as well). For example, the following
pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return
Value and the Vendor Identification String in the appropriate registers:

MOV EAX, OOH
CPUID

Table 3-20 shows information returned, depending on the initial value loaded into the
EAX register. Table 3-21 shows the maximum CPUID input value recognized for each
family of IA-32 processors on which CPUID is implemented.

Two types of information are returned: basic and extended function information. If a
value is entered for CPUID.EAX is invalid for a particular processor, the data for the
highest basic information leaf is returned. For example, using the Intel Core 2 Duo
E6850 processor, the following is true:

CPUID.EAX = O5H (* Returns MONITOR/MWAIT leaf. *)

CPUID.EAX = OAH (* Returns Architectural Performance Monitoring leaf. *)

CPUID.EAX = 0BH (* INVALID: Returns the same information as CPUID.EAX = OAH. *)

CPUID.EAX = 80000008H (* Returns virtual/physical address size data. *)

CPUID.EAX = 8000000AH (* INVALID: Returns same information as CPUID.EAX = OAH. *)

When CPUID returns the highest basic leaf information as a result of an invalid input
EAX value, any dependence on input ECX value in the basic leaf is honored.

CPUID can be executed at any privilege level to serialize instruction execution. Seri-
alizing instruction execution guarantees that any modifications to flags, registers,

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all
modes.

CPUID—CPU ldentification Vol.2A 3-179

INSTRUCTION SET REFERENCE, A-M

and memory for previous instructions are completed before the next instruction is

fetched and executed.

See also:

“Serializing Instructions” in Chapter 7, “"Multiple-Processor Management,” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A

AP-485, Intel Processor Identification and the CPUID Instruction (Order Number

241618)
Table 3-20. Information Returned by CPUID Instruction
Initial EAX
Value Information Provided about the Processor

Basic CPUID Information

OH EAX Maximum Input Value for Basic CPUID Information (see Table 3-21)
EBX “Genu”
ECX “ntel”
EDX “inel”

01H EAX Version Information: Type, Family, Model, and Stepping ID (see

Figure 3-6)

EBX Bits 7-0: Brand Index

Bits 15-8: CLFLUSH line size (Value * 8 = cache line size in bytes)

Bits 23-16: Maximum number of addressable IDs for logical processors

in this physical package*.

Bits 31-24: Initial APIC ID

ECX Feature Information (see Figure 3-7 and Table 3-23)
EDX Feature Information (see Figure 3-8 and Table 3-24)

NOTES:

* The nearest power-of-2 integer that is not smaller than EBX[23:16]
is the number of unique initial APIC IDs reserved for addressing dif-
ferent logical processors in a physical package.

02H EAX Cache and TLB Information (see Table 3-25)
EBX Cache and TLB Information
ECX Cache and TLB Information
EDX Cache and TLB Information
O03H EAX Reserved.
EBX Reserved.
ECX Bits 00-31 of 96 bit processor serial number. (Available in Pentium IlI
processor only; otherwise, the value in this register is reserved.)
EDX

Bits 32-63 of 96 bit processor serial number. (Available in Pentium Il

processor only; otherwise, the value in this register is reserved.)

3-180 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Table 3-20. Information Returned by CPUID Instruction (Contd.)

EAX

EBX

Initial EAX
Value Information Provided about the Processor
NOTES:
Processor serial number (PSN) is not supported in the Pentium 4 pro-
cessor or later. On all models, use the PSN flag (returned using
CPUID) to check for PSN support before accessing the feature.
See AP-485, Intel Processor Identification and the CPUID Instruc-
tion (Order Number 241618) for more information on PSN.
CPUID leaves > 3 < 80000000 are visible only when
IA32_MISC_ENABLES.BOOT_NT4[bit 22] = O (default).
Deterministic Cache Parameters Leaf
04H NOTES:

Leaf 04H output depends on the initial value in ECX.

See also:; “INPUT EAX = 4: Returns Deterministic Cache Parameters
for each level on page 3-202.

Bits 4-0: Cache Type Field
0 = Null - No more caches
1 = Data Cache
2 = Instruction Cache
3 = Unified Cache
4-31 = Reserved

Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache

Bit 10: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.

Bit 11: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bits 13-12: Reserved

Bits 25-14: Maximum number of addressable IDs for logical processors
sharing this cache*, **

Bits 31-26: Maximum number of addressable IDs for processor cores in
the physical package*, ***, ****

Bits 11-00: L = System Coherency Line Size*

Bits 21-12: P = Physical Line partitions*

Bits 31-22: W = Ways of associativity*

CPUID—CPU Identification

Vol.2A 3-181

INSTRUCTION SET REFERENCE, A-M

Table 3-20. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor

ECX Bits 31-00: S = Number of Sets*

EDX Bit 0: WBINVD/INVD behavior on lower level caches
0 : WBINVD/INVD from any thread sharing this cache acts upon all
lower level caches for threads sharing this cache;
1: WBINVD/INVD is not guaranteed to act upon lower level caches of
non-originating threads.

Bit 1: If 1, this cache level is inclusive to lower cache levels

Bits 31-02: Reserved = 0

NOTES:

* Add one to the return value to get the result.

** The nearest power-of-2 integer that is not smaller than (1 +
EAX[25:14]) is the number of unique initial APIC IDs reserved for
addressing different logical processors sharing this cache

*** The nearest power-of-2 integer that is not smaller than (1 +
EAX[31:26]) is the number of unique Core_IDs reserved for address-
ing different processor cores in a physical package. Core ID is a sub-
set of bits of the initial APIC ID.

****The returned value is constant for valid initial values in ECX. Valid
ECX values start from 0.

MONITOR/MWAIT Leaf
5H EAX Bits 15-00: Smallest monitor-line size in bytes (default is processor’s
monitor granularity)

Bits 31-16: Reserved = 0

EBX Bits 15-00: Largest monitor-line size in bytes (default is processor’s
monitor granularity)

Bits 31-16: Reserved = 0

ECX Bits 00: Enumeration of Monitor-Mwait extensions (beyond EAX and

EBX registers) supported

Bits 01: Supports treating interrupts as break-event for MWAIT, even

when interrupts disabled

Bits 31 - 02: Reserved

3-182 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Table 3-20. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
EDX Bits 03 - 00: Number of CO* sub C-states supported using MWait
Bits 07 - 04: Number of C1* sub C-states supported using MWAIT
Bits 11 - 08: Number of C2* sub C-states supported using MWAIT
Bits 15 - 12: Number of C3* sub C-states supported using MWAIT
Bits 19 - 16: Number of C4* sub C-states supported using MWAIT
Bits 31 - 20: Reserved = 0
NOTE:
* The definition of CO through C4 states for MWAIT extension are pro-
cessor-specific C-states, not ACPI C-states.
Thermal and Power Management Leaf
6H EAX Bits 00: Digital temperature sensor is supported if set
Bits 01: Intel Dynamic Acceleration Enabled
Bits 31 - 02: Reserved
EBX Bits 03 - 00: Number of Interrupt Thresholds in Digital Thermal Sensor
Bits 31 - 04: Reserved
ECX Bits 00: Hardware Coordination Feedback Capability (Presence of MCNT
and ACNT MSRs). The capability to provide a measure of delivered pro-
cessor performance (since last reset of the counters), as a percentage
of expected processor performance at frequency specified in CPUID
Brand String
Bits 31 - 01: Reserved = 0
EDX Reserved = 0
Direct Cache Access Information Leaf
09H EAX Value of bits [31:0] of IA32_PLATFORM_DCA_CAP MSR (address 1F8H)
EBX Reserved
ECX Reserved
EDX Reserved
Architectural Performance Monitoring Leaf
0AH EAX Bits 07 - 00: Version ID of architectural performance monitoring
Bits 15- 08: Number of general-purpose performance monitoring
counter per logical processor
Bits 23 - 16: Bit width of general-purpose, performance monitoring
counter
Bits 31 - 24: Length of EBX bit vector to enumerate architectural per-
formance monitoring events

CPUID—CPU ldentification

Vol.2A 3-183

INSTRUCTION SET REFERENCE, A-M

Table 3-20. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value

Information Provided about the Processor

EBX

ECX

Bit O: Core cycle event not available if 1

Bit 1: Instruction retired event not available if 1

Bit 2: Reference cycles event not available if 1

Bit 3: Last-level cache reference event not available if 1
Bit 4: Last-level cache misses event not available if 1
Bit 5: Branch instruction retired event not available if 1
Bit 6: Branch mispredict retired event not available if 1
Bits 31- 07: Reserved = 0

Reserved = 0

EDX

Bits 04 - 00: Number of fixed-function performance counters (if Ver-
sionID > 1)

Bits 12- 05: Bit width of fixed-function performance counters (if Ver-
sionID > 1)

Reserved = 0

Extended Topology Enumeration Leaf

0BH

EAX

EBX

ECX

EDX

NOTES:

Most of Leaf OBH output depends on the initial value in ECX.

EDX output do not vary with initial value in ECX.

ECX[7:0] output always reflect inital value in ECX.

All other output value for an invalid initial value in ECX are O.
Bits 4-0: Number of bits to shift right on x2APIC ID to get a unique
topology ID of the next level type*. All logical processors with the same

next level ID share current level.
Bits 31-5: Reserved.

Bits 15 - 00: Number of logical processors at this level type. The num-
ber reflects configuration as shipped by Intel**.
Bits 31- 16: Reserved.

Bits 07 - 00: Level number. Same value in ECX input
Bits 15 - 08: Level type***,
Bits 31 - 16:: Reserved.

Bits 31- 0: x2APIC ID the current logical processor.

NOTES:
* Software should use this field (EAX[4:0]) to enumerate processor
topology of the system.

3-184 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Table 3-20. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
** Software must not use EBX[15:0] to enumerate processor topology
of the system. This value in this field (EBX[15:0]) is only intended for
display/diagnostic purposes. The actual number of logical processors
available to BIOS/OS/Applicatons may be different from the value of
EBX[15:0], depending on software and platform hardware configura-
tions.
*** The value of the “level type” field is not related to level numbers in
any way, higher “level type” values do not mean higher levels. Level
type field has the following encoding:
0:invalid
1:SMT
2 : Core
3-255 : Reserved
Processor Extended State Enumeration Main Leaf (EAX = ODH, ECX = 0)
ODH NOTES:
Leaf ODH main leaf (ECX = 0).
EAX Bits 31-0: Reports the valid bit fields of the lower 32 bits of the

XFEATURE_ENABLED_MASK register (XCRO). If a bit is O, the corre-
sponding bit field in XCRO is reserved.

EBX Bits 31-0: Maximum size (bytes) required by enabled features in
XFEATURE_ENABLED_MASK (XCRO). May be different than ECX when
features at the end of the save area are not enabled.

ECX Bit 31-0: Maximum size (bytes) of the XSAVE/XRSTOR save area
required by all supported features in the processor, i.e all the valid bit
fields in XFEATURE_ENABLED_MASK. This includes the size needed for
the XSAVE.HEADER.

EDX Bit 31-0: Reports the valid bit fields of the upper 32 bits of the
XFEATURE_ENABLED_MASK register (XCRO). If a bit is O, the corre-
sponding bit field in XCRO is reserved

Processor Extended State Enumeration Sub-leaf (EAX = ODH, ECX = 1)

EAX Reserved
EBX Reserved
ECX Reserved
EDX Reserved

CPUID—CPU Identification Vol.2A 3-185

INSTRUCTION SET REFERENCE, A-M

Table 3-20. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
Processor Extended State Enumeration Sub-leaves (EAX = ODH, ECX =n,n > 1)
ODH NOTES:
Leaf ODH output depends on the initial value in ECX.
If ECX contains an invalid sub leaf index, EAX/EBX/ECX/EDX return O.
EAX Bits 31-0: The size in bytes of the save area for an extended state fea-
ture associated with a valid sub-leaf index, n. Each valid sub-leaf index
maps to a valid bit in the XFEATURE_ENABLED_MASK register (XCRO)
starting at bit position 2. This field reports O if the sub-leaf index, n, is
invalid*.
EBX Bits 31-0: The offset in bytes of the save area from the beginning of
the XSAVE/XRSTOR area.
This field reports O if the sub-leaf index, n, is invalid*.
ECX This field reports 0O if the sub-leaf index, n, is invalid*; otherwise it is
reserved.
EDX This field reports 0 if the sub-leaf index, n, is invalid*; otherwise it is
reserved.
*The highest valid sub-leaf index, n, is
(POPCNT(CPUID.(EAX=0D, ECX=0):EAX) + POPCNT(CPUID.(EAX=0D,
ECX=0):EDX) - 1)
Extended Function CPUID Information
80000000H | EAX Maximum Input Value for Extended Function CPUID Information (see
Table 3-21).
EBX Reserved
ECX Reserved
EDX Reserved
80000001H | EAX Extended Processor Signature and Feature Bits.
EBX Reserved
ECX Bit 0: LAHF/SAHF available in 64-bit mode

Bits 31-1 Reserved

3-186 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Table 3-20. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
EDX Bits 10-0: Reserved
Bit 11: SYSCALL/SYSRET available (when in 64-bit mode)
Bits 19-12: Reserved = 0
Bit 20: Execute Disable Bit available
Bits 28-21: Reserved = 0
Bit 29: Intel® 64 Architecture available if 1
Bits 31-30: Reserved = 0
80000002H | EAX Processor Brand String
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000003H | EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000004H | EAX Processor Brand String Continued
EBX Processor Brand String Continued
ECX Processor Brand String Continued
EDX Processor Brand String Continued
80000005H | EAX Reserved =0
EBX Reserved =0
ECX Reserved = 0
EDX Reserved = 0
80000006H | EAX Reserved = 0
EBX Reserved =0
ECX Bits 7-0: Cache Line size in bytes
Bits 15-12: L2 Associativity field *
Bits 31-16: Cache size in 1K units
EDX Reserved = 0
NOTES:
* L2 associativity field encodings:
OOH - Disabled
O71H - Direct mapped
02H - 2-way
04H - 4-way
06H - 8-way
08H - 16-way
OFH - Fully associative

CPUID—CPU Identification

Vol.2A 3-187

INSTRUCTION SET REFERENCE, A-M

Table 3-20. Information Returned by CPUID Instruction (Contd.)

Initial EAX
Value Information Provided about the Processor
80000007H | EAX Reserved =0
EBX Reserved =0
ECX Reserved = 0
EDX Reserved = 0
80000008H | EAX Virtual/Physical Address size

Bits 7-0: #Physical Address Bits*
Bits 15-8: #Virtual Address Bits
Bits 31-16: Reserved = 0

EBX Reserved = 0

ECX Reserved =0

EDX Reserved =0
NOTES:

* |f CPUID.BOOOO008H:EAX[7:0] is supported, the maximum physical
address number supported should come from this field.

INPUT EAX = 0: Returns CPUID’s Highest Value for Basic Processor Information and
the Vendor Identification String

When CPUID executes with EAX set to 0, the processor returns the highest value the
CPUID recognizes for returning basic processor information. The value is returned in
the EAX register (see Table 3-21) and is processor specific.

A vendor identification string is also returned in EBX, EDX, and ECX. For Intel
processors, the string is “"Genuinelntel” and is expressed:

EBX «-756e6547h (* “Genu”, with G in the low nibble of BL *)

EDX «49656e69h (* “inel”, with i in the low nibble of DL *)

ECX «6c65746eh (* "ntel”, with n in the low nibble of CL *)

INPUT EAX = 80000000H: Returns CPUID’s Highest Value for Extended Processor
Information

When CPUID executes with EAX set to 0, the processor returns the highest value the
processor recognizes for returning extended processor information. The value is
returned in the EAX register (see Table 3-21) and is processor specific.

3-188 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Table 3-21. Highest CPUID Source Operand for Intel 64 and IA-32 Processors

Intel 64 or IA-32 Processors

Highest Value in EAX

Basic Information

Extended Function
Information

Earlier Intel486 Processors

CPUID Not Implemented

CPUID Not Implemented

5400 Series

Later Intel486 Processors and 01H Not Implemented
Pentium Processors

Pentium Pro and@Pentium@II 02H Not Implemented
Processors, Intel Celeron

Processors

Pentium Ill Processors 03H Not Implemented
Pentium 4 Processors 02H 80000004H
Intel Xeon Processors 02H 80000004H
Pentium M Processor 02H 80000004H
Pentium 4 Processor 05H 80000008H
supporting Hyper-Threading

Technology

Pentium D Processor (8xx) 05H 80000008H
Pentium D Processor (9xx) 06H 80000008H
Intel Core Duo Processor 0AH 80000008H
Intel Core 2 Duo Processor OAH 80000008H
Intel Xeon Processor 3000, 0AH 80000008H
5100, 5200, 5300, 5400

Series

Intel Core 2 Duo Processor ODH 80000008H
8000 Series

Intel Xeon Processor 5200, 0AH 80000008H

IA32_BIOS_SIGN_ID Returns Microcode Update Signature

For processors that support the microcode update facility, the IA32_BIOS_SIGN_ID
MSR is loaded with the update signature whenever CPUID executes. The signature is
returned in the upper DWORD. For details, see Chapter 9 in the Intel® 64 and IA-32

Architectures Software Developer’s Manual, Volume 3A.

CPUID—CPU Identification

Vol.2A 3-189

INSTRUCTION SET REFERENCE, A-M

INPUT EAX = 1: Returns Model, Family, Stepping Information

When CPUID executes with EAX set to 1, version information is returned in EAX (see
Figure 3-6). For example: model, family, and processor type for the Intel Xeon

processor 5100 series is as follows:
® Model — 1111B

®* Family — 0101B

® Processor Type — 00B

See Table 3-22 for available processor type values. Stepping IDs are provided as

needed.
31 28 27 20 19 16 15 14 13 12 11 8 7 4 3 0
Extended Extended Family Stepping
EAX Family D | Model ID ip | Model | "in
Extended Family ID (0) |
Extended Model ID (0)
Processor Type
Family (OFH for the Pentium 4 Processor Family)
Model
D Reserved
OM16525

Figure 3-6. Version Information Returned by CPUID in EAX

Table 3-22. Processor Type Field

Type Encoding
Original OEM Processor 00B
Intel OverDrive” Processor 01B
Dual processor (not applicable to Intel486 10B
processors)
Intel reserved 11B

NOTE

See AP-485, Intel Processor Identification and the CPUID Instruction
(Order Number 241618) and Chapter 14 in the Inte/l® 64 and IA-32

3-190 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Architectures Software Developer’s Manual, Volume 1, for
information on identifying earlier IA-32 processors.

