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The	Search	for	Extraterrestrial	Intelligence	(SETI)	is	a	long-standing	international	effort	to	try	to	find	
alien	civilizations	(yes,	little	green	men)	through	their	radio	wave	(and	more	recently,	optical)	emissions.			
An	inhabited	planet	like	ours	is	as	bright	as	a	small	star	in	the	radio	spectrum	due	to	humanity’s	
numerous	radio	transmitters,	from	big	AM,	FM,	shortwave,	and	TV	stations	all	the	way	down	to	the	tiny	
transmitters	used	by	computers	and	phones	to	connect	to	WiFi	and	cellular	access	points.	We	make	full	
use	of	this	spectrum	to	communicate	with	one	another.		One	of	the	basic	(and	fairly	naïve)	assumptions	
of	early	SETI	efforts	was	that	this	would	hold	true	for	other	intelligent	civilizations.	They	may,	in	fact,	
communicate	using	technology	built	on	wild	physics	that	we	don’t	yet	understand.		But	for	now,	we’ll	
have	to	see	what	we	can	uncover	with	radio	waves.	

SETI	uses	antennas	generally	employed	for	radio	astronomy	to	“look”	at	other	stars,	recording	signals	
over	an	interval	of	time.			Unlike	a	regular	radio	receiver,	these	receivers	do	not	tune	to	a	specific	
frequency,	but	rather	listen	on	many	frequencies	at	once—they	are	broadband1	receivers.			They	also	do	
not	try	to	decode	or	demodulate	the	signals	they	receive	at	all.		The	point	is	to	produce	huge	amounts	of	
signal	data.			The	signal	data	contains	not	only	possible	alien	signals,	but	also	many	human	signals,	and	a	
lot	of	noise	from	all	kinds	of	natural	radio	sources	(e.g.	the	supermassive	black	hole	at	the	center	of	our	
galaxy).		

The	signal	data	from	the	radio	telescopes	is	analyzed	with	computer	programs	that	use	signal	processing	
algorithms,	which	sift	through	the	data	looking	for	artificial	signals	that	do	not	come	from	our	own	
planet.			This	is	a	huge	computational	(and	conceptual)	challenge,	and	a	significant	breakthrough	came	
with	the	SETI@HOME	project2,	which	allowed	ordinary	people	to	volunteer	their	computers	to	
participate	in	a	large-scale,	distributed	version	of	these	programs.		Currently,	there	are	over	1.3	million	
registered	users	whose	computers	contribute	an	average	of	about	two	thousand	trillion	floating	point	
operations	per	second	to	the	effort	(2	PetaFLOPS!).	

In	this	lab,	you	will	tackle	a	greatly	simplified	and	constrained	version	of	this	computation,	with	the	goal	
of	trying	to	make	your	computer	execute	the	computation	as	fast	as	it	can3.	You	will	write	a	program	
that,	given	a	raw	signal	from	a	broadband	receiver,	will	try	to	hunt	for	signs	of	intelligence4	within	it,	
specifically	some	kind	of	message.			Your	program	will	determine	whether	a	given	frequency	band	has	
unusually	high	power,	and	if	so,	which	band	it	is	in.		In	addition,	your	program	will	use	another	program	

																																																													
1	They’re	broadband	receivers,	but	we	actually	search	for	narrow-band	signals	in	the	analysis	stage	
2	http://setiathome.berkeley.edu/	
3	This	kind	of	task,	i.e.	taking	an	existing,	computationally	intensive	program,	and	making	it	faster	with	smart	
programming,	is	referred	to	as	performance	optimization.		
4	What	would	actually	constitute	intelligent	information	content	is	a	topic	of	ongoing	research!	



that	we	provide	to	determine	whether	that	high-power	signal	actually	appears	to	come	from	an	
intelligent	source.		For	fun,	we	will	give	you	some	other	programs,	an	AM	demodulator	and	an	audio	
converter,	which	given	the	signal	and	the	band,	will	convert	the	signal	to	audio	format	and	let	you	hear	
it.			The	AM	demodulator	is	basically	a	simple	AM	radio,	and	your	program	will	tell	us	how	to	tune	it.		

Of	course,	this	is	a	systems	course,	so	our	focus	won’t	be	on	the	aliens	or	the	signal	processing.		The	
goals	of	the	lab	are		

• to	get	you	to	think	about	what	goes	into	making	a	simple	parallel	algorithm,	
• to	expose	you	to	low-level	parallel	programming	on	a	shared	memory	machine	using	pthreads,	
• to	expose	you	to	the	Unix	I/O	programming	interface,	and		
• to	expose	you	to	the	effects	of	compiler	optimization.			

The	specific	algorithm	you’ll	be	using	also	allows	you	to	control	how	much	computation	is	done	per	
memory	read	or	write,	letting	you	see	the	effects	of	the	memory	mountain.		

The	evaluation	of	this	lab	will	be	done	using	our	server	hanlon.wot.eecs.northwestern.edu,	which	has	40	
processors.			As	an	optional	extra	credit	component,	the	lab	can	also	be	compiled	and	tested	on	the	Intel	
Xeon	Phi,	a	parallel	co-processor	with	over	220	processors		

Logistics	
This	lab	can	be	done	in	teams	of	two	people.				