The Extended Family ID needs to be examined only when the Family ID is OFH. Inte-
grate the fields into a display using the following rule:

IF Family_ID # OFH
THEN Displayed_Family = Family_ID;
ELSE Displayed_Family = Extended_Family_ID + Family_ID;
(* Right justify and zero-extend 4-bit field. *)

Fl;

(* Show Display_Family as HEX field. *)

The Extended Model ID needs to be examined only when the Family ID is 06H or OFH.
Integrate the field into a display using the following rule:

IF (Family_ID = O6H or Family_ID = OFH)
THEN Displayed_Model = (Extended_Model_ID << 4) + Model_ID;
(* Right justify and zero-extend 4-bit field; display Model_ID as HEX field.*)
ELSE Displayed_Model = Model_ID;

Fl;

(* Show Display_Model as HEX field. *)

INPUT EAX = 1: Returns Additional Information in EBX

When CPUID executes with EAX set to 1, additional information is returned to the
EBX register:

®* Brand index (low byte of EBX) — this number provides an entry into a brand
string table that contains brand strings for IA-32 processors. More information
about this field is provided later in this section.

® CLFLUSH instruction cache line size (second byte of EBX) — this number
indicates the size of the cache line flushed with CLFLUSH instruction in 8-byte
increments. This field was introduced in the Pentium 4 processor.

® Local APIC ID (high byte of EBX) — this number is the 8-bit ID that is assigned to
the local APIC on the processor during power up. This field was introduced in the
Pentium 4 processor.

INPUT EAX = 1: Returns Feature Information in ECX and EDX

When CPUID executes with EAX set to 1, feature information is returned in ECX and
EDX.

®* Figure 3-7 and Table 3-23 show encodings for ECX.
®* Figure 3-8 and Table 3-24 show encodings for EDX.

For all feature flags, a 1 indicates that the feature is supported. Use Intel to properly
interpret feature flags.

CPUID—CPU ldentification Vol. 2A 3-191

INSTRUCTION SET REFERENCE, A-M

NOTE

Software must confirm that a processor feature is present using
feature flags returned by CPUID prior to using the feature. Software
should not depend on future offerings retaining all features.

3130292827 26252423222120191817161514131211109 8 7 6 5§64 3 2 1 0

ECX

OSXSAVE Q

XSAVE

POPCNT

X2APIC
SSE4_2 — SSE4.2

SSE4_1 — SSE4.1
DCA — Direct Cache Access

PDCM — Perf/Debug Capability MSR

XTPR Update Control

CMPXCHG16B

CNXT-ID — L1 Context ID

SSSE3 — SSSE3 Extensions

TM2 — Thermal Monitor 2

EST — Enhanced Intel SpeedStep® Technology
SMX — Safer Mode Extensions
VMX — Virtual Machine Extensions
DS-CPL — CPL Qualified Debug Store
MONITOR — MONITOR/MWAIT

SSE3 — SSE3 Extensions

D Reserved

OM16524b

Figure 3-7. Feature Information Returned in the ECX Register

Table 3-23. Feature Information Returned in the ECX Register

Bit # Mnemonic Description

0 SSE3 Streaming SIMD Extensions 3 (SSE3). A value of 1 indicates the
processor supports this technology.

1-2 Reserved Reserved

3 MONITOR MONITOR/MWAIT. A value of 1 indicates the processor supports
this feature.

4 DS-CPL CPL Qualified Debug Store. A value of 1 indicates the processor
supports the extensions to the Debug Store feature to allow for
branch message storage qualified by CPL.

3-192 Vol.2A

CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Table 3-23. Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description

5 VMX Virtual Machine Extensions. A value of 1 indicates that the
processor supports this technology

6 SMX Safer Mode Extensions. A value of 1 indicates that the processor
supports this technology. See Chapter 6, “Safer Mode Extensions
Reference”.

7 EST Enhanced Intel SpeedStep® technology. A value of 1 indicates that
the processor supports this technology.

8 T™M2 Thermal Monitor 2. A value of 1 indicates whether the processor
supports this technology.

9 SSSE3 A value of 1 indicates the presence of the Supplemental
Streaming SIMD Extensions 3 (SSSE3). A value of 0 indicates the
instruction extensions are not present in the processor

10 CNXT-ID L1 Context ID. A value of 1 indicates the L1 data cache mode can
be set to either adaptive mode or shared mode. A value of O
indicates this feature is not supported. See definition of the
IA32_MISC_ENABLE MSR Bit 24 (L1 Data Cache Context Mode) for
details.

11-12 Reserved Reserved

13 CMPXCHG16B CMPXCHG16B Available. A value of 1 indicates that the feature is
available. See the “CMPXCHG8B/CMPXCHG16B—Compare and
Exchange Bytes"” section in this chapter for a description.

14 xTPR Update xTPR Update Control. A value of 1 indicates that the processor

Control supports changing IA32_MISC_ENABLES[bit 23].

15 PDCM Perfmon and Debug Capability: A value of 1 indicates the
processor supports the performance and debug feature indication
MSR IA32_PERF_CAPABILITIES.

17-16 Reserved Reserved

18 DCA A value of 1 indicates the processor supports the ability to
prefetch data from a memory mapped device.

19 SSE4.1 A value of 1 indicates that the processor supports SSE4.1.

20 SSE4.2 A value of 1 indicates that the processor supports SSE4.2.

21 x2APIC A value of 1 indicates that the processor supports x2APIC
feature.

22 Reserved Reserved

23 POPCNT A value of 1 indicates that the processor supports the POPCNT
instruction.

25-24 Reserved Reserved

CPUID—CPU Identification

Vol.2A 3-193

INSTRUCTION SET REFERENCE, A-M

Table 3-23. Feature Information Returned in the ECX Register (Contd.)

Bit # Mnemonic Description

26 XSAVE A value of 1 indicates that the processor supports the
XSAVE/XRSTOR processor extended states feature, the
XSETBV/XGETBV instructions, and the
XFEATURE_ENABLED_MASK register (XCRO).

27 OSXSAVE A value of 1 indicates that the OS has enabled XSETBV/XGETBV
instructions to access the XFEATURE_ENABLED_MASK register
(XCRO), and support for processor extended state management
using XSAVE/XRSTOR.

31-28 Reserved Reserved

3-194 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

313029282726252423222120191817161514131211109 8 7 6 564 3 2 1 O

EDX

PBE-Pend. Brk. EN.J
TM-Therm. Monitor
HTT-Multi-threading ——
SS-Self Snoop

SSE2-SSE2 Extensions
SSE-SSE Extensions
FXSR-FXSAVE/FXRSTOR
MMX-MMX Technology ———————
ACPI-Thermal Monitor and Clock Ctrl
DS-Debug Store

CLFSH-CFLUSH instruction

PSN-Processor Serial Number

PSE-36 — Page Size Extension
PAT—-Page Attribute Table

CMOV-Conditional Move/Compare Instruction
MCA—Machine Check Architecture

PGE-PTE Global Bit

MTRR-Memory Type Range Registers
SEP-SYSENTER and SYSEXIT

APIC-APIC on Chip

CX8-CMPXCHGSB Inst.

MCE-Machine Check Exception

PAE-Physical Address Extensions
MSR-RDMSR and WRMSR Support

TSC-Time Stamp Counter

PSE—-Page Size Extensions

DE-Debugging Extensions
VME-Virtual-8086 Mode Enhancement

FPU—x87 FPU on Chip

D Reserved

OM16523

Figure 3-8. Feature Information Returned in the EDX Register

CPUID—CPU ldentification

Vol.2A 3-195

INSTRUCTION SET REFERENCE, A-M

Table 3-24. More on Feature Information Returned in the EDX Register

Bit # | Mnemonic | Description
0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements,
including CR4.VME for controlling the feature, CR4.PVI for protected mode
virtual interrupts, software interrupt indirection, expansion of the TSS with
the software indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags.

2 DE Debugging Extensions. Support for I/0 breakpoints, including CR4.DE for
controlling the feature, and optional trapping of accesses to DR4 and DR5.

3 PSE Page Size Extension. Large pages of size 4 MByte are supported, including
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page
Directory Entries), optional reserved bit trapping in CR3, PDEs, and PTEs.

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD
for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and
WRMSR instructions are supported. Some of the MSRs are implementation
dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are

supported: extended page table entry formats, an extra level in the page
translation tables is defined, 2-MByte pages are supported instead of 4
Mbyte pages if PAE bit is 1. The actual number of address bits beyond 32 is
not defined, and is implementation specific.

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks,
including CR4.MCE for controlling the feature. This feature does not define
the model-specific implementations of machine-check error logging,
reporting, and processor shutdowns. Machine Check exception handlers may
have to depend on processor version to do model specific processing of the
exception, or test for the presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits)
instruction is supported (implicitly locked and atomic).

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt
Controller (APIC), responding to memory mapped commands in the physical
address range FFFEOOOOH to FFFEOFFFH (by default - some processors
permit the APIC to be relocated).

10 Reserved | Reserved

11 | SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and
associated MSRs are supported.
12 | MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR

contains feature bits that describe what memory types are supported, how
many variable MTRRs are supported, and whether fixed MTRRs are
supported.

3-196 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Table 3-24. More on Feature Information Returned in the EDX Register (Contd.)

Bit #

Mnemonic

Description

13

PGE

PTE Global Bit. The global bit in page directory entries (PDEs) and page table
entries (PTEs) is supported, indicating TLB entries that are common to
different processes and need not be flushed. The CR4.PGE bit controls this
feature.

14

MCA

Machine Check Architecture. The Machine Check Architecture, which
provides a compatible mechanism for error reporting in P6 family, Pentium 4,
Intel Xeon processors, and future processors, is supported. The MCG_CAP
MSR contains feature bits describing how many banks of error reporting
MSRs are supported.

15

cMov

Conditional Move Instructions. The conditional move instruction CMOV is
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU
feature bit, then the FCOMI and FCMOV instructions are supported

16

PAT

Page Attribute Table. Page Attribute Table is supported. This feature
augments the Memory Type Range Registers (MTRRs), allowing an operating
system to specify attributes of memory on a 4K granularity through a linear
address.

17

PSE-36

36-Bit Page Size Extension. Extended 4-MByte pages that are capable of
addressing physical memory beyond 4 GBytes are supported. This feature
indicates that the upper four bits of the physical address of the 4-MByte
page is encoded by bits 13-16 of the page directory entry.

18

PSN

Processor Serial Number. The processor supports the 96-bit processor
identification number feature and the feature is enabled.

19

CLFSH

CLFLUSH Instruction. CLFLUSH Instruction is supported.

20

Reserved

Reserved

21

DS

Debug Store. The processor supports the ability to write debug information
into a memory resident buffer. This feature is used by the branch trace store
(BTS) and precise event-based sampling (PEBS) facilities (see Chapter 18,
“Debugging and Performance Monitoring,” in the Intel® 64 and IA-32
Architectures Software Developer's Manual, olume 3B).

22

ACPI

Thermal Monitor and Software Controlled Clock Facilities. The processor
implements internal MSRs that allow processor temperature to be monitored
and processor performance to be modulated in predefined duty cycles under
software control.

23

MMX

Intel MMX Technology. The processor supports the Intel MMX technology.

24

FXSR

FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions
are supported for fast save and restore of the floating point context.
Presence of this bit also indicates that CR4.0SFXSR is available for an
operating system to indicate that it supports the FXSAVE and FXRSTOR
instructions.

CPUID—CPU ldentification

Vol.2A 3-197

INSTRUCTION SET REFERENCE, A-M

Table 3-24. More on Feature Information Returned in the EDX Register (Contd.)
Bit # | Mnemonic | Description

25 | SSE SSE. The processor supports the SSE extensions.
26 | SSE2 SSE2. The processor supports the SSE2 extensions.
27 |SS Self Snoop. The processor supports the management of conflicting memory

types by performing a snoop of its own cache structure for transactions
issued to the bus.

28 |HTT Multi-Threading. The physical processor package is capable of supporting
more than one logical processor.

29 |T™ Thermal Monitor. The processor implements the thermal monitor automatic
thermal control circuitry (TCC).

30 | Reserved | Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE#
pin when the processor is in the stop-clock state (STPCLK# is asserted) to
signal the processor that an interrupt is pending and that the processor
should return to normal operation to handle the interrupt. Bit 10 (PBE
enable) in the IA32_MISC_ENABLE MSR enables this capability.

INPUT EAX = 2: Cache and TLB Information Returned in EAX, EBX, ECX, EDX

When CPUID executes with EAX set to 2, the processor returns information about the
processor’s internal caches and TLBs in the EAX, EBX, ECX, and EDX registers.

The encoding is as follows:

®* The least-significant byte in register EAX (register AL) indicates the nhumber of
times the CPUID instruction must be executed with an input value of 2 to get a
complete description of the processor’s caches and TLBs. The first member of the
family of Pentium 4 processors will return a 1.

®* The most significant bit (bit 31) of each register indicates whether the register
contains valid information (set to 0) or is reserved (set to 1).

* If a register contains valid information, the information is contained in 1 byte
descriptors. Table 3-25 shows the encoding of these descriptors. Note that the
order of descriptors in the EAX, EBX, ECX, and EDX registers is not defined; that
is, specific bytes are not designated to contain descriptors for specific cache or
TLB types. The descriptors may appear in any order.

Table 3-25. Encoding of Cache and TLB Descriptors

Descriptor Value Cache or TLB Description
O0H Null descriptor
01H Instruction TLB: 4 KByte pages, 4-way set associative, 32 entries
02H Instruction TLB: 4 MByte pages, 4-way set associative, 2 entries

3-198 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Table 3-25. Encoding of Cache and TLB Descriptors (Contd.)

Descriptor Value Cache or TLB Description

03H Data TLB: 4 KByte pages, 4-way set associative, 64 entries

04H Data TLB: 4 MByte pages, 4-way set associative, 8 entries

05H Data TLB1: 4 MByte pages, 4-way set associative, 32 entries

06H 1st-level instruction cache: 8 KBytes, 4-way set associative, 32 byte line size

08H 1st-level instruction cache: 16 KBytes, 4-way set associative, 32 byte line size

0AH 1st-level data cache: 8 KBytes, 2-way set associative, 32 byte line size

0BH Instruction TLB: 4 MByte pages, 4-way set associative, 4 entries

OCH 1st-level data cache: 16 KBytes, 4-way set associative, 32 byte line size

22H 3rd-level cache: 512 KBytes, 4-way set associative, 64 byte line size, 2 lines
per sector

23H 3rd-level cache: 1 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

25H 3rd-level cache: 2 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

29H 3rd-level cache: 4 MBytes, 8-way set associative, 64 byte line size, 2 lines per
sector

2CH 1st-level data cache: 32 KBytes, 8-way set associative, 64 byte line size

30H 1st-level instruction cache: 32 KBytes, 8-way set associative, 64 byte line size

40H No 2nd-level cache or, if processor contains a valid 2nd-level cache, no 3rd-
level cache

41H 2nd-level cache: 128 KBytes, 4-way set associative, 32 byte line size

42H 2nd-level cache; 256 KBytes, 4-way set associative, 32 byte line size

43H 2nd-level cache: 512 KBytes, 4-way set associative, 32 byte line size

44H 2nd-level cache: 1 MByte, 4-way set associative, 32 byte line size

45H 2nd-level cache: 2 MByte, 4-way set associative, 32 byte line size

46H 3rd-level cache: 4 MByte, 4-way set associative, 64 byte line size

47H 3rd-level cache: 8 MByte, 8-way set associative, 64 byte line size

48H 2nd-level cache; 3MByte, 12-way set associative, 64 byte line size

49H 3rd-level cache: 4MB, 16-way set associative, 64-byte line size (Intel Xeon
processor MP, Family OFH, Model O6H);
2nd-level cache: 4 MByte, 16-way set associative, 64 byte line size

4AH 3rd-level cache: 6MByte, 12-way set associative, 64 byte line size

4BH 3rd-level cache: 8MByte, 16-way set associative, 64 byte line size

4CH 3rd-level cache: 12MByte, 12-way set associative, 64 byte line size

CPUID—CPU Identification Vol.2A 3-199

INSTRUCTION SET REFERENCE, A-M

Table 3-25. Encoding of Cache and TLB Descriptors (Contd.)

Descriptor Value Cache or TLB Description

4DH 3rd-level cache; 16MByte, 16-way set associative, 64 byte line size

4EH 2nd-level cache: 6MByte, 24-way set associative, 64 byte line size

50H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 64 entries

51H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 128 entries

52H Instruction TLB: 4 KByte and 2-MByte or 4-MByte pages, 256 entries

56H Data TLBO: 4 MByte pages, 4-way set associative, 16 entries

57H Data TLBO: 4 KByte pages, 4-way associative, 16 entries

5BH Data TLB: 4 KByte and 4 MByte pages, 64 entries

5CH Data TLB: 4 KByte and 4 MByte pages, 128 entries

5DH Data TLB: 4 KByte and 4 MByte pages,256 entries

60H 1st-level data cache: 16 KByte, 8-way set associative, 64 byte line size

66H 1st-level data cache: 8 KByte, 4-way set associative, 64 byte line size

67H 1st-level data cache: 16 KByte, 4-way set associative, 64 byte line size

68H 1st-level data cache: 32 KByte, 4-way set associative, 64 byte line size

70H Trace cache: 12 K-pop, 8-way set associative

71H Trace cache: 16 K-uop, 8-way set associative

72H Trace cache: 32 K-pop, 8-way set associative

78H 2nd-level cache: 1 MByte, 4-way set associative, 64byte line size

79H 2nd-level cache; 128 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7AH 2nd-level cache: 256 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7BH 2nd-level cache: 512 KByte, 8-way set associative, 64 byte line size, 2 lines
per sector

7CH 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size, 2 lines per
sector

7DH 2nd-level cache: 2 MByte, 8-way set associative, 64byte line size

7FH 2nd-level cache: 512 KByte, 2-way set associative, 64-byte line size

82H 2nd-level cache: 256 KByte, 8-way set associative, 32 byte line size

83H 2nd-level cache; 512 KByte, 8-way set associative, 32 byte line size

84H 2nd-level cache: 1 MByte, 8-way set associative, 32 byte line size

85H 2nd-level cache; 2 MByte, 8-way set associative, 32 byte line size

86H 2nd-level cache: 512 KByte, 4-way set associative, 64 byte line size

87H 2nd-level cache: 1 MByte, 8-way set associative, 64 byte line size

3-200 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Table 3-25. Encoding of Cache and TLB Descriptors (Contd.)

Descriptor Value Cache or TLB Description
BOH Instruction TLB: 4 KByte pages, 4-way set associative, 128 entries
B1H Instruction TLB: 2M pages, 4-way, 8 entries or 4M pages, 4-way, 4 entries
B3H Data TLB: 4 KByte pages, 4-way set associative, 128 entries
B4H Data TLB1: 4 KByte pages, 4-way associative, 256 entries
FOH 64-Byte prefetching
F1H 128-Byte prefetching

Example 3-1. Example of Cache and TLB Interpretation

The first member of the family of Pentium 4 processors returns the following informa-
tion about caches and TLBs when the CPUID executes with an input value of 2:

EAX
EBX
ECX
EDX

66 5B 50 01H
OH
OH
00 7A 70 OCH

Which means:

The least-significant byte (byte 0) of register EAX is set to 01H. This indicates
that CPUID needs to be executed once with an input value of 2 to retrieve
complete information about caches and TLBs.

The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to O,
indicating that each register contains valid 1-byte descriptors.

Bytes 1, 2, and 3 of register EAX indicate that the processor has:

50H - a 64-entry instruction TLB, for mapping 4-KByte and 2-MByte or 4-
MByte pages.

5BH - a 64-entry data TLB, for mapping 4-KByte and 4-MByte pages.

66H - an 8-KByte 1st level data cache, 4-way set associative, with a 64-Byte
cache line size.

The descriptors in registers EBX and ECX are valid, but contain NULL descriptors.
Bytes 0, 1, 2, and 3 of register EDX indicate that the processor has:

00H - NULL descriptor.
70H - Trace cache: 12 K-pop, 8-way set associative.

7AH - a 256-KByte 2nd level cache, 8-way set associative, with a sectored,
64-byte cache line size.

00H - NULL descriptor.

CPUID—CPU Identification Vol. 2A 3-201

INSTRUCTION SET REFERENCE, A-M

INPUT EAX = 4: Returns Deterministic Cache Parameters for Each Level

When CPUID executes with EAX set to 4 and ECX contains an index value, the
processor returns encoded data that describe a set of deterministic cache parame-
ters (for the cache level associated with the input in ECX). Valid index values start
from O.

Software can enumerate the deterministic cache parameters for each level of the
cache hierarchy starting with an index value of 0, until the parameters report the
value associated with the cache type field is 0. The architecturally defined fields
reported by deterministic cache parameters are documented in Table 3-20.

The CPUID leaf 4 also reports data that can be used to derive the topology of
processor cores in a physical package. This information is constant for all valid index
values. Software can query the raw data reported by executing CPUID with EAX=4
and ECX=0 and use it as part of the topology enumeration algorithm described in
Chapter 7, “Multiple-Processor Management,” in the Inte/l® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3A.

INPUT €EAX = 5: Returns MONITOR and MWAIT Features

When CPUID executes with EAX set to 5, the processor returns information about
features available to MONITOR/MWAIT instructions. The MONITOR instruction is used
for address-range monitoring in conjunction with MWAIT instruction. The MWAIT
instruction optionally provides additional extensions for advanced power manage-
ment. See Table 3-20.

INPUT EAX = 6: Returns Thermal and Power Management Features

When CPUID executes with EAX set to 6, the processor returns information about
thermal and power management features. See Table 3-20.

INPUT EAX = 9: Returns Direct Cache Access Information

When CPUID executes with EAX set to 9, the processor returns information about
Direct Cache Access capabilities. See Table 3-20.

INPUT EAX = 10: Returns Architectural Performance Monitoring Features

When CPUID executes with EAX set to 10, the processor returns information about
support for architectural performance monitoring capabilities. Architectural perfor-
mance monitoring is supported if the version ID (see Table 3-20) is greater than
Pn 0. See Table 3-20.

For each version of architectural performance monitoring capability, software must
enumerate this leaf to discover the programming facilities and the architectural
performance events available in the processor. The details are described in Chapter
18, "Debugging and Performance Monitoring,” in the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B.

3-202 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

INPUT EAX = 11: Returns Extended Topology Information

When CPUID executes with EAX set to 11, the processor returns information about
extended topology enumeration data. See Table 3-20.

INPUT EAX = 13: Returns Processor Extended States Enumeration Information

When CPUID executes with EAX set to 13 and ECX = 0, the processor returns infor-
mation about the bit-vector represention of all processor state extensions that are
supported in the processor and storage size requirements of the XSAVE/XRSTOR
area. See Table 3-20.

When CPUID executes with EAX set to 13 and ECX = n (n > land less than the

number of non-zero bits in CPUID.(EAX=0DH, ECX= 0H).EAX and CPUID.(EAX=0DH,
ECX= 0H).EDX), the processor returns information about the size and offset of each
processor extended state save area within the XSAVE/XRSTOR area. See Table 3-20.

METHODS FOR RETURNING BRANDING INFORMATION
Use the following techniques to access branding information:

1. Processor brand string method; this method also returns the processor’s
maximum operating frequency

2. Processor brand index; this method uses a software supplied brand string table.

These two methods are discussed in the following sections. For methods that are
available in early processors, see Section: “Identification of Earlier IA-32 Processors”
in Chapter 14 of the Inte/® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1.

The Processor Brand String Method

Figure 3-9 describes the algorithm used for detection of the brand string. Processor
brand identification software should execute this algorithm on all Intel 64 and IA-32
processors.

This method (introduced with Pentium 4 processors) returns an ASCII brand identifi-
cation string and the maximum operating frequency of the processor to the EAX,
EBX, ECX, and EDX registers.

CPUID—CPU Identification Vol.2A 3-203

INSTRUCTION SET REFERENCE, A-M

Input: EAX=
0x80000000

False Processor Brand

IF (EAX & 0x80000000) String Not
Supported

CPUID

True=
Function
Supported Extended
EAX Return Value =

Max. Extended CPUID
Function Index

Processor Brand

IF (EAX Return Value
String Supported

2 0x80000004)

OM15194

Figure 3-9. Determination of Support for the Processor Brand String

How Brand Strings Work

To use the brand string method, execute CPUID with EAX input of 8000002H through
80000004H. For each input value, CPUID returns 16 ASCII characters using EAX,
EBX, ECX, and EDX. The returned string will be NULL-terminated.

Table 3-26 shows the brand string that is returned by the first processor in the
Pentium 4 processor family.

Table 3-26. Processor Brand String Returned with Pentium 4 Processor
EAX Input Value Return Values ASCII Equivalent

3-204 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

Table 3-26. Processor Brand String Returned with Pentium 4 Processor (Contd.)

80000002H EAX =20202020H v
EBX =20202020H o
ECX =20202020H
EDX = 6E492020H “nl "

80000003H EAX =286(C6574H “(let”
EBX =5020295¢2H “P)R"
ECX = 69746E65H “itne”
EDX =52286D75H “R(mu”

80000004H EAX =20342029H "4y
EBX = 20555043H “upC”
ECX =30303531H “0051"
EDX = 007A484DH “\0zHM"

Extracting the Maximum Processor Frequency from Brand Strings

Figure 3-10 provides an algorithm which software can use to extract the maximum
processor operating frequency from the processor brand string.

NOTE

When a frequency is given in a brand string, it is the maximum

qualified frequency of the processor, not the frequency at which the
processor is currently running.

CPUID—CPU Identification

Vol.2A 3-205

INSTRUCTION SET REFERENCE, A-M

Scan "Brand String" in
Reverse Byte Order

"zHM", or
"zHG", or
i

Match
Substring

False
IF Substring Matched Report Error
Determine "Freq" If "zHM"
and "Multiplier | 1U° Multiplier = 1 x 10°
If "zHG"

Multiplier = 1 x 10°

Determine "Multiplier" / If "zHT"

A

Multiplier = 1 x 10"

Scan Digits
Until Blank

Reverse Digits
To Decimal Value

Determine "Freq"
In Reverse Order

Max. Qualified
Frequency = " w_ :
"Freq" x "Multiplier" Freg = XY.Z if
Digits = "Z.YX"

OM15195

Figure 3-10. Algorithm for Extracting Maximum Processor Frequency

The Processor Brand Index Method

The brand index method (introduced with Pentium® 11l Xeon® processors) provides
an entry point into a brand identification table that is maintained in memory by
system software and is accessible from system- and user-level code. In this table,
each brand index is associate with an ASCII brand identification string that identifies
the official Intel family and model number of a processor.

When CPUID executes with EAX set to 1, the processor returns a brand index to the
low byte in EBX. Software can then use this index to locate the brand identification

string for the processor in the brand identification table. The first entry (brand index
0) in this table is reserved, allowing for backward compatibility with processors that

3-206 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

do not support the brand identification feature. Starting with processor signature
family ID = OFH, model = 03H, brand index method is no longer supported. Use
brand string method instead.

Table 3-27 shows brand indices that have identification strings associated with them.

Table 3-27. Mapping of Brand Indices; and
Intel 64 and IA-32 Processor Brand Strings

Brand Index Brand String

O00H This processor does not support the brand identification feature

01H Intel(R) Celeron(R) processor1

02H Intel(R) Pentium(R) lll processor1

03H Intel(R) Pentium(R) Ill Xeon(R) processor; If processor signature =
000006B1h, then Intel(R) Celeron(R) processor

04H Intel(R) Pentium(R) Ill processor

06H Mobile Intel(R) Pentium(R) Il processor-M

07H Mobile Intel(R) Celeron(R) processor1

08H Intel(R) Pentium(R) 4 processor

09H Intel(R) Pentium(R) 4 processor

O0AH Intel(R) Celeron(R) processor1

0BH Intel(R) Xeon(R) processor; If processor signature = 00000F13h, then Intel(R)
Xeon(R) processor MP

OCH Intel(R) Xeon(R) processor MP

OEH Mobile Intel(R) Pentium(R) 4 processor-M; If processor signature =
00000F13h, then Intel(R) Xeon(R) processor

OFH Mobile Intel(R) Celeron(R) processor1

11H Mobile Genuine Intel(R) processor

12H Intel(R) Celeron(R) M processor

13H Mobile Intel(R) Celeron(R) processor1

14H Intel(R) Celeron(R) processor

15H Mobile Genuine Intel(R) processor

16H Intel(R) Pentium(R) M processor

17H Mobile Intel(R) Celeron(R) processor1

18H — OFFH RESERVED
NOTES:

1. Indicates versions of these processors that were introduced after the Pentium Il

CPUID—CPU Identification Vol.2A 3-207

INSTRUCTION SET REFERENCE, A-M

IA-32 Architecture Compatibility

CPUID is not supported in early models of the Intel486 processor or in any IA-32
processor earlier than the Intel486 processor.

Operation
IA32_BIOS_SIGN_ID MSR “ Update with installed microcode revision number;

CASE (EAX) OF
EAX=0:
EAX " Highest basic function input value understood by CPUID;
EBX ” Vendor identification string;
EDX " Vendor identification string;
ECX " Vendor identification string;
BREAK;
EAX = 1H:
EAX[3:0] * Stepping ID;
EAX[7:4] " Model;
EAX[11:8] * Family;
EAX[13:12] " Processor type;
EAX[15:14] " Reserved;
EAX[19:16] * Extended Model;
EAX[27:20] © Extended Family;
EAX[31:28] " Reserved;
EBX[7:0] " Brand Index; (* Reserved if the value is zero. *)
EBX[15:8] * CLFLUSH Line Size;
EBX[16:23] * Reserved; (* Number of threads enabled = 2 if MT enable fuse set. *)
EBX[24:31] " Initial APIC ID;
ECX " Feature flags; (* See Figure 3-7. *)
EDX " Feature flags; (* See Figure 3-8. *)
BREAK;
EAX = 2H:
EAX " Cache and TLB information;
EBX " Cache and TLB information;
ECX " Cache and TLB information;
EDX " Cache and TLB information;
BREAK;
EAX =3H:
EAX " Reserved;
EBX " Reserved;
ECX " ProcessorSerialNumber[31:0];
(* Pentium Il processors only, otherwise reserved. *)
EDX " ProcessorSerialNumber[63:32];
(* Pentium Il processors only, otherwise reserved. *

3-208 Vol.2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

BREAK
EAX =4H:
EAX " Deterministic Cache Parameters Leaf; (* See Table 3-20. *)
EBX " Deterministic Cache Parameters Leaf;
ECX " Deterministic Cache Parameters Leaf;
EDX " Deterministic Cache Parameters Leaf;
BREAK;
EAX = 5H:
EAX ™ MONITOR/MWAIT Leaf; (* See Table 3-20. *)
EBX " MONITOR/MWAIT Leaf;
ECX ™ MONITOR/MWAIT Leaf;
EDX ™ MONITOR/MWAIT Leaf;
BREAK;
EAX = 6H:
EAX ™ Thermal and Power Management Leaf; (* See Table 3-20. *)
EBX " Thermal and Power Management Leaf;
ECX " Thermal and Power Management Leaf;
EDX " Thermal and Power Management Leaf;
BREAK;
EAX =7H or 8H:
EAX " Reserved = 0;
EBX " Reserved = 0;
ECX " Reserved = 0;
EDX " Reserved = 0;
BREAK;
EAX =9H:
EAX " Direct Cache Access Information Leaf; (* See Table 3-20. *)
EBX " Direct Cache Access Information Leaf;
ECX " Direct Cache Access Information Leaf;
EDX " Direct Cache Access Information Leaf;
BREAK;
EAX = AH:
EAX ™ Architectural Performance Monitoring Leaf; (* See Table 3-20. *)
EBX ” Architectural Performance Monitoring Leaf;
ECX " Architectural Performance Monitoring Leaf;
EDX " Architectural Performance Monitoring Leaf;
BREAK
EAX =BH:
EAX " Extended Topology Enumeration Leaf; (* See Table 3-20. *)
EBX ” Extended Topology Enumeration Leaf;
ECX " Extended Topology Enumeration Leaf;
EDX " Extended Topology Enumeration Leaf;
BREAK;

CPUID—CPU ldentification Vol. 2A 3-209

INSTRUCTION SET REFERENCE, A-M

EAX = CH:
EAX " Reserved = 0;
EBX " Reserved = 0;
ECX " Reserved = 0;
EDX " Reserved = 0;
BREAK;
EAX =DH:
EAX " Processor Extended State Enumeration Leaf; (* See Table 3-20. *)
EBX " Processor Extended State Enumeration Leaf;
ECX ” Processor Extended State Enumeration Leaf;
EDX ~ Processor Extended State Enumeration Leaf;
BREAK;
BREAK;
EAX = 80000000H:
EAX " Highest extended function input value understood by CPUID;
EBX " Reserved;
ECX " Reserved;
EDX " Reserved;
BREAK;
EAX =80000001H:
EAX " Reserved;
EBX ” Reserved;
ECX " Extended Feature Bits (* See Table 3-20.%);
EDX " Extended Feature Bits (* See Table 3-20. *);
BREAK;
EAX = 80000002H:
EAX " Processor Brand String;
EBX " Processor Brand String, continued;
ECX " Processor Brand String, continued;
EDX " Processor Brand String, continued;
BREAK;
EAX = 80000003H:
EAX " Processor Brand String, continued;
EBX " Processor Brand String, continued;
ECX " Processor Brand String, continued;
EDX " Processor Brand String, continued;
BREAK;
EAX = 80000004H:
EAX " Processor Brand String, continued;
EBX ” Processor Brand String, continued;
ECX " Processor Brand String, continued;
EDX " Processor Brand String, continued;
BREAK;

3-210 Vol. 2A CPUID—CPU Identification

INSTRUCTION SET REFERENCE, A-M

EAX = 80000005H:
EAX " Reserved = 0;
EBX " Reserved = 0;
ECX " Reserved = 0;
EDX " Reserved = 0;
BREAK;
EAX = 80000006H:
EAX " Reserved = 0;
EBX " Reserved = 0;
ECX " Cache information;
EDX " Reserved = 0;
BREAK;
EAX = 80000007H:
EAX " Reserved = 0;
EBX " Reserved = 0;
ECX " Reserved = 0;
EDX " Reserved = 0;
BREAK;
EAX = 80000008H:
EAX " Reserved = (;
EBX " Reserved = 0;
ECX " Reserved = 0;
EDX " Reserved = 0;
BREAK;
DEFAULT: (* EAX = Value outside of recognized range for CPUID. *)
(* If the highest basic information leaf data depend on ECX input value, ECX is honored.*)
EAX " Reserved; (* Information returned for highest basic information leaf. *)
EBX ” Reserved; (* Information returned for highest basic information leaf. *)
ECX " Reserved; (* Information returned for highest basic information leaf. *)
EDX " Reserved; (* Information returned for highest basic information leaf. *)
BREAK;
ESAC;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

In earlier IA-32 processors that do not support the CPUID
instruction, execution of the instruction results in an invalid
opcode (#UD) exception being generated.

CPUID—CPU Identification Vol.2A 3-211

INSTRUCTION SET REFERENCE, A-M

CRC32 — Accumulate CRC32 Value

64- Compat/
bit Leg
Opcode Instruction Mode Mode Description
F2 OF 38FO0 /r CRC32 r32, r/m8 Valid Valid Accumulate CRC32 on
r/m8.
FZREXOF38F0/r CRC32r32 r/m8* \Valid N.E. Accumulate CRC32 on
r/m8.
F2 OF 38F1 /r CRC32 r32,r/m16 Valid Valid Accumulate CRC32 on
r/m16.
F2 OF 38F1 /r CRC32 r32, r/m32 Valid Valid Accumulate CRC32 on
r/m32.
F2 REXWOF38F0 CRC32 r64, r/m8 Valid N.E. Accumulate CRC32 on
/r r/m8.
F2 REX.W OF 38 F1 CRC32 r64, r/m64 Valid N.E. Accumulate CRC32 on
/r r/mé64.
NOTES:
* In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX pre-
fix is used: AH, BH, CH, DH.

Description

Starting with an initial value in the first operand (destination operand), accumulates
a CRC32 (polynomial 0Ox11EDC6F41) value for the second operand (source operand)
and stores the result in the destination operand. The source operand can be a
register or a memory location. The destination operand must be an r32 or r64
register. If the destination is an r64 register, then the 32-bit result is stored in the
least significant double word and 00000000H is stored in the most significant double
word of the r64 register.