We	encourage	you	to	use	different	computers	that	you	normally	might	(for	example,	the	computers	in	
the	TLab	and	Wilkinson	Labs,	or	just	about	any	modern	Linux	machine).			Unlike	prior	labs,	this	lab	will	
consume	A	LOT	of	compute	power,	and	if	everyone	uses	our	class	server	for	development	and	testing,	it	
will	be	very	slow.			You	only	really	need	to	use	the	class	server	for	acquiring	the	lab,	generating	a	signal,	
checking	your	solution	(via	the	web	scoreboard),	and	handing	it	in.	

To	start,	grab	a	copy	of	~cs213/HANDOUT/setilab-handout.tar,	untar	it	in	your	protected	working	
directory.		You	will	find	the	following	elements:	

• README	–	describes	any	last	minute	details	
• Makefile 
• Generation	and	Playback	Programs	

o siggen	–	this	binary	program	will	generate	a	signal	for	you	to	look	at.	
o amdemod	-		this	binary	program	will	demodulate	the	signal	and	create	an	audio	signal	in	

a	binary	format	
o bin2wav –	this	binary	program	will	translate	the	audio	signal	to	a	WAV	file,	which	can	

be	played	back	with	any	media	player.	
o analyze_signal –	this	program	looks	for	“information	content”	of	your	signal,	i.e.		

language.	
• Signal	and	Filtering	Code	



o signal.[ch]	–	load	an	store	signal	files	in	several	ways,	including	text	I/O	using	the	
stdio	system,	binary	I/O	using	the	Unix	open/seek/read/write/close	system	call	
interface,	and	binary	I/O	using	the	Unix	mmap	system	call	interface.	

o filter.[ch]	–	generate	filters	and	apply	them	to	signals	(sequential	only)		
o timing.[ch]	–	find	out	how	long	things	take	using	various	methods	

• band_scan.c		-	a	sequential	version	of	the	program	you’ll	write	
• Pthread	examples	

o pthread-ex.c		-	how	to	create	and	use	threads	on	Unix	(and	most	platforms)]	
o parallel-sum-ex.c	–	how	to	compute	the	sum	of	an	array	in	parallel	

• seti-eval	–	allows	you	to	evaluate	your	program	and	compare	it	to	others	via	the	web	site.	
	

In	this	lab,	you	will	develop	the	program	p_band_scan.c,	which	is	a	parallel	version	of	
band_scan.c.		p_band_scan.c	should	behave	identically	to	band_scan.c,	except	that	it	will	
allow	you	to	vary	the	number	of	processors	used	to	compute	the	solution,	making	the	time	to	solution	
faster.			Your	p_band_scan.c	must	be	correct	and	it	should	be	performance	competitive	with	our	
implementation.				

For	this	lab,	you	can	use	any	modern	Linux	machine	(for	example,	TLab	and	Wilk	Lab	machines)	for	
development	and	testing.				You	will	want	to	use	murphy.wot.eecs.northwestern.edu	for	submission	and	
hand-in.	We	will	reserve	hanlon.wot.eecs.northwestern.edu	for	evaluation,	and	for	students	
interested	in	the	Phi.		

Your	first	task	is	to	get	some	signal	data	from	our	server.	If	this	were	actually	SETI@Home,	this	would	be	
real	radio	telescope	data	made	available	via	a	project	server.			For	this	lab,	we’ve	set	up	a	system	that	
generates	virtual	signals,	akin	to	what	you	might	see	if	you	pointed	a	radio	telescope	out	into	space.		

Where	SETI@Home	looks	for	signals	in	a	2.5	MHz5	frequency	band,	we	are	giving	you	signals	in	a	200	
KHz	frequency	band	to	make	things	more	tractable.	The	signals	comprise	roughly	30	seconds	of	data.	
Typically,	these	radio	signals	would	be	subject	to	the	Earth’s	rotation.	However,	to	simplify	things	for	
you,	we	will	ignore	this	effect.	You	can	assume	that	your	signal	was	recorded	while	the	radio	telescope	
was	stationary	and	pointing	at	a	fixed	patch	of	sky.6	

To	get	your	signal,	run	the	siggen	binary	we	provide:	

Murphy> ./siggen –n netid1-netid2 

This	will	take	some	time,	and	it	will	give	you	several,	custom	virtual	signals.	Only	one	of	these	will	
contain	an	alien	message.	Other	signals	may	just	contain	local	interference	or	old	radio	transmissions.	

																																																													
5	The	choice	of	this	frequency	band	is	not	arbitrary.	It’s	centered	around	the	Hydrogen	line.	
6	Some	astronomers	now	think	this	may	actually	be	the	right	way	to	go—more	telescopes,	each	dedicated	to	its	
own,	fixed	patch	of	the	sky.	The	energy	required	to	transmit	a	signal	of	significant	power	over	several	light	years	
may	be	too	much	for	an	“always	on”	beacon	that	a	directional	sweep	is	intended	to	pick	up.		



Each	signal	will	be	in	‘sig-N.bin’,	where	N	will	go	from	0	to	however	many	signals	we	decide	to	give	
you.	You	will	also	receive	a	file	named	‘secret’	that	contains	a	secret	key	that	will	be	used	during	
submission	for	authenticating	you	to	our	server.	