The initial value supplied in the destination operand is a double word integer stored
in the r32 register or the least significant double word of the r64 register. To incre-
mentally accumulate a CRC32 value, software retains the result of the previous
CRC32 operation in the destination operand, then executes the CRC32 instruction
again with new input data in the source operand. Data contained in the source
operand is processed in reflected bit order. This means that the most significant bit of
the source operand is treated as the least significant bit of the quotient, and so on,
for all the bits of the source operand. Likewise, the result of the CRC operation is
stored in the destination operand in reflected bit order. This means that the most
significant bit of the resulting CRC (bit 31) is stored in the least significant bit of the
destination operand (bit 0), and so on, for all the bits of the CRC.

3-212 Vol. 2A CRC32 — Accumulate CRC32 Value

INSTRUCTION SET REFERENCE, A-M

Operation

Notes:

BIT_REFLECT64: DST[63-0] = SRC[0-63]
BIT_REFLECT32: DST[31-0] = SRC[0-31]
BIT_REFLECT16: DST[15-0] = SRC[0-15]
BIT_REFLECT8: DST[7-0] = SRC[0-7]

MODZ2: Remainder from Polynomial division modulus 2

CRC32 instruction for 64-bit source operand and 64-bit destination operand:

TEMP1[63-0] < BIT_REFLECT64 (SRC[63-0])
TEMP2[31-0] < BIT_REFLECT32 (DEST[31-0])
TEMP3[95-0] < TEMP1[63-0] << 32

TEMP4[95-0] < TEMP2[31-0] << 64

TEMP5[95-0] < TEMP3[95-0] XOR TEMP4[95-0]
TEMP6[31-0] < TEMP5[95-0] MOD2 11EDC6F4TH
DEST[31-0] < BIT_REFLECT (TEMP6[31-0])
DEST[63-32] < 00000000H

CRC32 instruction for 32-bit source operand and 32-bit destination operand:

TEMP1[31-0] € BIT_REFLECT32 (SRC[31-0))
TEMP2[31-0] < BIT_REFLECT32 (DEST[31-0])
TEMP3[63-0] < TEMP1[31-0] << 32

TEMP4[63-0] < TEMP2[31-0] << 32

TEMP5[63-0] < TEMP3[63-0] XOR TEMPA[63-0]
TEMPS[31-0] < TEMP5[63-0] MOD2 11EDC6F4TH
DEST[31-0] < BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 16-bit source operand and 32-bit destination operand:

TEMP1[15-0] < BIT_REFLECT16 (SRC[15-0])
TEMP2[31-0] < BIT_REFLECT32 (DEST[31-0])
TEMP3[47-0] < TEMP1[15-0] << 32

TEMP4[47-0] < TEMP2[31-0] << 16

TEMP5[47-0] < TEMP3[47-0] XOR TEMP4[47-0]
TEMP6[31-0] < TEMP5[47-0] MOD2 11EDC6F4TH
DEST[31-0] < BIT_REFLECT (TEMP6[31-0])

CRC32 instruction for 8-bit source operand and 64-bit destination operand:

TEMP1[7-0] < BIT_REFLECTS(SRC[7-0])
TEMP2[31-0] < BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] < TEMP1[7-0] << 32
TEMP4[39-0] < TEMP2[31-0] << 8
TEMP5[39-0] < TEMP3[39-0] XOR TEMPA4[39-0]

CRC32 — Accumulate CRC32 Value Vol.2A 3-213

INSTRUCTION SET REFERENCE, A-M

TEMP6[31-0] < TEMP5[39-0] MOD2 11€EDC6F41H
DEST[31-0] < BIT_REFLECT (TEMP6[31-0])
DEST[63-32] < 00000000H

CRC32 instruction for 8-bit source operand and 32-bit destination operand:

TEMP1[7-0] € BIT_REFLECT8(SRC[7-0])
TEMP2[31-0] & BIT_REFLECT32 (DEST[31-0])
TEMP3[39-0] & TEMP1[7-0] << 32
TEMP4[39-0] < TEMP2[31-0] << 8

TEMP5[39-0] < TEMP3[39-0] XOR TEMP4[39-0]
TEMP6[31-0] < TEMP5[39-0] MOD2 11EDC6F4TH
DEST[31-0] < BIT_REFLECT (TEMPS[31-0])

Flags Affected

None

Intel C/C++ Compiler Intrinsic Equivalent

unsigned int _mm_crc32_u8(unsigned int crc, unsigned char data)

unsigned int _mm_crc32_u16(unsigned int crc, unsigned short data)

unsigned int _mm_crc32_u32(unsigned int crc, unsigned int data)

unsinged __int64 _mm_crc32_u64(unsinged __int64 cr¢, unsigned __int64 data)

SIMD Floating Point Exceptions
None

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS or GS segments.
#SS(0) If a memory operand effective address is outside the SS

segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.

Real Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#UD If CPUID.01H:ECX.SSE4_2 [Bit 20] = 0.

If LOCK prefix is used.

3-214 Vol. 2A CRC32 — Accumulate CRC32 Value

INSTRUCTION SET REFERENCE, A-M

Virtual 8086 Mode Exceptions

#GP(0) If any part of the operand lies outside of the effective address
space from O to OFFFFH.
#SS(0) If a memory operand effective address is outside the SS

segment limit.

#PF (fault-code) For a page fault.

#UD If CPUID.O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF (fault-code) For a page fault.
#UD If CPUID.O1H:ECX.SSE4_2 [Bit 20] = 0.
If LOCK prefix is used.

CRC32 — Accumulate CRC32 Value Vol. 2A 3-215

INSTRUCTION SET REFERENCE, A-M

CVTDQ2PD—Convert Packed Doubleword Integers to Packed Double-Precision
Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F30FE6 CVTDQZ2PD xmm1, Valid Valid Convert two packed signed
xmmZ2/mé64 doubleword integers from

xmmZ2/m128 to two packed
double-precision floating-point
values in xmm1.

Description

Converts two packed signed doubleword integers in the source operand (second
operand) to two packed double-precision floating-point values in the destination
operand (first operand).

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. When the source operand is an XMM register, the
packed integers are located in the low quadword of the register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[63:0] «LConvert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] «Lonvert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]);

Intel C/C+Compiler Intrinsic Equivalent
CVTDQ2PD __m128d _mm_cvtepi32_pd(__m128ia)

SIMD Floating-Point Exceptions
None.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.

3-216 Vol. 2A CRC32 — Accumulate CRC32 Value

INSTRUCTION SET REFERENCE, A-M

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CRC32 — Accumulate CRC32 Value Vol.2A 3-217

INSTRUCTION SET REFERENCE, A-M

CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 5B /r CVTDQ2PS xmm1, Valid Valid Convert four packed signed
xmmZ2/m128 doubleword integers from

xmmZ2/m128 to four packed
single-precision floating-point
values in xmm1.

Description

Converts four packed signed doubleword integers in the source operand (second
operand) to four packed single-precision floating-point values in the destination
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. When a conversion is inexact, rounding is
performed according to the rounding control bits in the MXCSR register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «LConvert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
DEST[63:32] «LConvert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]);
DEST[95:64] «Convert_Integer_To_Single_Precision_Floating_Point(SRC[95:64]);
DEST[127:96] «Convert_Integer_To_Single_Precision_Floating_Point(SRC[127:96]);

Intel C/C+Compiler Intrinsic Equivalent
CVTDQ2PS __m128 _mm_cvtepi32_ps(__m128i a)

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

3-218 Vol. 2A CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, A-M

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating- Vol.2A 3-219
Point Values

INSTRUCTION SET REFERENCE, A-M

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

3-220 Vol.2A CVTDQ2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, A-M

CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to
Packed Doubleword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2 OFE6 CVTPD2DQ xmm1, Valid Valid Convert two packed double-
xmmZ2/m128 precision floating-point values

from xmm2/m128 to two
packed signed doubleword
integers in xmm1.

Description

Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low quadword of the
destination operand and the high quadword is cleared to all Os.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «LConvert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
DEST[63:32] «Convert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]);
DEST[127:64] «0000000000000000H;

Intel C/C+Compiler Intrinsic Equivalent
CVTPD2DQ __m128i _mm_cvtpd_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.segments.

CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed Double- Vol.2A 3-221
word Integers

INSTRUCTION SET REFERENCE, A-M

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

3-222 Vol. 2A CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed Double-
word Integers

#GP(0)

#PF(fault-code)
#NM
#XM

#UD

INSTRUCTION SET REFERENCE, A-M

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

CVTPD2DQ—Convert Packed Double-Precision Floating-Point Values to Packed Double- Vol.2A 3-223

word Integers

INSTRUCTION SET REFERENCE, A-M

CVTPD2PI—-Convert Packed Double-Precision Floating-Point Values to
Packed Doubleword Integers

Opcode Instruction 64-Bit Mode Compat/ Description
Leg Mode
66 OF 2D /r CVTPDZ2PI mm, Valid Valid Convert two packed double-
xmm/m128 precision floating-point

values from xmm/m128 to
two packed signed
doubleword integers in mm.

Description

Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an MMX technology register.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
Os [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «LConvert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
DEST[63:32] «Lonvert_Double_Precision_Floating_Point_To_Integer(SRC[127:64]);

Intel C/C+Compiler Intrinsic Equivalent
CVTPD1PI __m64 _mm_cvtpd_pi32(_m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

3-224 Vol. 2A CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed Double-
word Integers

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#MF

#NM

#XM

#UD

For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If there is a pending x87 FPU exception.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0)

#NM
#MF
#XM

#UD

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

If CRO.TS[bit 3] = 1.
If there is a pending x87 FPU exception.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)

For a page fault.

CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed Double- Vol.2A 3-225

word Integers

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#MF If there is a pending x87 FPU exception.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

3-226 Vol. 2A CVTPD2PI—Convert Packed Double-Precision Floating-Point Values to Packed Double-
word Integers

INSTRUCTION SET REFERENCE, A-M

CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to
Packed Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 5A/r CVTPDZPS xmm1, Valid Valid Convert two packed double-
xmm2/m128 precision floating-point values in

xmmZ2/m128 to two packed single-
precision floating-point values in
xmm1.

Description

Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed single-precision floating-point values in the destina-
tion operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register. The result is stored in the low quadword of the
destination operand, and the high quadword is cleared to all 0s. When a conversion
is inexact, the value returned is rounded according to the rounding control bits in the
MXCSR register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «LConvert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);

DEST[63:32] «Lonvert_Double_Precision_To_Single_Precision_
Floating_Point(SRC[127:64]);

DEST[127:64] «0000000000000000H;

Intel C/C+Compiler Intrinsic Equivalent
CVTPD2PS __m128 _mm_cvtpd_ps(__m128d a)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to Packed Single- Vol.2A 3-227
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

3-228 Vol. 2A CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to Packed Single-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

CVTPD2PS—Convert Packed Double-Precision Floating-Point Values to Packed Single- Vol.2A 3-229
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-
Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 2A/r CVTPI2PD Valid Valid Convert two packed signed
Xxmm, doubleword integers from
mm/m64* mm/mem64 to two packed double-
precision floating-point values in
Xmm.
NOTES:

* Qperation is different for different operand sets; see the Description section.

Description

Converts two packed signed doubleword integers in the source operand (second
operand) to two packed double-precision floating-point values in the destination
operand (first operand).

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an XMM register. In addition, depending on the operand
configuration:

®* For operands xmm, mm: the instruction causes a transition from x87 FPU to
MMX technology operation (that is, the x87 FPU top-of-stack pointer is set to 0
and the x87 FPU tag word is set to all Os [valid]). If this instruction is executed
while an x87 FPU floating-point exception is pending, the exception is handled
before the CVTPI2PD instruction is executed.

®* For operands xmm, m64: the instruction does not cause a transition to MMX
technology and does not take x87 FPU exceptions.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[63:0] «LConvert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] «Convert_Integer_To_Double_Precision_Floating_Point(SRC[63:32]);

Intel C/C+Compiler Intrinsic Equivalent
CVTPIZPD _m128d _mm_cvtpi32_pd(__m64 a)

SIMD Floating-Point Exceptions

None.

3-230 Vol.2A CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating- Vol.2A 3-231

Point Values

INSTRUCTION SET REFERENCE, A-M

#MF If there is a pending x87 FPU exception.
#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.

If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-232 Vol.2A CVTPI2PD—Convert Packed Doubleword Integers to Packed Double-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, A-M

CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-
Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 2A/r CVTPIZPS xmm, Valid Valid Convert two signed doubleword
mm/m64 integers from mm/m64 to two single-
precision floating-point values in xmm.

Description

Converts two packed signed doubleword integers in the source operand (second
operand) to two packed single-precision floating-point values in the destination
operand (first operand).

The source operand can be an MMX technology register or a 64-bit memory location.
The destination operand is an XMM register. The results are stored in the low quad-
word of the destination operand, and the high quadword remains unchanged. When
a conversion is inexact, the value returned is rounded according to the rounding
control bits in the MXCSR register.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
0Os [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTPI2PS instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «LConvert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
DEST[63:32] «LConvert_Integer_To_Single_Precision_Floating_Point(SRC[63:32]);
(* High quadword of destination unchanged *)

Intel C/C+Compiler Intrinsic Equivalent
CVTPIZPS __m128 _mm_cvtpi32_ps(__m128a, __m64 b)

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating- Vol.2A 3-233

Point Values

INSTRUCTION SET REFERENCE, A-M

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

3-234 Vol. 2A CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point Values

INSTRUCTION SET REFERENCE, A-M

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CVTPI2PS—Convert Packed Doubleword Integers to Packed Single-Precision Floating-
Point Values

Vol.2A 3-235

INSTRUCTION SET REFERENCE, A-M

CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 5B /r CVTPS2DQ xmm1, Valid Valid Convert four packed single-precision
xmmZ2/m128 floating-point values from
xmmZ2/m128 to four packed signed
doubleword integers in xmm1.

Description

Converts four packed single-precision floating-point values in the source operand
(second operand) to four packed signed doubleword integers in the destination
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an XMM register.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «Lonvert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
DEST[63:32] «LConvert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]);
DEST[95:64] «Lonvert_Single_Precision_Floating_Point_To_Integer(SRC[95:64]);
DEST[127:96] «Lonvert_Single_Precision_Floating_Point_To_Integer(SRC[127:96]);

Intel C/C+Compiler Intrinsic Equivalent

CVTPS2DQ __m128i _mm_cvtps_epi32(__m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

3-236 Vol. 2A CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Double-
word Integers

INSTRUCTION SET REFERENCE, A-M

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Double- Vol.2A 3-237

word Integers

INSTRUCTION SET REFERENCE, A-M

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

3-238 Vol.2A CVTPS2DQ—Convert Packed Single-Precision Floating-Point Values to Packed Double-
word Integers

INSTRUCTION SET REFERENCE, A-M

CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to
Packed Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 5A/r CVTPS2PD xmm1, Valid Valid Convert two packed single-precision
xmmZ2/m64 floating-point values in xmmZ2/m64
to two packed double-precision
floating-point values in xmm1.

Description

Converts two packed single-precision floating-point values in the source operand
(second operand) to two packed double-precision floating-point values in the desti-
nation operand (first operand).

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. When the source operand is an XMM register, the
packed single-precision floating-point values are contained in the low quadword of
the register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[63:0] «Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
DEST[127:64] «Convert_Single_Precision_To_Double_Precision_Floating_Point(SRC[63:32]);

Intel C/C+Compiler Intrinsic Equivalent
CVTPS2PD __m128d _mm_cvtps_pd(__m128a)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to Packed Double- Vol.2A 3-239
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD

#AC(0)

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0)

#NM
#XM

#UD

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#PF(fault-code)
#NM

#XM

3-240 Vol.2A

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to Packed Double-
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CVTPS2PD—Convert Packed Single-Precision Floating-Point Values to Packed Double- Vol.2A 3-241
Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

CVTPS2PI—-Convert Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF2D/r CVTPSZ2PI mm, Valid Valid Convert two packed single-precision
xmm/m64 floating-point values from xmm/m64 to
two packed signed doubleword integers in
mm.
Description

Converts two packed single-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand).

The source operand can be an XMM register or a 128-bit memory location. The desti-
nation operand is an MMX technology register. When the source operand is an XMM
register, the two single-precision floating-point values are contained in the low quad-
word of the register. When a conversion is inexact, the value returned is rounded
according to the rounding control bits in the MXCSR register. If a converted result is
larger than the maximum signed doubleword integer, the floating-point invalid
exception is raised, and if this exception is masked, the indefinite integer value
(80000000H) is returned.

CVTPS2PI causes a transition from x87 FPU to MMX technology operation (that is, the
x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all Os
[valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «Lonvert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
DEST[63:32] «LConvert_Single_Precision_Floating_Point_To_Integer(SRC[63:32]);

Intel C/C+Compiler Intrinsic Equivalent
CVTPS2PI __m64 _mm_cvtps_pi32(_m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

3-242 Vol. 2A CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed Double-
word Integers

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#MF

#NM

#XM

#UD

#AC(0)

For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

For an illegal address in the SS segment.
For a page fault.

If there is a pending x87 FPU exception.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0)

#NM
#MF
#XM

#UD

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

If CRO.TS[bit 3] = 1.
If there is a pending x87 FPU exception.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

If alignment checking is enabled and an unaligned memory
reference is made.

CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed Double- Vol.2A 3-243

word Integers

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#PF(fault-code)
#NM

#MF

#XM

#UD

#AC(0)

3-244 Vol. 2A

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
For a page fault.

If CRO.TS[bit 3] = 1.

If there is a pending x87 FPU exception.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CVTPS2PI—Convert Packed Single-Precision Floating-Point Values to Packed Double-
word Integers

INSTRUCTION SET REFERENCE, A-M

CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to
Doubleword Integer

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F20F2D/r CvTSD2SI r32, Valid Valid Convert one double-precision
xmm/m64 floating-point value from

Xxmm/m64 to one signed
doubleword integer r32.

F2 REX.W OF 2D /r CvTSD2SI r64, Valid N.E. Convert one double-precision
xmm/m64 floating-point value from
Xxmm/m64 to one signed
quadword integer sign-
extended into r64.

Description

Converts a double-precision floating-point value in the source operand (second
operand) to a signed doubleword integer in the destination operand (first operand).
The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is a general-purpose register. When the source operand is an XMM
register, the double-precision floating-point value is contained in the low quadword of
the register.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operation. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

IF 64-Bit Mode and OperandSize = 64
THEN
DEST[63:0] «LConvert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
ELSE
DEST[31:0] «LConvert_Double_Precision_Floating_Point_To_Integer(SRC[63:0]);
Fl;

Intel C/C+Compiler Intrinsic Equivalent
int _mm_cvtsd_si32(_m128d a)

CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer Vol. 2A 3-245

INSTRUCTION SET REFERENCE, A-M

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

3-246 Vol. 2A CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CVTSD2SI—Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer Vol. 2A 3-247

INSTRUCTION SET REFERENCE, A-M

CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to
Scalar Single-Precision Floating-Point Value

Opcode Instruction 64-Bit Compat/ Description
Mode LegMode
F2 OF 5A/r CVTSDZ2SS xmm1, Valid Valid Convert one double-precision floating-
xmmZ2/m64 point value in xmmZ2/m64 to one
single-precision floating-point value in
xmm1.
Description

Converts a double-precision floating-point value in the source operand (second
operand) to a single-precision floating-point value in the destination operand (first
operand).