You	may	modify	any	of	the	files	in	the	handout	directory,	except	the	generation	and	playback	programs,	
and	you	can	add	new	files	as	needed.		You	can	compile	band_scan.c,	and	then	use	it	to	test	out	how	
things	work:	

Murphy> make 
Murphy> ./band_scan 
usage: band_scan text|bin|mmap signal_file Fs filter_order num_bands 

Here,	the	“text|bin|mmap”	argument	indicates	how	the	signal_file	is	to	be	interpreted.		Fs,	
filter_order,	and	num_bands	relate	to	the	problem,	and	will	be	given	to	you.		We	will	describe	
them	a	bit	later.		For	the	purposes	of	this	lab,	you	can	assume	that	Fs	will	always	be	400,000	(400	KHz).		

If	you	run	band_scan	on	a	signal	that	has	an	alien,	it	will	say	something	like	this:	

Murphy> ./band_scan bin sig.bin 400000 32 10 
type:     Binary 
file:     sig.bin 
Fs:       400000.000000 Hz 
order:    32 
bands:    10 
Load or map file 
Read 11999489 samples 
signal average power:     0.336757 
    0             0.000100 to         19999.999900 Hz:             0.002624 **(meh) 
    1         20000.000100 to         39999.999900 Hz:             0.000108 *(meh) 
    2         40000.000100 to         59999.999900 Hz:             0.000060*(meh) 
    3         60000.000100 to         79999.999900 Hz:             0.000061 *(meh) 
    4         80000.000100 to         99999.999900 Hz:             0.081506 ***************************************(WOW) 
    5        100000.000100 to        119999.999900 Hz:             0.081501 ***************************************(WOW) 
    6        120000.000100 to        139999.999900 Hz:             0.000042 *(meh) 
    7        140000.000100 to        159999.999900 Hz:             0.000023 *(meh) 
    8        160000.000100 to        179999.999900 Hz:             0.000017 *(meh) 
    9        180000.000100 to        199999.999900 Hz:             0.000019 *(meh) 
 

<detailed timing information> 

Analysis took 10.719594 seconds 

POSSIBLE ALIENS 80000.000100-120000.000100 HZ (CENTER 100000.000000 HZ) 

This	result	means	that	there	is	an	unusual	amount	of	power	centered	around	the	radio	frequency	
100,000	Hz	(100	KHz)	in	this	signal.			This	may	be	an	alien!			If	you	run	against	the	example	file	
~cs213/HANDOUT/noalien.sig, you’ll	see	what	a	more	boring	signal	looks	like. If	you	run	
against	the	example	file	~cs213/HANDOUT/alien_msg.sig,	you’ll	see	what	an	alien	signal	looks	
like.		

NOTE:	We’ve	checked	with	our	scientists,	and	they	tell	us	that,	for	the	purpose	of	this	lab,	aliens	will	
almost	certainly	be	transmitting	on	frequencies	between	50KHz	and	150KHz,	so	if	you	see	some	power	
outside	of	this	band	it,	it	is	likely	noise	or	interference	and	is	safe	to	ignore.	

If	you’ve	detected	a	large	amount	of	power	in	a	narrow	band,	you	might	just	have	an	alien	message.	To	
further	verify	this,	you	can	see	if	it	has	something	that	might	be	akin	to	language	by	using	this	program:	



Murphy> ./analyze_signal -p sig.bin 

The	–p	option	tells	it	to	print	out	high-powered	pulse	lengths	it	found	in	the	signal,	and	is	optional.	Do	
you	notice	anything	special	about	the	pulse	lengths	you	find?	If	it	found	something	very	interesting,	it	
will	output	the	following:	

The information content of this signal appears to be very high!	

At	this	point	we	can	pretty	much	assume	we	have	an	alien	message	on	our	hands.	Make	sure	to	take	not	
of	which	signal	this	is.	I.e.	if	this	was	sig-0.bin	and	it	had	a	message,	you	will	need	to	provide	0	to	the	
handin	program. 

You	can	then	decode	the	signal	for	audio	playback:	

Murphy> ./amdemod –c 100000 sig.bin 	

Here,	the	“100000”	is	the	center	of	the	“possible	aliens”	band	you	detected	using	band_scan.			
amdemod	will	produce	the	output	file	sig.out.		You	can	then	convert	sig.out	to	a	WAV	file:	

Murphy> ./bin2wav sig.out 	

This	will	produce	the	file	out.wav,	which	you	can	play	to	hear	what	your	alien	sounds	like.		

Your	parallel	implementation	of	band_scan	will	look	like	this:	

Murphy> ./p_band_scan 
usage: p_band_scan text|bin|mmap signal_file Fs filter_order num_bands 
                   num_threads num_processors 

The	two	additional	arguments	denote	the	number	of	threads	and	the	number	of	processors	you	are	to	
use	(processors	0	to	num_processors-1).				You	should	round-robin	your	threads	over	the	processors	as	a	
starting	point.				

The	line	of	the	output	(“POSSIBLE ALIENS 80000…”)	is	critical	–	it	is	how	the	testing	and	grading	
system	finds	your	answer.		Your	program	needs	to	match	the	format	that	band_scan	uses	exactly.	