The source operand can be an XMM register or a 64-bit memory location. The desti-
nation operand is an XMM register. When the source operand is an XMM register, the
double-precision floating-point value is contained in the low quadword of the register.
The result is stored in the low doubleword of the destination operand, and the upper
3 doublewords are left unchanged. When the conversion is inexact, the value
returned is rounded according to the rounding control bits in the MXCSR register.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «LConvert_Double_Precision_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[127:32] unchanged *)

Intel C/C+Compiler Intrinsic Equivalent
CVTSD2SS __m128 _mm_cvtsd_ss(__m128da, __m128db)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

3-248 Vol. 2A CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Preci-

sion Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Preci- Vol. 2A 3-249

sion Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-250 Vol.2A CVTSD2SS—Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Preci-
sion Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision
Floating-Point Value

Opcode Instruction 64-Bit Compat/ Description
Mode LegMode
F2OF 2A/r CVTSI2SD xmm, Valid Valid Convert one signed doubleword
r/m32 integer from r/m32 to one
double-precision floating-point
value in xmm.
F2 REXW OF 2A/r CVTSI2SD xmm, Valid N.E. Convert one signed quadword
r/mé4 integer from r/m64 to one
double-precision floating-point
value in xmm.
Description

Converts a signed doubleword integer (or signed quadword integer if operand size is
64 bits) in the source operand (second operand) to a double-precision floating-point
value in the destination operand (first operand). The source operand can be a
general-purpose register or a memory location. The destination operand is an XMM
register. The result is stored in the low quadword of the destination operand, and the
high quadword left unchanged.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

IF 64-Bit Mode And OperandSize = 64
THEN
DEST[63:0] «LConvert_Integer_To_Double_Precision_Floating_Point(SRC[63:0]);
(* DEST[127:64] unchanged *)
ELSE
DEST[63:0] «LConvert_Integer_To_Double_Precision_Floating_Point(SRC[31:0]);
(* DEST[127:64] unchanged *)
Fl;

Intel C/C+Compiler Intrinsic Equivalent
CVTSI2SD __m128d _mm_cvtsi32_sd(__m128d a, int b)

SIMD Floating-Point Exceptions
None.

CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value Vol.2A 3-251

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

3-252 Vol. 2A CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CVTSI2SD—Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value Vol.2A 3-253

INSTRUCTION SET REFERENCE, A-M

CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision
Floating-Point Value

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F30F 2A/r CVTSIZSS Valid Valid Convert one signed doubleword
xmm, r/m32 integer from r/m32 to one single-
precision floating-point value in
Xxmm,
F3 REXW OF 2A /r CVTSIZSS Valid N.E. Convert one signed quadword
xmm, r/m64 integer from r/m64 to one single-
precision floating-point value in
Xxmm,
Description

Converts a signed doubleword integer (or signed quadword integer if operand size is
64 bits) in the source operand (second operand) to a single-precision floating-point
value in the destination operand (first operand). The source operand can be a
general-purpose register or a memory location. The destination operand is an XMM
register. The result is stored in the low doubleword of the destination operand, and
the upper three doublewords are left unchanged. When a conversion is inexact, the
value returned is rounded according to the rounding control bits in the MXCSR
register.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

IF 64-Bit Mode And OperandSize = 64
THEN
DEST[31:0] «LConvert_Integer_To_Single_Precision_Floating_Point(SRC[63:0]);
(* DEST[127:32] unchanged *)
ELSE
DEST[31:0] «LConvert_Integer_To_Single_Precision_Floating_Point(SRC[31:0]);
(* DEST[127:32] unchanged *)
FI;

Intel C/C+Compiler Intrinsic Equivalent
CVTSIZSS __m128 _mm_cvtsi32_ss(__m128 a, int b)

3-254 Vol. 2A CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

SIMD Floating-Point Exceptions

Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value Vol. 2A 3-255

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-256 Vol. 2A CVTSI2SS—Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to
Scalar Double-Precision Floating-Point Value

Opcode Instruction 64-Bit Compat/ Description
Mode LegMode
F3 OF 5A/r CVTSS2SD xmm1, Valid Valid Convert one single-precision floating-
xmmz2/m32 point value in xmmZ2/m32 to one
double-precision floating-point value
in xmm1.
Description

Converts a single-precision floating-point value in the source operand (second
operand) to a double-precision floating-point value in the destination operand (first
operand). The source operand can be an XMM register or a 32-bit memory location.
The destination operand is an XMM register. When the source operand is an XMM
register, the single-precision floating-point value is contained in the low doubleword
of the register. The result is stored in the low quadword of the destination operand,
and the high quadword is left unchanged.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[63:0] «LConvert_Single_Precision_To_Double_Precision_Floating_Point(SRC[31:0]);
(* DEST[127:64] unchanged *)

Intel C/C+Compiler Intrinsic Equivalent

CVTSS2SD __m128d _mm_cvtss_sd(__m128da,__m128Db)

SIMD Floating-Point Exceptions

Invalid, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Preci- Vol.2A 3-257

sion Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 1.

3-258 Vol. 2A CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Preci-
sion Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and
CR4.0SXMMEXCPT[bit 10] = Oexception and
CR4.0SXMMEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CVTSS2SD—Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Preci- Vol.2A 3-259
sion Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to
Doubleword Integer

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F30F2D/r CVTSS2SIr32, Valid Valid Convert one single-precision
xmm/m32 floating-point value from

xmm/m32 to one signed
doubleword integer in r32.

F3REXWOF2D/r CVTSS2SIr64, Valid N.E. Convert one single-precision
xmm/m32 floating-point value from
xmm/m32 to one signed
quadword integer in ré64.

Description

Converts a single-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a memory location. The destination operand is a general-purpose
register. When the source operand is an XMM register, the single-precision floating-
point value is contained in the low doubleword of the register.

When a conversion is inexact, the value returned is rounded according to the
rounding control bits in the MXCSR register. If a converted result is larger than the
maximum signed doubleword integer, the floating-point invalid exception is raised,
and if this exception is masked, the indefinite integer value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operands. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

IF 64-bit Mode and OperandSize = 64
THEN
DEST[64:0] «LConvert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
ELSE
DEST[31:0] «LConvert_Single_Precision_Floating_Point_To_Integer(SRC[31:0]);
Fl;

Intel C/C+Compiler Intrinsic Equivalent

int _mm_cvtss_si32(_m128d a)

3-260 Vol. 2A CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer

INSTRUCTION SET REFERENCE, A-M

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer Vol.2A 3-261

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-262 Vol. 2A CVTSS2SI—Convert Scalar Single-Precision Floating-Point Value to Doubleword Integer

INSTRUCTION SET REFERENCE, A-M

CVTTPD2DQ—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF E6 CVTTPD2DQ xmm1, Valid Valid Convert two packed double-
xmmZ2/m128 precision floating-point values

from xmmZ2/m128 to two packed
signed doubleword integers in
xmm1 using truncation.

Description

Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand). The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register. The result is stored in
the low quadword of the destination operand and the high quadword is cleared to all
Os.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «LConvert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);

DEST[63:32] «Lonvert_Double_Precision_Floating_Point_To_Integer_
Truncate(SRC[127-64]);

DEST[127:64] «0000000000000000H;

Intel C/C+Compiler Intrinsic Equivalent
CVTTPD2DQ __m128i _mm_cvttpd_epi32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point Values Vol.2A 3-263
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

3-264 Vol. 2A CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point Values
to Packed Doubleword Integers

#GP(0)

#PF(fault-code)
#NM
#XM

#UD

INSTRUCTION SET REFERENCE, A-M

If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

CVTTPD2DQ—Convert with Truncation Packed Double-Precision Floating-Point Values Vol. 2A 3-265
to Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M

CVTTPDZ2PI—Convert with Truncation Packed Double-Precision
Floating-Point Values to Packed Doubleword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 2C/r CVTTPDZ2PI mm, Valid Valid Convert two packer double-precision
xmm/m128 floating-point values from xmm/m128
to two packed signed doubleword
integers in mm using truncation.

Description

Converts two packed double-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand). The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an MMX technology register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
Os [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTTPD2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «LConvert_Double_Precision_Floating_Point_To_Integer_Truncate(SRC[63:0]);
DEST[63:32] «Lonvert_Double_Precision_Floating_Point_To_Integer_
Truncate(SRC[127:64]);

Intel C/C+Compiler Intrinsic Equivalent
CVTTPD1PI_m64 _mm_cvttpd_pi32(_m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

3-266 Vol. 2A CVTTPDZ2PI—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Doubleword Integers

#SS(0)
#PF(fault-code)
#MF

#NM

#XM

#UD

INSTRUCTION SET REFERENCE, A-M

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.

If there is a pending x87 FPU exception.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0)

#NM
#MF
#XM

#UD

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

If CRO.TS[bit 3] = 1.
If there is a pending x87 FPU exception.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

#PF(fault-code)

For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

CVTTPDZ2PI—Convert with Truncation Packed Double-Precision Floating-Point Values to Vol.2A 3-267
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

3-268 Vol. 2A CVTTPDZ2PI—Convert with Truncation Packed Double-Precision Floating-Point Values to
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M

CVTTPS2DQ—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 0OF 5B/r CVTTPS2DQ xmm1, Valid Valid Convert four single-precision
xmmZ2/m128 floating-point values from

xmmZ2/m1.28 to four signed
doubleword integers in xmm1 using
truncation.

Description

Converts four packed single-precision floating-point values in the source operand
(second operand) to four packed signed doubleword integers in the destination
operand (first operand). The source operand can be an XMM register or a 128-bit
memory location. The destination operand is an XMM register. When a conversion is
inexact, a truncated (round toward zero) result is returned. If a converted result is
larger than the maximum signed doubleword integer, the floating-point invalid
exception is raised, and if this exception is masked, the indefinite integer value
(80000000H) is returned.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «LConvert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
DEST[63:32] «LConvert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]);
DEST[95:64] «Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[95:64));
DEST[127:96] «Convert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[127:96]);

Intel C/C+Compiler Intrinsic Equivalent
CVTTPS2DQ __m128i _mm_cvttps_epi32(_m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to Vol. 2A 3-269
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a nhon-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

3-270 Vol. 2A CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

CVTTPS2DQ—Convert with Truncation Packed Single-Precision Floating-Point Values to Vol.2A 3-271
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M

CVTTPSZ2PI—Convert with Truncation Packed Single-Precision
Floating-Point Values to Packed Doubleword Integers

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF2C/r CVTTPSZ2PI mm, Valid Valid Convert two single-precision floating-
xmm/m64 point values from xmm/m64 to two
signed doubleword signed integers in mm
using truncation.

Description

Converts two packed single-precision floating-point values in the source operand
(second operand) to two packed signed doubleword integers in the destination
operand (first operand). The source operand can be an XMM register or a 64-bit
memory location. The destination operand is an MMX technology register. When the
source operand is an XMM register, the two single-precision floating-point values are
contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised, and if this exception is masked, the indefinite
integer value (80000000H) is returned.

This instruction causes a transition from x87 FPU to MMX technology operation (that
is, the x87 FPU top-of-stack pointer is set to 0 and the x87 FPU tag word is set to all
Os [valid]). If this instruction is executed while an x87 FPU floating-point exception is
pending, the exception is handled before the CVTTPS2PI instruction is executed.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «Lonvert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[31:0]);
DEST[63:32] «Lonvert_Single_Precision_Floating_Point_To_Integer_Truncate(SRC[63:32]);

Intel C/C+Compiler Intrinsic Equivalent
CVTTPSZ2PI __m64 _mm_cvttps_pi32(_m128 a)

SIMD Floating-Point Exceptions

Invalid, Precision.

3-272 Vol. 2A CVTTPS2PI—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#MF

#NM

#XM

#UD

#AC(0)

For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

For an illegal address in the SS segment.
For a page fault.

If there is a pending x87 FPU exception.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0)

#NM
#MF
#XM

#UD

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

If CRO.TS[bit 3] = 1.
If there is a pending x87 FPU exception.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)
#AC(0)

For a page fault.

If alignment checking is enabled and an unaligned memory
reference is made.

CVTTPSZ2PI—Convert with Truncation Packed Single-Precision Floating-Point Values to Vol.2A 3-273
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-274 Vol. 2A CVTTPS2PI—Convert with Truncation Packed Single-Precision Floating-Point Values to
Packed Doubleword Integers

INSTRUCTION SET REFERENCE, A-M

CVTTSD2SI—-Convert with Truncation Scalar Double-Precision Floating-
Point Value to Signed Doubleword Integer

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2OF 2C/r CVTTSD2SIr32, Valid Valid Convert one double-precision
xmm/m64 floating-point value from

Xxmm/m64 to one signed
doubleword integer in r32 using

truncation.
F2 REX.W OF 2C /r CVTTSDZ2SIr64, Valid N.E. Convert one double precision
xmm/m64 floating-point value from

xmm/m64 to one
signedquadword integer in r64
using truncation.

Description

Converts a double-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a 64-bit memory location. The destination operand is a general-
purpose register. When the source operand is an XMM register, the double-precision
floating-point value is contained in the low quadword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised. If this exception is masked, the indefinite integer
value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operation. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

IF 64-Bit Mode and OperandSize = 64
THEN
DEST[63:0] «Lonvert_Double_Precision_Floating_Point_To_
Integer_Truncate(SRC[63:0]);
ELSE
DEST[31:0] «Lonvert_Double_Precision_Floating_Point_To_
Integer_Truncate(SRC[63:0]);
Fl;

CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to Vol.2A 3-275
Signed Doubleword Integer

INSTRUCTION SET REFERENCE, A-M

Intel C/C+Compiler Intrinsic Equivalent

int _mm_cvttsd_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0)
#SS(0)
#PF(fault-code)

#NM
#XM

#UD

#AC(0)

For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

For an illegal address in the SS segment.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0)

#NM
#XM

#UD

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)

3-276 Vol.2A

For a page fault.

CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to
Signed Doubleword Integer

INSTRUCTION SET REFERENCE, A-M

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CVTTSD2SI—Convert with Truncation Scalar Double-Precision Floating-Point Value to Vol.2A 3-277
Signed Doubleword Integer

INSTRUCTION SET REFERENCE, A-M

CVTTSS2SI—-Convert with Truncation Scalar Single-Precision Floating-
Point Value to Doubleword Integer

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F3 OF 2C/r CVTTSS2SI r32, Valid Valid Convert one single-precision
xmm/m32 floating-point value from

xmm/m32 to one signed
doubleword integer in r32
using truncation.

F3 REX.W OF 2C /r CVTTSS2SI r64, Valid N.E. Convert one single-precision
xmm/m32 floating-point value from
xmm/m32 to one signed
quadword integer in r64 using
truncation.

Description

Converts a single-precision floating-point value in the source operand (second
operand) to a signed doubleword integer (or signed quadword integer if operand size
is 64 bits) in the destination operand (first operand). The source operand can be an
XMM register or a 32-bit memory location. The destination operand is a general-
purpose register. When the source operand is an XMM register, the single-precision
floating-point value is contained in the low doubleword of the register.

When a conversion is inexact, a truncated (round toward zero) result is returned. If a
converted result is larger than the maximum signed doubleword integer, the floating-
point invalid exception is raised. If this exception is masked, the indefinite integer
value (80000000H) is returned.

In 64-bit mode, the instruction can access additional registers (XMM8-XMM15,
R8-R15) when used with a REX.R prefix. Use of the REX.W prefix promotes the
instruction to 64-bit operation. See the summary chart at the beginning of this
section for encoding data and limits.

Operation

IF 64-Bit Mode and OperandSize = 64
THEN
DEST[63:0] «LConvert_Single_Precision_Floating_Point_To_
Integer_Truncate(SRC[31:0));
ELSE
DEST[31:0] «LConvert_Single_Precision_Floating_Point_To_
Integer_Truncate(SRC[31:0));
Fl;

3-278 Vol. 2A CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to
Doubleword Integer

INSTRUCTION SET REFERENCE, A-M

Intel C/C+Compiler Intrinsic Equivalent

int _mm_cvttss_si32(__m128d a)

SIMD Floating-Point Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0)
#SS(0)
#PF(fault-code)

#NM
#XM

#UD

#AC(0)

For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

For an illegal address in the SS segment.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0)

#NM
#XM

#UD

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
Same exceptions as in real address mode.

#PF(fault-code)

For a page fault.

CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to Vol.2A 3-279

Doubleword Integer

INSTRUCTION SET REFERENCE, A-M

#AC(0)

If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0)
#GP(0)
#PF(fault-code)

#NM
#XM

#UD

#AC(0)

3-280 Vol.2A

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

CVTTSS2SI—Convert with Truncation Scalar Single-Precision Floating-Point Value to
Doubleword Integer

INSTRUCTION SET REFERENCE, A-M

CwD/CDQ/CQO0—Convert Word to Doubleword/Convert Doubleword to
Quadword

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
99 CwD Valid Valid DX:AX «sign-extend of AX.
99 CcbQ Valid Valid EDX:EAX «sign-extend of EAX.
REX.W + 99 cQo Valid N.E. RDX:RAX«sign-extend of RAX.
Description

Doubles the size of the operand in register AX, EAX, or RAX (depending on the
operand size) by means of sign extension and stores the result in registers DX:AX,
EDX:EAX, or RDX:RAX, respectively. The CWD instruction copies the sign (bit 15) of
the value in the AX register into every bit position in the DX register. The CDQ
instruction copies the sign (bit 31) of the value in the EAX register into every bit posi-
tion in the EDX register. The CQO instruction (available in 64-bit mode only) copies
the sign (bit 63) of the value in the RAX register into every bit position in the RDX
register.

The CWD instruction can be used to produce a doubleword dividend from a word
before word division. The CDQ instruction can be used to produce a quadword divi-
dend from a doubleword before doubleword division. The CQO instruction can be
used to produce a double quadword dividend from a quadword before a quadword
division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is
intended for use when the operand-size attribute is 16 and the CDQ instruction for
when the operand-size attribute is 32. Some assemblers may force the operand size
to 16 when CWD is used and to 32 when CDQ is used. Others may treat these
mnemonics as synonyms (CWD/CDQ) and use the current setting of the operand-
size attribute to determine the size of values to be converted, regardless of the
mnemonic used.