When	you	are	ready	to	compare	your	implementation	to	others,	you	can	use	our	evaluation	script,	like	
this	(don’t	forget	to	include	your	secret	with	the	-k	flag):						

Murphy> ./seti-eval -t team_name -n netid1-netid2 -s ./p_band_scan -k secret -a 0 

Where	0	is	the	signal	number	corresponding	to	the	alien	I	found.	It	may	take	some	time	for	this	to	
complete.		seti-eval	will	work	correctly	only	on	murphy.		This	will	update	the	following	dashboard:	

http://murphy.wot.eecs.northwestern.edu/~cs213/setilab-dashboard.html 

Only	team	names	will	appear	on	the	dashboard.			Your	entry	will	show	up	with	additional	information:	

• A	WAV	file	you	can	click	on	to	hear	result	



• An	analysis	of	roughly	how	fast	your	program	was,	reported	as	a	scalability	graph	(more	
information	later)	that	compares	your	program	with	our	baseline	implementation.	

• A	ranking	of	your	performance	compared	to	us	(we	are	1.0)	and	to	other	participants	
• A	note	of	whether	you	found	the	alien	or	not	

Note	that	the	evaluation	process	may	take	some	time—we	may	run	your	program	with	several	different	
signals,	filter	orders,	numbers	of	bands,	numbers	of	threads,	and	numbers	of	processors	to	produce	the	
report.		

You	can	submit	as	many	times	as	you	want	and	try	out	different	implementations	to	see	just	how	fast	
you	can	make	this	process	go.		

When	you	are	ready	to	hand	in	your	work	for	grading,	run	the	following	on	murphy:	

Murphy> ~cs213/HANDOUT/seti-handin -t team_name -n netid1-netid2 -k secret -a 0 

	
This	will	take	a	snapshot	of	your	directory	and	run	the	seti-eval	program.		Only	source	files	(.c	and	.h)		
and	Makefiles	will	be	copied,	not	binaries.		

Signal	processing	in	this	lab	
For	the	purposes	of	this	lab,	a	signal	is	an	N	element	array	of	double	precision	floating	point	numbers,	
where	each	number	indicates	the	level	of	the	signal	(the	intensity	of	the	induced	current	in	the	antenna)	
at	a	given	point	in	time.			A	signal	like	this	is	more	specifically	termed	a	discrete-time	signal	(from	
electrical	engineering),	and	is	also	known	as	a	time	series	(from	statistics).				Our	discrete-time	signals	
are	periodically	sampled,	meaning	that	the	time	between	one	sample	and	the	next	is	fixed.			The	inverse	
of	this	sample	time	is	called	the	sample	rate,	and	it	is	the	“Fs”	in	the	above.				To	make	this	more	
concrete,	suppose	we	have	a	sequence	of	numbers	like	this	in	the	signal	file:	

0.03 
0.50 
-0.2 
-0.9 
-0.6 
0.3 
	
Let’s	suppose	that	the	first	value	(0.03)	arrived	at	time	0,	and	further	suppose	the	sample	rate	(Fs)	is	
1000	per	second	(or	1000	Hz,	or	1	KHz).		This	means	the	second	value	(0.50)	arrived	at	time	0+1/1000	=	
0.001	=	1	ms,	the	next	(-0.2)	at	2	ms,	and	so	on.			

A	neat	fact	of	signal	processing	is	that	any	signal	can	be	represented	as	a	sum	of	shifted,	amplified	sine	
waves	at	specific	frequencies	(keyword:	Fourier).			We	can	think	of	the	signal	as	being	composed	of	
different	“amounts”	(amplitudes)	of	these	sine	waves,	which	is	essentially	what	the	band_scan	
program	computes.		Each	band	consists	of	a	group	of	sine	waves.					For	reasons	not	important	here	



(keyword:	Nyquist),	the	highest	frequency	of	such	a	sine	wave	we	can	find	is	half	the	frequency	of	the	
sample	rate,	so	500	Hz	in	the	above	example.						

Now	you	can	better	understand	what	band_scan is	doing,	since	you	know	the	Fs	that	was	used	(400	
KHz),	and	that	resulted	in	being	able	to	look	from	0	Hz	to	200	KHz.		We	asked	it	to	look	at	the	sine	waves	
in	that	range	in	10	bins	or	bands	(0	to	20	KHz,	20	to	40	KHz,	and	so	on).		It	then	found	a	lot	of	power	
(meaning	high	amplitude	sines)	around	100	KHz.			

band_scan does	its	work	by	applying	band	pass	filters.		A	band	pass	filter	passes	through	sine	waves	
that	are	in	a	range	of	frequencies	(the	band),	and	rejects	others.			

If	you	look	at	band_scan.c,	you’ll	see	that	for	each	band	of	interest,	it	first	generates	a	filter	design.		
This	form	of	filter	is	the	simplest	variety	–	it	looks	like	another	signal	in	that	it’s	just	an	array	of	M	
doubles,	where	M=filter_order+1.				The	bigger	M	(filter_order)	is,	the	better	the	filter	is,	but	
the	more	expensive	it	is	to	use.				Unless	M	is	truly	huge,	the	time	spent	in	generating	the	filter	is	
negligible.			

Once	the	filter	for	the	band	has	been	generated,	band_scan.c next	applies	it	to	the	signal	using	a	
small	function	called	convolve_and_compute_power().			
convolve_and_compute_power() is	the	function	that	does	the	heavy	lifting	(keyword:	
convolution).		You	can	easily	read	the	function’s	code	to	see	what	it	does,	but	here	is	the	challenge:	if	
the	filter	is	of	size	M	and	the	signal	of	since	N,	then	convolve_and_compute_power()	does	
O(N*M)	work.				As	convolve_and_compute_power()	executes,	it	also	sums	up	the	power	in	the	
selected	band	of	the	output	signal,	which	is	an	additional	O(N)	work.			Once	all	the	bands	are	completed,	
the	band-sums	are	evaluated	using	thresholds	to	see	if	there	is	something	interesting	to	be	found.			This	
takes	negligible	work.			Therefore,	if	you	are	asked	to	use	B	bands,	the	whole	program	does	O(B*N*M)	
work.				

	

Parallelizing	the	signal	processing	
Your	goal	is	to	do	the	O(B*N*M)	work	in	less	than	O(B*N*M)	time.		Ideally,	if	you	have	P	processors,	you	
would	be	able	to	do	it	in	O(B*N*M/P)	time.			You	may	be	able	to	achieve	this	in	some	cases.			For	
different	values	of	B,	N,	M,	and	P,	you	may	find	there	are	different	challenges	to	achieving	high	
performance.		For	example,	you	may	be	bottlenecked	by	I/O,	just	reading/writing	the	files,	or	by	the	
CPU,	or	by	the	memory	system.				

Parallelism	requires	not	just	that	you	have	the	ability	to	do	multiple	things	at	once,	but	also	that	no	
intrinsic	ordering	or	dependencies	in	the	algorithm	are	violated.			If	you	violate	them,	the	result	may	be	
incorrect.			Correct	and	slow	is	better	than	fast	and	wrong,	so	be	careful.			So,	you	are	looking	at	the	
work	to	find	out	what	chunks	you	can	correctly	do	together.	



There	are	at	least	three	independent	ways	to	parallelize	band_scan	that	we	can	think	of,	plus	the	
algorithm	could	be	changed	(see	extra	credit).			You	are	welcome	to	try	out	any	approach	you	think	

might	be	interesting.		The	one	approach	you	definitely	will	want	to	try	first,	however,	
is	simply	to	execute	bands	simultaneously,	that	is,	to	parallelize	across	the	
bands.			That	should	be	sufficient	for	achieving	the	basic	learning	and	
performance	goals	of	the	lab.			

When	we	think	of	the	performance	of	a	parallel	program,	we	need	to	think	beyond	just	the	basic	run-
time	for	an	example.			In	particular,	we	are	also	interested	in	how	the	program	scales	with	the	problem	
size	and	with	the	number	of	processors.			In	a	perfectly	scalable	program,	we	can	always	double	the	
number	of	processors	and	expect	the	execution	time	to	be	cut	in	half.			Very	few	parallel	programs	work	
this	way.	In	fact,	if	they	do,	they	are	usually	called	embarrassingly	parallel.				A	good	performance	
measurement	of		band_scan		would	look	at	the	execution	time	as	a	function	of	(1)	the		number	of	
processors	(P),	(2)	the	signal	size	(N),	and	(3)	the	size	of	filter	(M).				Another	useful	view	is	called	a	
speedup	curve,	where	we	fix	the	problem	size	(N	and	M),	and	vary	the	number	of	processors,	plotting			
time-with-1-processor	/	time-with-P-processors	as	a	function	of	P.			Finally,	we	can	simply	plot	time-
with-P-processors	as	a	function	of	P.		This	is	the	view	we	will	use	for	reporting	results	on	the	web	page,	
and	for	grading.		

Hanlon	has	two	processors,	each	of	which	has	10	cores,	and	each	core	has	two	hardware	threads.7			For	
the	purposes	of	this	section,	hardware	thread	means	processor.			This	means	that	it	can	effectively	do	
2*10*2	=	40	things	at	once,	so	we	would	not	expect	speedup	beyond	P=40.	

Two	other	ways	you	might	find	it	possible	to	get	better	raw	performance	and/or	better	speedup	include:	

• Parallelizing	the	individual	convolutions	themselves.		If	you	look	at	the	
convolve_and_compute_power()	function,	you’ll	see	that	it	does	O(M)	work	for	each	of	