In 64-bit mode, use of the REX.W prefix promotes operation to 64 bits. The CQO
mnemonics reference the same opcode as CWD/CDQ. See the summary chart at the
beginning of this section for encoding data and limits.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN
DX «SignExtend(AX);
ELSE IF OperandSize = 32 (* CDQ instruction *)
EDX «SignExtend(EAX); Fl;
ELSE IF 64-Bit Mode and OperandSize = 64 (* CQO instruction*)

CwWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword Vol. 2A 3-281

INSTRUCTION SET REFERENCE, A-M

RDX «SignExtend(RAX); FI;
Fl;

Flags Affected

None.

Exceptions (All Operating Modes)
#UD If the LOCK prefix is used.

3-282 Vol.2A CwWD/CDQ/CQO—Convert Word to Doubleword/Convert Doubleword to Quadword

INSTRUCTION SET REFERENCE, A-M

DAA—Decimal Adjust AL after Addition

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
27 DAA Invalid Valid Decimal adjust AL after addition.
Description

Adjusts the sum of two packed BCD values to create a packed BCD result. The AL
register is the implied source and destination operand. The DAA instruction is only
useful when it follows an ADD instruction that adds (binary addition) two 2-digit,
packed BCD values and stores a byte result in the AL register. The DAA instruction
then adjusts the contents of the AL register to contain the correct 2-digit, packed
BCD result. If a decimal carry is detected, the CF and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode.
It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
old_AL <AL
old_CF «CF;
CF «0;
IF (AL AND OFH) > 9) or AF = 1)
THEN
AL <AL + 6;
CF «old_CF or (Carry from AL <AL + 6);
AF «1;
ELSE
AF «0;
Fl;
IF ((old_AL > SSH) or (old_CF = 1))
THEN
AL <AL + 60H;
CF «1;
ELSE
CF «0;
Fl;
Fl;

DAA—Decimal Adjust AL after Addition Vol. 2A 3-283

INSTRUCTION SET REFERENCE, A-M

Example

ADD AL BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=AEH BL=35H EFLAGS(0OSZAPC)=110000
After: AL=14H BL=35H EFLAGS(0SZAPC)=X00111
DAA Before: AL=2EH BL=35H EFLAGS(0SZAPC)=110000

After: AL=34H BL=35H EFLAGS(0SZAPC)=X00101

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry
in either digit of the result (see the “Operation” section above). The SF, ZF, and PF
flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-284 Vol.2A

DAA—Decimal Adjust AL after Addition

INSTRUCTION SET REFERENCE, A-M

DAS—Decimal Adjust AL after Subtraction

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
2F DAS Invalid Valid Decimal adjust AL after
subtraction.
Description

Adjusts the result of the subtraction of two packed BCD values to create a packed
BCD result. The AL register is the implied source and destination operand. The DAS
instruction is only useful when it follows a SUB instruction that subtracts (binary
subtraction) one 2-digit, packed BCD value from another and stores a byte result in
the AL register. The DAS instruction then adjusts the contents of the AL register to
contain the correct 2-digit, packed BCD result. If a decimal borrow is detected, the CF
and AF flags are set accordingly.

This instruction executes as described above in compatibility mode and legacy mode.
It is not valid in 64-bit mode.

Operation

IF 64-Bit Mode
THEN
#UD;
ELSE
old_AL <AL
old_CF «CF;
CF «0;
IF (((AL AND OFH) >9) or AF = 1)
THEN
AL <AL - 6;
CF «old_CF or (Borrow from AL <AL —6);
AF «1;
ELSE
AF «0;
Fl;
IF ((old_AL >9SH) or (old_CF = 1))
THEN
AL <AL —60H;
CF «1;
Fl;
Fl;

DAS—Decimal Adjust AL after Subtraction Vol.2A 3-285

INSTRUCTION SET REFERENCE, A-M

Example

SUB AL BL Before: AL=35H, BL = 47H, EFLAGS(OSZAPC) = XXXXXX
After: AL = EEH, BL = 47H, EFLAGS(0SZAPC)= 010111

DAA Before: AL = EEH, BL = 47H, EFLAGS(0OSZAPC) = 010111
After: AL = 88H, BL = 47H, EFLAGS(0SZAPC) = X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal borrow
in either digit of the result (see the “Operation” section above). The SF, ZF, and PF
flags are set according to the result. The OF flag is undefined.

Protected Mode Exceptions
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
#UD If the LOCK prefix is used.

64-Bit Mode Exceptions
#UD If in 64-bit mode.

3-286 Vol. 2A DAS—Decimal Adjust AL after Subtraction

INSTRUCTION SET REFERENCE, A-M

DEC—Decrement by 1

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
FE/ DEC r/m8 Valid Valid Decrement r/m8by 1.
REX + FE /1 DEC r/m8 Valid N.E. Decrement r/m8by 1.
FF /1 DEC r/m16 Valid Valid Decrement r/m16 by 1.
FF /1 DEC r/m32 Valid Valid Decrement r/m32by 1.
REXW +FF /1 DEC r/m64 Valid N.E. Decrement r/m64 by 1.
48+rw DECri6 N.E. Valid Decrement r16by 1.
48+rd DEC r32 N.E. Valid Decrement r32 by 1.
NOTES:

* |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Subtracts 1 from the destination operand, while preserving the state of the CF flag.
The destination operand can be a register or a memory location. This instruction
allows a loop counter to be updated without disturbing the CF flag. (To perform a
decrement operation that updates the CF flag, use a SUB instruction with an imme-
diate operand of 1.)

This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically.

In 64-bit mode, DEC r16 and DEC r32 are not encodable (because opcodes 48H
through 4FH are REX prefixes). Otherwise, the instruction’s 64-bit mode default
operation size is 32 bits. Use of the REX.R prefix permits access to additional regis-
ters (R8-R15). Use of the REX.W prefix promotes operation to 64 bits.

See the summary chart at the beginning of this section for encoding data and limits.

Operation

DEST «DEST - 1;

Flags Affected

The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the
result.

DEC—Decrement by 1 Vol.2A 3-287

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) If a page fault occurs.

3-288 Vol. 2A DEC—Decrement by 1

INSTRUCTION SET REFERENCE, A-M

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used but the destination is not a memory
operand.

DEC—Decrement by 1 Vol.2A 3-289

INSTRUCTION SET REFERENCE, A-M

DIV—Unsigned Divide

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

F6 /6 DIV r/m8 Valid Valid Unsigned divide AX by r/m8, with

result stored in AL «<Quotient, AH «
Remainder.

REX + F6 /6 DIV /m8’ Valid N.E. Unsigned divide AX by r/m8, with
result stored in AL «Quotient, AH «
Remainder.

F7 /6 DIV r/m16 Valid Valid Unsigned divide DX:AX by r/m16, with
result stored in AX «<Quotient, DX «
Remainder.

F7 /6 DIV r/m32 Valid Valid Unsigned divide EDX:EAX by r/m32,
with result stored in EAX «Quotient,
EDX «Remainder.

REXW +F7/6 DIVr/m64 Valid N.E. Unsigned divide RDX:RAX by r/m64,
with result stored in RAX «Quotient,
RDX «Remainder.

NOTES:

* |n 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is
used: AH, BH, CH, DH.

Description

Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers (divi-
dend) by the source operand (divisor) and stores the result in the AX (AH:AL),
DX:AX, EDX:EAX, or RDX:RAX registers. The source operand can be a general-
purpose register or a memory location. The action of this instruction depends on the
operand size (dividend/divisor). Division using 64-bit operand is available only in
64-bit mode.

Non-integral results are truncated (chopped) towards 0. The remainder is always less
than the divisor in magnitude. Overflow is indicated with the #DE (divide error)
exception rather than with the CF flag.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R
prefix permits access to additional registers (R8-R15). Use of the REX.W prefix
promotes operation to 64 bits. In 64-bit mode when REX.W is applied, the instruction
divides the unsigned value in RDX:RAX by the source operand and stores the
quotient in RAX, the remainder in RDX.

See the summary chart at the beginning of this section for encoding data and limits.
See Table 3-28.

3-290 Vol.2A DIV—Unsigned Divide

INSTRUCTION SET REFERENCE, A-M

Table 3-28. DIV Action

Maximum

Operand Size Dividend Divisor Quotient Remainder Quotient
Word/byte AX r/m8 AL AH 255
Doubleword/word DX:AX r/m16 AX DX 65,535
Quadword/doubleword EDX:EAX r/m32 EAX EDX 232 -1
Doublequadword/ RDX:RAX r/me4 RAX RDX 264 -1
quadword

Operation

IFSRC=0

THEN #DE; FI; (* Divide Error *)
IF OperandSize = 8 (* Word/Byte Operation *)

THEN
temp <AX/SRC;
IF temp >FFH
THEN #DE; (* Divide error *)
ELSE
AL «temp;
AH <AX MOD SRC;
Fl;
ELSE IF OperandSize = 16 (* Doubleword/word operation *)
THEN
temp «DX:AX / SRC;
IF temp >FFFFH
THEN #DE; (* Divide error *)
ELSE
AX «temp;
DX «DX:AX MOD SRC;
Fl;
Fl;
ELSE IF Operandsize = 32 (* Quadword/doubleword operation *)
THEN
temp «EDX:EAX / SRC;
IF temp > FFFFFFFFH
THEN #DE; (* Divide error *)
ELSE
EAX «temp;
EDX «EDX:EAX MOD SRC;
Fl;
Fl;

DIV—Unsigned Divide Vol.2A 3-291

INSTRUCTION SET REFERENCE, A-M

ELSE IF 64-Bit Mode and Operandsize = 64 (* Doublequadword/quadword operation *)

THEN

temp «RDX:RAX / SRC;
IF temp > FFFFFFFFFFFFFFFFH
THEN #DE; (* Divide error *)

ELSE
RAX «temp;
RDX «RDX:RAX MOD SRC;
FI;
Fl;
Fl;
Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#DE

#GP(0)

#55(0)

#PF(fault-code)
#AC(0)

#UD

If the source operand (divisor) is 0
If the quotient is too large for the designated register.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#DE

#GP

#55(0)

#UD

3-292 Vol.2A

If the source operand (divisor) is 0.
If the quotient is too large for the designated register.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment
selector.

If a memory operand effective address is outside the SS
segment limit.

If the LOCK prefix is used.

DIV—Unsigned Divide

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

#DE

#GP(0)
#SS

#PF(fault-code)
#AC(0)

#UD

If the source operand (divisor) is 0.
If the quotient is too large for the designated register.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If a memory operand effective address is outside the SS
segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)
#DE

#PF(fault-code)
#AC(0)

#UD

DIV—Unsigned Divide

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.

If the source operand (divisor) is O

If the quotient is too large for the designated register.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Vol.2A 3-293

INSTRUCTION SET REFERENCE, A-M

DIVPD—Divide Packed Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
66 OF 5E/r DIVPD xmm1, Valid Valid Divide packed double-precision floating-
xmm2/m128 point values in xmm1 by packed double-
precision floating-point values
xmmZ2/m128.
Description

Performs a SIMD divide of the two packed double-precision floating-point values in
the destination operand (first operand) by the two packed double-precision floating-
point values in the source operand (second operand), and stores the packed double-
precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Chapter 11 in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an overview of a SIMD double-precision floating-point
operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[63:0] < DEST[63:0]/ (SRC[63:0]);
DEST[127:64] «DEST[127:64] / (SRC[127:64]);

Intel C/C+Compiler Intrinsic Equivalent
DIVPD __m128d _mm_div_pd(__m128da, __m128db)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

3-294 Vol. 2A DIVPD—Divide Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.
#NM If CRO.TS[bit 3] = 1.

DIVPD—Divide Packed Double-Precision Floating-Point Values Vol.2A 3-295

INSTRUCTION SET REFERENCE, A-M

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.
#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

3-296 Vol. 2A DIVPD—Divide Packed Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

DIVPS—Divide Packed Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
OF 5E/r DIVPS xmmT, Valid Valid Divide packed single-precision floating-
xmmZ2/m128 point values in xmm1 by packed single-
precision floating-point values
xmm2/m128.
Description

Performs a SIMD divide of the four packed single-precision floating-point values in
the destination operand (first operand) by the four packed single-precision floating-
point values in the source operand (second operand), and stores the packed single-
precision floating-point results in the destination operand. The source operand can
be an XMM register or a 128-bit memory location. The destination operand is an XMM
register. See Chapter 10 in the Inte/l® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1, for an overview of a SIMD single-precision floating-point
operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation

DEST[31:0] «DEST[31:0] / (SRC[31:0]);
DEST[63:32] «DEST[63:32] / (SRC[63:32]);
DEST[95:64] « DEST[95:64] / (SRC[95:64]);
DEST[127:96] «DEST[127:96] / (SRC[127:96]);

Intel C/C+Compiler Intrinsic Equivalent
DIVPS __m128 _mm_div_ps(__m128a,__m128b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.
#PF(fault-code) For a page fault.

DIVPS—Divide Packed Single-Precision Floating-Point Values Vol.2A 3-297

INSTRUCTION SET REFERENCE, A-M

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.
#GP(0) If the memory address is in a non-canonical form.

If memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#PF(fault-code) For a page fault.

3-298 Vol. 2A DIVPS—Divide Packed Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

DIVPS—Divide Packed Single-Precision Floating-Point Values Vol.2A 3-299

INSTRUCTION SET REFERENCE, A-M

DIVSD—Divide Scalar Double-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
F2 OF5€/r DIVSD xmm1, Valid Valid Divide low double-precision floating-
xmmZ2/m64 point value n xmm1 by low double-
precision floating-point value in
xmmZ/mem64.
Description

Divides the low double-precision floating-point value in the destination operand (first
operand) by the low double-precision floating-point value in the source operand
(second operand), and stores the double-precision floating-point result in the desti-
nation operand. The source operand can be an XMM register or a 64-bit memory
location. The destination operand is an XMM register. The high quadword of the desti-
nation operand remains unchanged. See Chapter 11 in the Inte/l® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for an overview of a scalar
double-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation
DEST[63:0]«-DEST[63:0]/ SRC[63:0];
(* DEST[127:64] unchanged *)

Intel C/C+Compiler Intrinsic Equivalent
DIVSD __m128d _mm_div_sd (m128d a, m128d b)

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

3-300 Vol. 2A DIVSD—Divide Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

DIVSD—Divide Scalar Double-Precision Floating-Point Values Vol.2A 3-301

INSTRUCTION SET REFERENCE, A-M

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE2[bit 26] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

3-302 Vol. 2A DIVSD—Divide Scalar Double-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

DIVSS—Divide Scalar Single-Precision Floating-Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg
Mode
F30OF5€/r DIVSS xmm], Valid Valid Divide low single-precision floating-
xmmZ2/m32 point value in xmm1 by low single-
precision floating-point value in
xmmZ2/m32.
Description

Divides the low single-precision floating-point value in the destination operand (first
operand) by the low single-precision floating-point value in the source operand
(second operand), and stores the single-precision floating-point result in the destina-
tion operand. The source operand can be an XMM register or a 32-bit memory loca-
tion. The destination operand is an XMM register. The three high-order doublewords
of the destination operand remain unchanged. See Chapter 10 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 1, for an overview of a
scalar single-precision floating-point operation.

In 64-bit mode, use of the REX.R prefix permits this instruction to access additional
registers (XMM8-XMM15).

Operation
DEST[31:0]«DEST[31:0]/ SRC[31:0];
(* DEST[127:32] unchanged *)

Intel C/C+Compiler Intrinsic Equivalent

DIVSS __m128 _mm_div_ss(__m1283a,__m128b)

SIMD Floating-Point Exceptions

Overflow, Underflow, Invalid, Divide-by-Zero, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

DIVSS—Divide Scalar Single-Precision Floating-Point Values Vol.2A 3-303

INSTRUCTION SET REFERENCE, A-M

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

GP(0) If any part of the operand lies outside the effective address
space from 0 to FFFFH.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.
#PF(fault-code) For a page fault.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

#UD If an unmasked SIMD floating-point exception and CR4.0SXM-

MEXCPT[bit 10] = 0.

3-304 Vol. 2A DIVSS—Divide Scalar Single-Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.0O1H:EDX.SSE[bit 25] = 0.
If the LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

DIVSS—Divide Scalar Single-Precision Floating-Point Values Vol.2A 3-305

INSTRUCTION SET REFERENCE, A-M

DPPD — Dot Product of Packed Double Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3A DPPD xmm1, Valid Valid Selectively multiply packed DP floating-
41 /rib xmm2/m128, point values from xmm1 with packed DP
imm8 floating-point values from xmmZ2, add
and selectively store the packed DP
floating-point values to xmm1.

Description

Conditionally multiplies the packed double-precision floating-point values in the
destination operand (first operand) with the packed double-precision floating-point
values in the source (second operand) depending on a mask extracted from bits
[5:4] of the immediate operand (third operand). If a condition mask bit is zero, the
corresponding multiplication is replaced by a value of 0.0.

The two resulting double-precision values are summed into an intermediate result.
The intermediate result is conditionally broadcasted to the destination using a broad-
cast mask specified by bits [1:0] of the immediate byte.

If a broadcast mask bit is "1", the intermediate result is copied to the corresponding
gword element in the destination operand. If a broadcast mask bit is zero, the corre-
sponding element in the destination is set to zero.

DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual,
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Hori-
zontal propagation of NaNs to the destination and the positioning of those NaNs in
the destination is implementation dependent. NaNs on the input sources or compu-
tationally generated NaNs will have at least one NaN propagated to the destination.