																																																													
7	The	use	of	the	terms	processor,	core,	hardware	thread,	software	thread	(pthread),	and	process	can	be	a	bit	
confusing.			Here	is	what	it	means.			A	machine	may	have	one	or	more	processors.			Each	processor	is	a	separate	
chip	mounted	on	the	motherboard	of	the	machine.			The	processors	share	the	main	memory	system	(DRAMs),	
although	each	processor	can	access	memory	near	it	faster.		A	processor	can	have	one	or	more	cores.		A	core	is	a	
complete	execution	unit	plus	one	or	more	levels	of	memory	cache.		Each	core	can	independently	fetch,	decode,	
and	execute	instructions.		Usually,	the	cores	of	a	processor	share	an	L2	or	L3	cache.			Each	core	may	have	one	or	
more	hardware	threads.		A	hardware	thread	(hyperthread	is	what	Intel	likes	to	call	this)	consists	of	hardware	that	
can	fetch	and	decode	instructions.			All	the	hardware	threads	of	a	core	share	the	single	execution	engine	of	the	
core.		Their	purpose	is	basically	to	keep	that	engine	busy	by	feeding	it	work.	The	operating	system	creates	the	
abstraction	of	software	threads,	which	are	the	pthreads	you	will	program	in	this	lab.	The	OS	dynamically	maps	
software	threads	onto	hardware	threads.	You	can	ask	that	it	maps	a	software	thread	to	specific	hardware	thread	
on	a	specific	core	on	a	specific	processor.		The	OS	also	creates	the	abstraction	of	processes,	which	contain	one	or	
more	software	threads	running	in	a	shared	memory	space.		These	processes	are	accessed	by	the	programmer	
through	fork/wait	and	similar	system	calls.			The	OS	implements	processes	using	both	software	threads	and	virtual	
memory	management,	both	of	which	are	tightly	coupled	with	the	hardware.	In	addition,	some	programming	
languages	(e.g.,	Scheme,	some	Java	implementations,	etc)	implement	another	level	of	threads	and	processes	on	
top	of	the	operating	system	supplied	software	threads	(pthreads)	and	processes.				



the	N	output	data	points.			You	could	work	on	those	data	points	in	parallel	instead	of,	or	in	
addition	to	working	in	parallel	across	the	bands.	

• Exploring	the	impact	of	different	compiler	optimizations	to	increase	the	performance	of	the	
convolve_and_compute_power()	function.	

Regular	Unix	I/O	and	memory-mapped	I/O	
You	will	need	to	read	the	binary	input	signal	file.		Although	code	is	provided	in	signal.c to	do	this,	
you	may	want	to	review	it	to	understand	what	it’s	doing,	and	to	better	choose	between	the	three	
techniques	offered	there.		The	code	supports	text-based	files	using	the	C	stdio	library	(available	
wherever	C	is	available),	regular	Unix	I/O,	and	memory	mapped	Unix	I/O.		Regular	I/O	consists	of	the	use	
of	the	Unix	system	calls	open,	read,	write,	lseek,	and	close.		You	can	learn	much	more	about	
regular	I/O	in	the	book,	and	in	the	handout	Unix	Systems	Programming	In	A	Nutshell,	available	on	the	
web	page.				The	main	idea	is	that	regular	I/O	is	explicit—you	need	to	tell	the	operating	system	exactly	
what	to	do	and	when	to	do	it	using	the	system	calls.					

In	memory-mapped	I/O,	we	ask	the	operating	system	(via	the	mmap	system	call)	to	map	the	file	into	our	
address	space	so	that	we	can	treat	it	like	a	chunk	of	data	in	memory.		Recall	that	in	execing	a	program,	
the	operating	system	memory	maps	portions	of	the	executable	program	file	into	the	address	space	and	
then	jumps	to	it.			The	mmap	system	call	gives	us	access	to	the	same	functionality.	Memory-mapped	I/O	
is	implicit—you	just	read	and	write	memory,	and	the	operating	system	translates	that	into	actual	I/O	as	
needed.				

Pthreads	and	processor	affinity	
You	will	need	to	partition	the	work	among	multiple	processors.		To	do	this,	you	will	use	threads,	which	
are	explained	in	some	detail	in	your	book.	In	Linux,	the	threading	interface	is	called	pthreads.					

The	file	pthread-ex.c	shows	how	to	use	the	basic	pthread	system	calls.		It	is	very	important	that	you	
supply	the	-pthread	option	to	gcc	when	compiling	code	that	uses	pthreads	(see	the	Makefile).		The	
pthread_create	system	call	creates	a	new	thread	that	starts	executing	in	the	function	you	specify.		
That	is,	it	looks	like	a	function	call,	but	the	caller	does	not	wait	for	the	callee	to	finish!		Instead,	the	caller	
and	callee	continue	to	run	simultaneously.		The	caller	can	explicitly	wait	for	the	callee	to	finish	by	using	
the	pthread_join	system	call.						

Note	that	this	is	quite	similar	to	the	fork	and	wait	system	calls	discussed	in	more	detail	in	class,	the	
book,	and	the	systems	programming	handout.			However,	while	fork	creates	an	entirely	new	process	
that	is	an	independent	clone	of	the	parent	process,	pthread_create	creates	a	new	thread	of	
execution	(that	starts	at	the	callee	function)	within	the	current	process.			The	new	thread	of	execution	
shares	all	the	memory	and	other	state	of	the	current	process	with	the	thread	that	created	it,	and	with	all	
of	the	other	threads	in	the	process.			This	means	they	must	carefully	coordinate	access	to	the	shared	
memory	to	avoid	serious	and	difficult	to	track	down	bugs.			While	this	is	extremely	challenging,	it	is	



outside	the	scope	of	this	lab.		In	this	lab,	your	threads	only	need	to	read	from	shared	memory	(the	input	
signal).		Their	writes	to	the	output	signal	do	not	need	to	overlap.		

You	can	create	as	many	threads	as	you	want	(and	that	the	operating	system	has	memory	to	track).			The	
operating	system	will	interleave	the	execution	of	these	threads	in	time	and	across	the	processors	
available	on	the	system.		That	is,	the	operating	system	can	switch	from	thread	to	thread	on	any	given	
processor,	and	it	can	move	a	thread	from	one	processor	to	another.		This	scheduling	activity	happens	on	
the	order	of	every	millisecond	or	so.	It	does	this	to	“balance	the	load”	and	to	maintain	fairness	among	all	
the	threads	in	the	system.			However,	it	is	sometimes	convenient,	especially	in	a	parallel	program,	to	
directly	control	which	processor	a	thread	runs	on.			This	is	known	as	processor	affinity.		A	thread	can	
advise	the	operating	system	of	the	set	of	processors	it	would	like	to	be	run	on.	The	pthread-ex.c	
example	shows	how	a	thread	can	request	that	it	only	run	on	a	specific	processor.	

The	parallel-sum-ex.c	example	shows	how	to	use	pthreads	to	sum	up	an	array	of	doubles	in	
parallel.			

Measuring	time,	performance,	and	resource	usage	
The	lab	code	timing.[ch]	includes	three	timing	tools.		The	band_scan.c	code	uses	them	to	
measure	its	own	activity.		You	can	use	them	to	find	out	what	the	bottlenecks	are	in	your	code.		

The	first	timing	tool,	get_seconds(),	is	measuring	the	passage	of	real	time	using	the	Unix	
gettimeofday()	system	call.		This	can	be	used	arbitrarily	in	any	thread	since	there	is	exactly	one	
time	across	the	whole	system.			

The	second	timing	tool,	get_cycle_count(),	is	measuring	the	passage	of	real	time	using	the	
processor	cycle	counter.		This	is	the	most	accurate	measurement,	but	it’s	important	to	note	that	each	
core	has	its	own	cycle	counter,	which	can	make	for	confusion	if	a	thread	migrates	from	one	core	to	
another.		

The	third	timing	tool,	get_resources(),	measures	resource	usage,	including	time	spent	using	the	
processor.		You	can	measure	the	resource	usage	of	your	entire	process,	and	of	individual	threads.				This	
mechanism	gives	highly	detailed	information,	but	the	resolution	is	much	lower	than	the	other	timing	
tools.	

What	to	do	
Here	is	a	suggested	approach	to	this	lab.					Don’t	panic!			There	is	a	lot	here,	which	can	be	overwhelming	
if	you've	never	been	giving	an	existing	codebase	to	work	on.			Part	of	what	we're	trying	to	do	is	give	you	
the	experience	of	working	within	an	existing,	significant	codebase.				Remember	that	what	you’re	doing	
here	is	writing	p_band_scan.c.			There	is	a	lot	of	complexity	in	this	overall	system,	but	you	are	
remember	that	you	are	not	writing	it	from	scratch	–	you’re	just	parallelizing	this	one	component	of	it.				
Our	own	reference	implementation	of	p_band_scan.c	is	based	on	band_scan.c	and	consists	of	
only	about	180	additional	lines	of	C.				Ask	questions	and	get	help.						



1. Read	and	play	with	the	handout	code	to	get	a	good	sense	of	how	things	work.		Make	sure	you	
try	both	the	alien_msg.sig	and	noalien.sig	signals,	and	to	get	your	own	signals	using	
siggen.	

2. Read	through	band_scan.c	and	filter.c,	focusing	specifically	on	the	
analyze_signal()	and	convolve_and_compute_power()	functions,	which	do	the	
main	work.		

3. Understand	the	pthread-ex.c	and	parallel-sum-ex.c	code.			Start	by	just	compiling	it	
and	running	it,	and	then	look	at	it	more	carefully.		parallel-sum-ex.c	shows	how	to	sum	
up	the	elements	of	an	array	in	parallel.			

4. Develop	a	strategy	to	parallelize	the	band_scan	processing.		Read	the	section	on	this	carefully.			
The	simplest	approach	will	work	fine.	

5. Implement	your	design	of	p_band_scan	using	pthreads.			It	must	be	possible	to	specify	how	
many	threads	to	use	and	how	many	processors	to	use	at	run-time.				Note	that	you	will	need	to	
change	the	Makefile.			You	may	find	that	there	are	comments	in	the	Makefile	that	describe	how	
to	do	this.	

6. Test	your	program	to	make	sure	it	is	correct	(compare	against	the	sequential	band_scan	
program).					For	testing,	you	should	be	able	to	use	any	computer	that	the	lab	compiles	on.		You	
can	also	use	seti-eval	(which	needs	to	run	on	murphy)	to	get	your	result	onto	the	
scoreboard.		The	scoreboard	will	indicate	whether	or	not	your	program	is	correct	regardless	of	
its	performance.		

7. Start	evaluating	and	enhancing	your	program	for	performance.		You	can	do	this	on	any	machine	
in	the	teaching	labs	(murphy,	Wilk/Tlab,	etc)	or	elsewhere.		If	you're	on	a	Wilk	or	Tlab	machine,	
you	can	run	~cs213/HANDOUT/seti-perf	to	do	this	evaluation.			