Operation

IF (imm8[4] = 1)
THEN Temp1[63:0] €< DEST[63:0] * SRC[63:0];
ELSE Temp1[63:0] <« +0.0; FI;
IF (imm8[5] = 1)
THEN Temp1[127:64] < DEST[127:64] * SRC[127:64];
ELSE Temp1[127:64] €« +0.0; FI;

Temp2[63:0] €« Temp1[63:0] + Temp1[127:64];

IF (imm8[0] = 1)
THEN DEST[63:0] & Temp2[63:0];

3-306 Vol. 2A DPPD — Dot Product of Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

ELSE DEST[63:0] & +0.0; FI;

IF (imm8[1]= 1)
THEN DEST[127:64] < Temp2[63:0];
ELSE DEST[127:64] € +0.0; F;

Flags Affected
None

Intel C/C++ Compiler Intrinsic Equivalent

DPPD _ m128d _mm_dp_pd (__m128da, __m128d b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Exceptions are determined separately for each add and multiply operation.
Unmasked exceptions will leave the destination untouched.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.
If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If an unmasked SIMD floating-point exception and OSXM-

MEXCPT in CR4 is 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

DPPD — Dot Product of Packed Double Precision Floating-Point Values Vol.2A 3-307

INSTRUCTION SET REFERENCE, A-M

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

3-308 Vol. 2A DPPD — Dot Product of Packed Double Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

DPPS — Dot Product of Packed Single Precision Floating-Point Values

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3A DPPS xmm], Valid Valid Selectively multiply packed SP floating-
40/rib xmmZ2/m128, point values from xmm1 with packed SP
imm8 floating-point values from xmmZ, add

and selectively store the packed SP
floating-point values or zero values to
xmm1.

Description

Conditionally multiplies the packed single precision floating-point values in the desti-
nation operand (first operand) with the packed single-precision floats in the source
(second operand) depending on a mask extracted from the high 4 bits of the imme-
diate byte (third operand). If a condition mask bit in Imm8[7:4] is zero, the corre-
sponding multiplication is replaced by a value of 0.0.

The four resulting single-precision values are summed into an intermediate result.
The intermediate result is conditionally broadcasted to the destination using a broad-
cast mask specified by bits [3:0] of the immediate byte..

If a broadcast mask bit is "1", the intermediate result is copied to the corresponding
dword element in the destination operand. If a broadcast mask bit is zero, the corre-
sponding element in the destination is set to zero.

DPPS follows the NaN forwarding rules stated in the Software Developer’s Manual,
vol. 1, table 4.7. These rules do not cover horizontal prioritization of NaNs. Hori-
zontal propagation of NaNs to the destination and the positioning of those NaNs in
the destination is implementation dependent. NaNs on the input sources or compu-
tationally generated NaNs will have at least one NaN propagated to the destination.

Operation

IF (imm8[4] == 1)
THEN Temp1[31:0] €« DEST[31:0] * SRC[31:0];
ELSE Temp1[31:0] € +0.0; FI;

IF (imm8[5] == 1)
THEN Temp1[63:32] € DEST[63:32] * SRC[63:32];
ELSE Temp1[63:32] < +0.0; FI;

IF (imm8[6] == 1)
THEN Temp1[95:64] < DEST[95:64] * SRC[95:64];
ELSE Temp1[95:64] < +0.0; FI;

IF (imm8[7] == 1)
THEN Temp1[127:96] €< DEST[127:96] * SRC[127:96];

DPPS — Dot Product of Packed Single Precision Floating-Point Values Vol.2A 3-309

INSTRUCTION SET REFERENCE, A-M

ELSE Temp1[127:96] < +0.0; FI;

Temp2[31:0] € Temp1[31:0] + Temp1[63:32];
Temp3[31:0] & Temp1[95:64] + Temp1[127:96];
Temp4[31:0] €« Temp2[31:0] + Temp3[31:0];

IF (imm8[0] == 1)

THEN DEST[31:0] & Temp4[31:0];
ELSE DEST[31:0] & +0.0; FI;

IF (imm8[1] == 1)

THEN DEST[63:32] & Temp4[31:0];
ELSE DEST[63:32] < +0.0; Fl;

IF (imm8[2] == 1)

THEN DEST[95:64] < Temp4[31:0];
ELSE DEST[95:64] < +0.0; Fl;

IF (imm8[3] == 1)

THEN DEST[127:96] & Temp4[31:0];
ELSE DEST[127:96] < +0.0; FI;

Intel C/C++ Compiler Intrinsic Equivalent

DPPS __ m128 _mm_dp_ps(__m128a,_m128 b, const int mask);

SIMD Floating-Point Exceptions
Overflow, Underflow, Invalid, Precision, Denormal

Exceptions are determined separately for each add and multiply operation.
Unmasked exceptions will leave the destination untouched.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#NM

#UD

3-310 Vol.2A

For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

For an illegal address in the SS segment.
For a page fault.
If CRO.TS[bit 3] = 1.

If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If CRO.EM[bit 2] = 1.
If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.

DPPS — Dot Product of Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from 0 to OFFFFH.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#NM If CRO.TS[bit 3] = 1.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.

If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

If a memory operand is not aligned on a 16-byte boundary,
regardless of segment.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.
#NM If TS in CRO is set.

#UD If an unmasked SIMD floating-point exception and OSXM-
MEXCPT in CR4 is 0.

If EM in CRO is set.

If OSFXSR in CR4 is 0.

If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

DPPS — Dot Product of Packed Single Precision Floating-Point Values Vol.2A 3-311

INSTRUCTION SET REFERENCE, A-M

#XM If an unmasked SIMD floating-point exception and CR4.0SXM-
MEXCPT[bit 10] = 1.

3-312 Vol. 2A DPPS — Dot Product of Packed Single Precision Floating-Point Values

INSTRUCTION SET REFERENCE, A-M

EMMS—Empty MMX Technology State

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
OF 77 EMMS Valid Valid Set the x87 FPU tag word to empty.
Description

Sets the values of all the tags in the x87 FPU tag word to empty (all 1s). This opera-
tion marks the x87 FPU data registers (which are aliased to the MMX technology
registers) as available for use by x87 FPU floating-point instructions. (See Figure 8-7
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for
the format of the x87 FPU tag word.) All other MMX instructions (other than the
EMMS instruction) set all the tags in x87 FPU tag word to valid (all 0s).

The EMMS instruction must be used to clear the MMX technology state at the end of
all MMX technology procedures or subroutines and before calling other procedures or
subroutines that may execute x87 floating-point instructions. If a floating-point
instruction loads one of the registers in the x87 FPU data register stack before the
x87 FPU tag word has been reset by the EMMS instruction, an x87 floating-point
register stack overflow can occur that will result in an x87 floating-point exception or
incorrect result.

EMMS operation is the same in non-64-bit modes and 64-bit mode.

Operation

x87FPUTagWord «FFFFH;

Intel C/C+Compiler Intrinsic Equivalent

void _mm_empty()

Flags Affected

None.

Protected Mode Exceptions

#UD If CRO.EM[bit 2] = 1.

#NM If CRO.TS[bit 3] = 1.

#MF If there is a pending FPU exception.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

Same exceptions as in protected mode.

EMMS—Empty MMX Technology State Vol.2A 3-313

INSTRUCTION SET REFERENCE, A-M

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

3-314 Vol.2A

EMMS—Empty MMX Technology State

INSTRUCTION SET REFERENCE, A-M

ENTER—Make Stack Frame for Procedure Parameters

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

C8iw00 ENTER imm16,0 Valid Valid Create a stack frame for a
procedure.

(8 iw 01 ENTER imm16,1 Valid Valid Create a nested stack frame for a
procedure.

C8iwib ENTER imm16, imm8 Valid Valid Create a nested stack frame for a
procedure.

Description

Creates a stack frame for a procedure. The first operand (size operand) specifies the
size of the stack frame (that is, the number of bytes of dynamic storage allocated on
the stack for the procedure). The second operand (nesting level operand) gives the
lexical nesting level (0 to 31) of the procedure. The nesting level determines the
number of stack frame pointers that are copied into the “display area” of the new
stack frame from the preceding frame. Both of these operands are immediate values.

The stack-size attribute determines whether the BP (16 bits), EBP (32 bits), or RBP
(64 bits) register specifies the current frame pointer and whether SP (16 bits), ESP
(32 bits), or RSP (64 bits) specifies the stack pointer. In 64-bit mode, stack-size
attribute is always 64-bits.

The ENTER and companion LEAVE instructions are provided to support block struc-
tured languages. The ENTER instruction (when used) is typically the first instruction
in a procedure and is used to set up a new stack frame for a procedure. The LEAVE
instruction is then used at the end of the procedure (just before the RET instruction)
to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the BP/EBP/RBP
register onto the stack, copies the current stack pointer from the SP/ESP/RSP
register into the BP/EBP/RBP register, and loads the SP/ESP/RSP register with the
current stack-pointer value minus the value in the size operand. For nesting levels of
1 or greater, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer. These additional frame pointers provide the called proce-
dure with access points to other nested frames on the stack. See “Procedure Calls for
Block-Structured Languages” in Chapter 6 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 1, for more information about the actions of
the ENTER instruction.

The ENTER instruction causes a page fault whenever a write using the final value of
the stack pointer (within the current stack segment) would do so.

In 64-bit mode, default operation size is 64 bits; 32-bit operation size cannot be
encoded.

ENTER—Make Stack Frame for Procedure Parameters Vol. 2A 3-315

INSTRUCTION SET REFERENCE, A-M

Operation

NestingLevel «<—NestingLevel MOD 32
IF 64-Bit Mode (StackSize = 64)
THEN
Push(RBP);
FrameTemp «<RSP;
ELSE IF StackSize = 32
THEN
Push(EBP);
FrameTemp «ESP; FI;
ELSE (* StackSize =16 *)
Push(BP);
FrameTemp «-SP;

Fl;
IF NestingLevel =0

THEN GOTO CONTINUE;
Fl;

IF (NestingLevel > 1)
THEN FOR i <1 to (NestingLevel - 1)
DO
IF 64-Bit Mode (StackSize = 64)
THEN
RBP «RBP - 8;
Push([RBP]); (* Quadword push *)
ELSE IF OperandSize = 32
THEN
IF StackSize = 32
EBP «EBP - 4;
Push([EBPY); (* Doubleword push *)
ELSE (* StackSize = 16 *)
BP «BP - 4;
Push([BP]); (* Doubleword push *)
Fl;
Fl;
ELSE (* OperandSize = 16 *)
IF StackSize = 32
THEN
EBP «EBP - 2;
Push([EBPY); (* Word push *)
ELSE (* StackSize = 16 *)
BP «BP-2;
Push([BP1); (* Word push *)

3-316 Vol.2A ENTER—Make Stack Frame for Procedure Parameters

Fl;
Fl;
0D;
Fl;

IF 64-Bit Mode (StackSize = 64)
THEN

Push(FrameTemp); (* Quadword push *)

ELSE IF OperandSize = 32
THEN

Push(FrameTemp); FI; (* Doubleword push *)

ELSE (* OperandSize = 16 *)

Push(FrameTemp); (* Word push *)

Fl;

CONTINUE:
IF 64-Bit Mode (StackSize = 64)
THEN
RBP «FrameTemp;
RSP «RSP —Size;
ELSE IF StackSize = 32
THEN
EBP «FrameTemp;
ESP «ESP —Size; FI;
ELSE (* StackSize = 16 *)
BP «FrameTemp;

SP «SP —Size;
Fl;
END;
Flags Affected
None.

Protected Mode Exceptions

INSTRUCTION SET REFERENCE, A-M

#SS(0) If the new value of the SP or ESP register is outside the stack

segment limit.

#PF(fault-code) If a page fault occurs or if a write using the final value of the
stack pointer (within the current stack segment) would cause a

page fault.
#UD If the LOCK prefix is used.

ENTER—Make Stack Frame for Procedure Parameters

Vol.2A 3-317

INSTRUCTION SET REFERENCE, A-M

Real-Address Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack
segment limit.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack
segment limit.

#PF(fault-code) If a page fault occurs or if a write using the final value of the
stack pointer (within the current stack segment) would cause a
page fault.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#SS(0) If the stack address is in a non-canonical form.

#PF(fault-code) If a page fault occurs or if a write using the final value of the
stack pointer (within the current stack segment) would cause a
page fault.

#UD If the LOCK prefix is used.

3-318 Vol.2A ENTER—Make Stack Frame for Procedure Parameters

INSTRUCTION SET REFERENCE, A-M

EXTRACTPS — Extract Packed Single Precision Floating-Point Value

Opcode Instruction 64-bit Compat/ Description
Mode Leg Mode
66 OF 3A 17 EXTRACTPS r/m32, Valid Valid Extract a single-precision
/rib xmmZ2, imm8 floating-point value from xmmZ2

at the source offset specified by
imm8 and store the result to

r/m32.
66 REXW OF EXTRACTPS r64/m32, Valid N.E. Extract a single-precision
3A17/rib xmmZ2, imm8 floating-point value from xmmZ2

at the source offset specified by
imm8 and store the result to
r64/m32. Zero extend the result.

Description

Extract a single-precision floating-point value from the source xmm register (second
argument) at an offset determined by imm8[1-0]*32. The extracted single precision
floating-point value is stored into the low 32-bits of the destination register or to the
32-bit memory location.

When a REX.W prefix is used in 64-bit mode to a general purpose register (GPR), the
packed single quantity is zero extended to 64 bits.

Operation

IF (64-Bit Mode and REX.W used and the destination is a GPR)
THEN
DEST[31:0] € (SRC >> (32 * imm8[1:0])) AND OFFFFFFFFh;
DEST[63:32] € ZERO_FILL;
ELSE
DEST[31:0] € (SRC >> (32 * imm8[1:0])) AND OFFFFFFFFh;
Fl;

Intel C/C++ Compiler Intrinsic Equivalent

EXTRACTPS int _mm_extract_ps(__m128 src, const int ndx);

SIMD Floating-Point Exceptions
None

EXTRACTPS — Extract Packed Single Precision Floating-Point Value Vol.2A 3-319

INSTRUCTION SET REFERENCE, A-M

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS,
ES, FS, or GS segments.

#SS(0) For an illegal address in the SS segment.

#PF(fault-code) For a page fault.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

Real Mode Exceptions

#GP(0) if any part of the operand lies outside of the effective address
space from O to OFFFFH.

#NM If CRO.TS[bit 3] = 1.

#UD If CRO.EM[bit 2] = 1.

If CR4.0SFXSR[bit 9] = 0.
If CPUID.01H:ECX.SSE4_1[bit 19] = 0.
If LOCK prefix is used.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#PF(fault-code) For a page fault.

Compatibility Mode Exceptions
Same exceptions as in Protected Mode.

3-320 Vol.2A EXTRACTPS — Extract Packed Single Precision Floating-Point Value

INSTRUCTION SET REFERENCE, A-M

64-Bit Mode Exceptions
#GP(0) If the memory address is in a non-canonical form.

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#NM If TS in CRO is set.

#UD If EM in CRO is set.
If OSFXSR in CR4 is 0.
If CPUID feature flag ECX.SSE4_1 is 0.
If LOCK prefix is used.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

EXTRACTPS — Extract Packed Single Precision Floating-Point Value Vol.2A 3-321

INSTRUCTION SET REFERENCE, A-M

F2XM1—Compute 2*-1

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
D9 FO F2XM1 Valid Valid Replace ST(0) with (257© - 1).
Description

Computes the exponential value of 2 to the power of the source operand minus 1.
The source operand is located in register ST(0) and the result is also stored in ST(0).
The value of the source operand must lie in the range -1.0 to 4.0. If the source value
is outside this range, the result is undefined.

The following table shows the results obtained when computing the exponential
value of various classes of numbers, assuming that neither overflow nor underflow
occurs.

Table 3-29. Results Obtained from F2XM1

ST(0) SRC ST(0) DEST
4.0to0 -0.5t0-0
-0 -0
+0 +0

+0toH.0 01t01.0

Values other than 2 can be exponentiated using the following formula:

XY (v * 10g,x)
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

ST(0) (2570 1),

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Co, C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.
#IA Source operand is an SNaN value or unsupported format.
#D Source is a denormal value.

3-322 Vol.2A F2XM1—Compute 2x-1

INSTRUCTION SET REFERENCE, A-M

#U Result is too small for destination format.
#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

F2XM1—Compute 2x-1 Vol.2A 3-323

INSTRUCTION SET REFERENCE, A-M

FABS—Absolute Value

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
D9 E1 FABS Valid Valid Replace ST with its absolute value.
Description

Clears the sign bit of ST(0) to create the absolute value of the operand. The following
table shows the results obtained when creating the absolute value of various classes
of numbers.

Table 3-30. Results Obtained from FABS

ST(0) SRC ST(0) DEST
e +eo
-F +F
-0 +0
+0 +0
+F +F
+e +e
NaN NaN

NOTES:
F Means finite floating-point value.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
ST(0) HST(O)I:
FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 0.
Co, C2,C3 Undefined.

Floating-Point Exceptions
#1S Stack underflow occurred.

Protected Mode Exceptions
#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

3-324 Vol.2A FABS—ADbsolute Value

INSTRUCTION SET REFERENCE, A-M
Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

FABS—ADbsolute Value Vol. 2A 3-325

INSTRUCTION SET REFERENCE, A-M

FADD/FADDP/FIADD—Add

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

D8 /0 FADD m32fp Valid Valid Add m32fp to ST(0) and store result
in ST(0).

DC/0 FADD m64fp Valid Valid Add m64fp to ST(0) and store result
in ST(0).

D8 CO+i FADD ST(0), ST(i) Valid Valid Add ST(0) to ST(i) and store result in
ST(0).

DC CO+i FADD ST(i), ST(0) Valid Valid Add ST(i) to ST(0) and store result in
ST(i).

DE CO+i FADDP ST(i), ST(0) Valid Valid Add ST(0) to ST(i), store result in
ST(i), and pop the register stack.

DECT FADDP Valid Valid Add ST(0) to ST(1), store result in
ST(1), and pop the register stack.

DA /O FIADD m32int Valid Valid Add m32int to ST(0) and store
result in ST(0).

DE /O FIADD m16int Valid Valid Add m16int to ST(0) and store
result in ST(0).

Description

Adds the destination and source operands and stores the sum in the destination loca-
tion. The destination operand is always an FPU register; the source operand can be a
register or a memory location. Source operands in memory can be in single-precision
or double-precision floating-point format or in word or doubleword integer format.

The no-operand version of the instruction adds the contents of the ST(0) register to
the ST(1) register. The one-operand version adds the contents of a memory location
(either a floating-point or an integer value) to the contents of the ST(0) register. The
two-operand version, adds the contents of the ST(0) register to the ST(i) register or
vice versa. The value in ST(0) can be doubled by coding:

FADD ST(0), ST(O);

The FADDP instructions perform the additional operation of popping the FPU register
stack after storing the result. To pop the register stack, the processor marks the
ST(0) register as empty and increments the stack pointer (TOP) by 1. (The no-
operand version of the floating-point add instructions always results in the register
stack being popped. In some assemblers, the mnemonic for this instruction is FADD
rather than FADDP.)

The FIADD instructions convert an integer source operand to double extended-preci-
sion floating-point format before performing the addition.

3-326 Vol.2A FADD/FADDP/FIADD—Add

INSTRUCTION SET REFERENCE, A-M

The table on the following page shows the results obtained when adding various
classes of numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signs is 0, the result is 4, except for the
round toward --mode, in which case the result is -0. When the source operand is an
integer O, it is treated as a 0.

When both operand are infinities of the same sign, the result is «of the expected
sign. If both operands are infinities of opposite signs, an invalid-operation exception
is generated. See Table 3-31.

Table 3-31. FADD/FADDP/FIADD Results

DEST

oo £] © + +oo NaN

oo o0 oo -0 00 -c0 * NaN

For4 |- F SRC SRC Hord) | +e NaN

SRC 0 -o0 DEST 0 10 DEST +oo NaN
] -o0 DEST 10 0 DEST +oo NaN

+or+4 -o0 H#or0 |SRC SRC + +oo NaN

too * foo +oo +oo +oo +oo NaN

NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite floating-point value.

| Means integer.

* Indicates floating-point invalid-arithmetic-operand (#1A) exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

IF Instruction = FIADD
THEN
DEST «DEST +ConvertToDoubleExtendedPrecisionFP(SRC);
ELSE (* Source operand is floating-point value *)
DEST «DEST +SRC;
Fl;

IF Instruction = FADDP
THEN
PopRegisterStack;
Fl;

FADD/FADDP/FIADD—Add Vol.2A 3-327

INSTRUCTION SET REFERENCE, A-M

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Co, C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

#IA Operand is an SNaN value or unsupported format.
Operands are infinities of unlike sign.

#D Source operand is a denormal value.

#U Result is too small for destination format.

#0 Result is too large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS(0) If a memory operand effective address is outside the SS

segment limit.

3-328 Vol. 2A FADD/FADDP/FIADD—Add

#NM
#PF(fault-code)
#AC(0)

#UD

INSTRUCTION SET REFERENCE, A-M

CRO.EM[bit 2] or CRO.TS[bit 3] = 1.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0)

#GP(0)

#NM

#MF
#PF(fault-code)
#AC(0)

#UD

FADD/FADDP/FIADD—Add

If a memory address referencing the SS segment is in a non-
canonical form.

If the memory address is in a non-canonical form.
CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

If there is a pending x87 FPU exception.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

If the LOCK prefix is used.

Vol.2A 3-329

INSTRUCTION SET REFERENCE, A-M

FBLD—Load Binary Coded Decimal

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
DF /4 FBLD m80 dec Valid Valid Convert BCD value to floating-point and
push onto the FPU stack.
Description

Converts the BCD source operand into double extended-precision floating-point
format and pushes the value onto the FPU stack. The source operand is loaded
without rounding errors. The sign of the source operand is preserved, including that
of -0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction
does not check for invalid digits (AH through FH). Attempting to load an invalid
encoding produces an undefined result.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

TOP «TOP -1;
ST(0) «LConvertToDoubleExtendedPrecisionFP(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, set to 0.
Co, C2,C3 Undefined.

Floating-Point Exceptions
#1S Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

3-330 Vol. 2A FBLD—Load Binary Coded Decimal

INSTRUCTION SET REFERENCE, A-M

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

FBLD—Load Binary Coded Decimal Vol.2A 3-331

INSTRUCTION SET REFERENCE, A-M

FBSTP—Store BCD Integer and Pop

Opcode Instruction 64-Bit Compat/ Description

Mode Leg Mode
DF /6 FBSTP m80bcd Valid Valid Store ST(0) in m80bcd and pop ST(0).
Description

Converts the value in the ST(0) register to an 18-digit packed BCD integer, stores the
result in the destination operand, and pops the register stack. If the source value is a
non-integral value, it is rounded to an integer value, according to rounding mode
specified by the RC field of the FPU control word. To pop the register stack, the
processor marks the ST(0) register as empty and increments the stack pointer (TOP)
by 1.

The destination operand specifies the address where the first byte destination value
is to be stored. The BCD value (including its sign bit) requires 10 bytes of space in
memory.

The following table shows the results obtained when storing various classes of
numbers in packed BCD format.

Table 3-32. FBSTP Results

ST(0) DEST

-+ or Value Too Large for DEST Format *

F<1 -D

4<F<-0 >

-0 -0

+0 +0

+0<F<H **

F>4 +D

+ or Value Too Large for DEST Format *
NaN *

NOTES:

F Means finite floating-point value.

D Means packed-BCD number.

* Indicates floating-point invalid-operation (#IA) exception.
**+40 or +1, depending on the rounding mode.

If the converted value is too large for the destination format, or if the source operand
is an « SNaN, QNAN, or is in an unsupported format, an invalid-arithmetic-operand
condition is signaled. If the invalid-operation exception is not masked, an invalid-

arithmetic-operand exception (#IA) is generated and no value is stored in the desti-

3-332 Vol. 2A FBSTP—Store BCD Integer and Pop

INSTRUCTION SET REFERENCE, A-M

nation operand. If the invalid-operation exception is masked, the packed BCD indef-
inite value is stored in memory.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

DEST «BCD(ST(0));
PopRegisterStack;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred.
Set if result was rounded up; cleared otherwise.
Co, C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

#IA Converted value that exceeds 18 BCD digits in length.
Source operand is an SNaN, QNaN, +, or in an unsupported
format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If a segment register is being loaded with a segment selector
that points to a non-writable segment.

If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.
#SS If a memory operand effective address is outside the SS

segment limit.

FBSTP—Store BCD Integer and Pop Vol.2A 3-333

INSTRUCTION SET REFERENCE, A-M

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

3-334 Vol. 2A FBSTP—Store BCD Integer and Pop

INSTRUCTION SET REFERENCE, A-M

FCHS—Change Sign

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode
DS EO FCHS Valid Valid Complements sign of ST(0).
Description

Complements the sign bit of ST(0). This operation changes a positive value into a
negative value of equal magnitude or vice versa. The following table shows the
results obtained when changing the sign of various classes of humbers.

Table 3-33. FCHS Results

ST(0) SRC ST(0) DEST
e +o
-F +
0 0
0 0
+ +
+o -
NaN NaN
NOTES:

* F means finite floating-point value.
This instruction’s operation is the same in non-64-bit modes and 64-bit mode.
Operation
SignBit(ST(0)) «NOT (SignBit(ST(0)));

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, set to 0.
Co, C2,C3 Undefined.

Floating-Point Exceptions
#1S Stack underflow occurred.

Protected Mode Exceptions
#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

FCHS—Change Sign Vol.2A 3-335

INSTRUCTION SET REFERENCE, A-M

Real-Address Mode Exceptions

Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions

Same exceptions as in protected mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

3-336 Vol.2A

FCHS—Change Sign

INSTRUCTION SET REFERENCE, A-M

FCLEX/FNCLEX—Clear Exceptions

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode
9BDBEZ2 FCLEX Valid Valid Clear floating-point exception flags after

checking for pending unmasked floating-
point exceptions.

DB E2 FNCLEX Valid Valid Clear floating-point exception flags
without checking for pending unmasked
floating-point exceptions.

NOTES:
* See |A-32 Architecture Compatibility section below.

Description

Clears the floating-point exception flags (PE, UE, OE, ZE, DE, and IE), the exception
summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU
status word. The FCLEX instruction checks for and handles any pending unmasked
floating-point exceptions before clearing the exception flags; the FNCLEX instruction
does not.

The assembler issues two instructions for the FCLEX instruction (an FWAIT instruc-
tion followed by an FNCLEX instruction), and the processor executes each of these

instructions separately. If an exception is generated for either of these instructions,
the save EIP points to the instruction that caused the exception.

IA-32 Architecture Compatibility

When operating a Pentium or Intel486 processor in MS-DOS* compatibility mode, it
is possible (under unusual circumstances) for an FNCLEX instruction to be inter-
rupted prior to being executed to handle a pending FPU exception. See the section
titled “"No-Wait FPU Instructions Can Get FPU Interrupt in Window” in Appendix D of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1, for a
description of these circumstances. An FNCLEX instruction cannot be interrupted in
this way on a Pentium 4, Intel Xeon, or P6 family processor.

This instruction affects only the x87 FPU floating-point exception flags. It does not
affect the SIMD floating-point exception flags in the MXCRS register.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

FPUStatusWord[0:7] «-0;
FPUStatusWord[15] «O0;

FCLEX/FNCLEX—Clear Exceptions Vol.2A 3-337

INSTRUCTION SET REFERENCE, A-M

FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared.
The CO, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

3-338 Vol.2A FCLEX/FNCLEX—Clear Exceptions

INSTRUCTION SET REFERENCE, A-M

FCMOVcc—Floating-Point Conditional Move

Opcode* Instruction 64-Bit Compat/ Description
Mode Leg Mode*

DA CO+i FCMOVB ST(0), ST(i) Valid Valid Move if below (CF=1).

DA C8+i FCMOVE ST(0), ST(i) Valid Valid Move if equal (ZF=1).

DA DO+i FCMOVBE ST(0), ST(i) Valid Valid Move if below or equal (CF=1 or
ZF=1).

DA D8+i FCMOVU ST(0), ST(i) Valid Valid Move if unordered (PF=1).

DB CO+i FCMOVNB ST(0), ST(i) Valid Valid Move if not below (CF=0).

DB C8+i FCMOVNE ST(0), ST(i) Valid Valid Move if not equal (ZF=0).

DB DO+i FCMOVNBE ST(0), ST(i) Valid Valid Move if not below or equal (CF=0
and ZF=0).

DB D8+i FCMOVNU ST(0), ST(i) Valid Valid Move if not unordered (PF=0).

NOTES:

* See |IA-32 Architecture Compatibility section below.

Description

Tests the status flags in the EFLAGS register and moves the source operand (second
operand) to the destination operand (first operand) if the given test condition is true.
The condition for each mnemonic os given in the Description column above and in
Chapter 7 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1. The source operand is always in the ST(i) register and the destination
operand is always ST(0).

The FCMOVCcc instructions are useful for optimizing small IF constructions. They also
help eliminate branching overhead for IF operations and the possibility of branch
mispredictions by the processor.

A processor may not support the FCMOVcc instructions. Software can check if the
FCMOVcc instructions are supported by checking the processor’s feature information
with the CPUID instruction (see "COMISS—Compare Scalar Ordered Single-Precision
Floating-Point Values and Set EFLAGS” in this chapter). If both the CMOV and FPU
feature bits are set, the FCMOVCcc instructions are supported.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The FCMOVcc instructions were introduced to the IA-32 Architecture in the P6 family
processors and are not available in earlier IA-32 processors.

FCMOVcc—Floating-Point Conditional Move Vol.2A 3-339

INSTRUCTION SET REFERENCE, A-M

Operation

IF condition TRUE
THEN ST(0) «ST(i);
Fl;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.
Co0, C2,C3 Undefined.

Floating-Point Exceptions

#1IS Stack underflow occurred.
Integer Flags Affected
None.

Protected Mode Exceptions
#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Mode Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

3-340 Vol. 2A FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-M

FCOM/FCOMP/FCOMPP—Compare Floating Point Values

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

D8 /2 FCOM m32fp Valid Valid Compare ST(0) with m32fp.

DC/2 FCOM m64fp Valid Valid Compare ST(0) with m64fp.

D8 DO+i FCOM ST(i) Valid Valid Compare ST(0) with ST(i).

D8 D1 FCOM Valid Valid Compare ST(0) with ST(1).

D8 /3 FCOMP m32fp Valid Valid Compare ST(0) with m32fp and
pop register stack.

DC/3 FCOMP m64fp Valid Valid Compare ST(0) with m64fp and
pop register stack.

D8 D8+i FCOMP ST(i) Valid Valid Compare ST(0) with ST(i) and pop
register stack.

D8 D9 FCOMP Valid Valid Compare ST(0) with ST(1) and pop
register stack.

DE D9 FCOMPP Valid Valid Compare ST(0) with ST(1) and pop
register stack twice.

Description

Compares the contents of register ST(0) and source value and sets condition code
flags CO, C2, and C3 in the FPU status word according to the results (see the table
below). The source operand can be a data register or a memory location. If no source
operand is given, the value in ST(0) is compared with the value in ST(1). The sign of
zero is ignored, so that -0.0 is equal to 0.0.

Table 3-34. FCOM/FCOMP/FCOMPP Results

Condition c3 c2 co
ST(0) >SRC 0 0 0
ST(0) < SRC 0 0 1
ST(0)=SRC 1 0 0

Unordered* 1 1 1

NOTES:

* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

This instruction checks the class of the numbers being compared (see "FXAM—Exam-
ineModR/M” in this chapter). If either operand is a NaN or is in an unsupported
format, an invalid-arithmetic-operand exception (#IA) is raised and, if the exception
is masked, the condition flags are set to “unordered.” If the invalid-arithmetic-
operand exception is unmasked, the condition code flags are not set.

FCMOVcc—Floating-Point Conditional Move

Vol. 2A 3-341

INSTRUCTION SET REFERENCE, A-M

The FCOMP instruction pops the register stack following the comparison operation
and the FCOMPP instruction pops the register stack twice following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1.

The FCOM instructions perform the same operation as the FUCOM instructions. The
only difference is how they handle QNaN operands. The FCOM instructions raise an
invalid-arithmetic-operand exception (#IA) when either or both of the operands is a
NaN value or is in an unsupported format. The FUCOM instructions perform the same
operation as the FCOM instructions, except that they do not generate an invalid-
arithmetic-operand exception for QNaNs.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation
CASE (relation of operands) OF
ST >SRC: (3, C2, CO «000;
ST < SRC: (3, C2,C0 «001;
ST=SRC (3, C2,C0 «100;
ESAC
IF ST(0) or SRC = NaN or unsupported format
THEN
#IA
IF FPUControlwWord.IM =1
THEN
(3,C2,C0«117;
FI;
Fl;
IF Instruction = FCOMP
THEN
PopRegisterStack;
Fl;
IF Instruction = FCOMPP
THEN
PopRegisterStack;
PopRegisterStack;

Fl;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.
Co, C2,C3 See table on previous page.

3-342 Vol.2A FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-M

Floating-Point Exceptions

#1S Stack underflow occurred.

#IA One or both operands are NaN values or have unsupported
formats.
Register is marked empty.

#D One or both operands are denormal values.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

If the DS, ES, FS, or GS register contains a NULL segment

selector.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS If a memory operand effective address is outside the SS
segment limit.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#SS(0) If a memory operand effective address is outside the SS
segment limit.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made.

#UD If the LOCK prefix is used.

FCMOVcc—Floating-Point Conditional Move Vol. 2A 3-343

INSTRUCTION SET REFERENCE, A-M

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#SS(0) If a memory address referencing the SS segment is in a non-
canonical form.

#GP(0) If the memory address is in a non-canonical form.

#NM CRO.EM[bit 2] or CRO.TS[bit 3] = 1.

#MF If there is a pending x87 FPU exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD If the LOCK prefix is used.

3-344 Vol. 2A FCMOVcc—Floating-Point Conditional Move

INSTRUCTION SET REFERENCE, A-M

FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Floating Point Values and
Set EFLAGS

Opcode Instruction 64-Bit Compat/ Description
Mode Leg Mode

DB FO+i FCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i) and set status
flags accordingly.

DF FO+i FCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), set status flags
accordingly, and pop register stack.

DB E8+i FUCOMI ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for
ordered values, and set status flags
accordingly.

DF E8+i FUCOMIP ST, ST(i) Valid Valid Compare ST(0) with ST(i), check for
ordered values, set status flags
accordingly, and pop register stack.

Description

Performs an unordered comparison of the contents of registers ST(0) and ST(i) and
sets the status flags ZF, PF, and CF in the EFLAGS register according to the results
(see the table below). The sign of zero is ignored for comparisons, so that -0.0 is
equal to 0.0.

Table 3-35. FCOMI/FCOMIP/ FUCOMI/FUCOMIP Results

Comparison Results* ZF PF CF
STO >ST(i) 0 0 0
STO < ST(i) 0 0 1
STO = ST(i) 1 0 0
Unordered** 1 1 1

NOTES:
* See the IA-32 Architecture Compatibility section below.
** Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

An unordered comparison checks the class of the numbers being compared (see
“"FXAM—ExamineModR/M" in this chapter). The FUCOMI/FUCOMIP instructions
perform the same operations as the FCOMI/FCOMIP instructions. The only difference
is that the FUCOMI/FUCOMIP instructions raise the invalid-arithmetic-operand
exception (#IA) only when either or both operands are an SNaN or are in an unsup-
ported format; QNaNs cause the condition code flags to be set to unordered, but do
not cause an exception to be generated. The FCOMI/FCOMIP instructions raise an
invalid-operation exception when either or both of the operands are a NaN value of
any kind or are in an unsupported format.

FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS Vol.2A 3-345

INSTRUCTION SET REFERENCE, A-M

If the operation results in an invalid-arithmetic-operand exception being raised, the
status flags in the EFLAGS register are set only if the exception is masked.

The FCOMI/FCOMIP and FUCOMI/FUCOMIP instructions clear the OF flag in the
EFLAGS register (regardless of whether an invalid-operation exception is detected).

The FCOMIP and FUCOMIP instructions also pop the register stack following the
comparison operation. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

IA-32 Architecture Compatibility

The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the IA-32
Architecture in the P6 family processors and are not available in earlier IA-32 proces-
sors.

Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF <000;
ST(0) < ST(i): ZF, PF, CF <001;
ST(0) = ST(i): ZF, PF, CF <100;

ESAC;
IF Instruction is FCOMI or FCOMIP
THEN
IF ST(0) or ST(i) = NaN or unsupported format
THEN
#IA
IF FPUControlword.IM = 1
THEN
ZF,PF, CF «1171;
Fl;
Fl;
Fl;
IF Instruction is FUCOMI or FUCOMIP
THEN
IF ST(O) or ST(i) = QNaN, but not SNaN or unsupported format

THEN
ZF,PF, CF «111;
ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
HIA;
IF FPUControlWord.IM =1
THEN

3-346 Vol.2A FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Floating Point Values and Set EFLAGS

INSTRUCTION SET REFERENCE, A-M

ZF, PF, CF «111;
Fl;
Fl;
Fl;

IF Instruction is FCOMIP or FUCOMIP
THEN
PopRegisterStack;
Fl;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, set to 0.
co, Cc2,C3 Not affected.

Floating-Point Exceptions

#IS Stack underflow occurred.

#IA (FCOMI or FCOMIP instruction) One or both operands are NaN
values or have unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are
SNaN values (but not QNaNs) or have undefined forma