8. When	your	code	is	correct	and	performing	well,	participate	in	the	performance	competition	
using	the	seti-eval	script	and	the	web	site.8	

9. Instrument	your	program	with	the	timing	and	resource	measurement	tools	so	that	it	reports	the	
time	taken	to	read	the	signal,	read	the	kernel,	do	the	analysis,	as	well	as	the	total	time	it	takes.	

10. Try	to	enhance	performance	based	on	your	instrumentation	and	other	ideas	–	you	can	get	extra	
credit	if	your	performance	exceeds	that	of	our	reference	implementation.	

11. Do	some	other	extra	credit	if	you	have	the	time,	and	it	looks	interesting.	

Grading	criteria	
Your	lab	will	be	graded	based	on	three	criteria	

• 30%		 Correctness	–	it	should	give	the	same	answers	as	the	sequential	band_scan	program,	
	 and	you	should	identify	the	correct	signal	as	containing	the	alien	message 

																																																													
8	It's	important	to	do	performance	testing	independently	(on	murphy,	tlab,	wilklab,	etc)	machines	BEFORE	this	
step.		Hanlon,	which	we	will	use	for	the	evaluations	and	the	competition,	is	a	single	machine,	and	seti-eval	will	
only	do	evaluation	requests	one	at	a	time	for	fairness	and	accuracy.		Hence,	it	is	possible	(and	highly	likely	near	the	
due	date)	for	your	request	to	be	waiting	in	line	("queued	up")	behind	other	requests.	



• 60%	 Performance	–	it	should	perform	similarly	to	our	simple	parallel	implementation.			This	is	
	 curve	“TAs”	curve	in	the	performance	graph	shown	on	the	dashboard. 

• 10%		 Code	quality	–	your	program	should	be	coherent			 

For	performance	grading,	we	will	use	the	performance	graph	seen	in	the	dashboard.		As	long	as	your	
curve	is	within	10%	of	our	simple	implementation’s	curve,	you	will	get	full	performance	credit.			

If	your	implementation	is	slower,	you	will	lose	10%	of	the	performance	points	for	every	25%	it	is	slower.		

Please	note	that	our	implementation	is	pretty	simple	and	
should	therefore	be	easy	to	match	or	beat.		It	is	compiled	with	
optimization,	however.	

Extra	Credit	
If	your	implementation	is	faster	than	our	baseline	parallel	implementation	(whose	performance	you’ll	be	
able	to	see	on	the	web	site),	you’ll	receive	extra	credit,	up	to	a	maximum	of	20%	more	for	an	
implementation	that’s	twice	as	fast	as	ours.			
	

If	this	lab	is	easy	for	you,	and	you’d	like	more	of	a	challenge,	we’d	be	happy	to	talk	to	you	about	some	of	
the	following	additional	extra	credit	options.		Please	contact	us	first	if	you	want	to	work	on	these	so	that	
we	can	coordinate	with	you	in	terms	of	how	much	extra	credit	is	involved,	extra	pointers,	and	to	get	you	
access	to	the	needed	hardware	and	software.						

• Using	the	Intel/AMD	SSE	or	AVX	vector	instructions	or	other	special	instructions	to	get	
parallelism	within	a	single	thread	of	execution.			Vector	instructions	operate	on	lots	of	data	at	
once.		To	implement	this,	you	will	probably	need	to	learn	about	inline	assembly,	or	learn	how	to	
get	a	compiler	like	icc	to	try	to	vectorize	your	code.		

• Investigate	compiler	optimizations,	including	those	that	are	specific	to	the	machine	you	are	
running	on.			See	if	the	compiler	can	improve	performance	for	you.			gcc	has	hundreds	of	
optimization	features	you	can	enable/disable	from	the	command	line.			You	can	also	try	Intel’s	C	
compiler,	icc.			icc	is	likely	to	produce	much	faster	code	given	the	right	options.			

• Parallelize	using	OpenMP.			OpenMP	is	an	extension	to	C/C++	and	other	languages	that	allows	
shared	memory	parallelization	without	explicitly	creating	threads.			It	is	available	in	gcc	and	icc.				
Read	about	OpenMP	and	parallelize	the	sequential	code	in	band_scan.c	using	it.				

• Evaluate	on	an	Intel	Xeon	Phi.			Hanlon	has	an	Intel	Xeon	Phi	3120A	you	can	access.		You	can	
compile	the	lab	for	the	Phi	in	the	following	way.		This	will	only	work	on	hanlon:	
	
Hanlon> make clean 
Hanlon> make TARGET=phi 
	



You	can	also	switch	from	using	gcc	to	using	Intel	compiler	for	the	phi	(icc).			icc	is	able	to	make	
use	of	the	vector	features	of	the	Phi,	and	will	likely	make	your	code	run	much	faster.				To	get	icc	
to	compile	for	the	phi,	give	icc	the	“-mmic”	option.	
	
I	you	would	like	to	run	your	program	on	the	Phi,	please	contact	us	so	that	we	can	arrange	to	give	
you	access.	
	

• Implement	on	a	GPU.				Hanlon	has	an	NVIDIA	K20C	GPU	you	can	play	with.			You	can	make	the	
CUDA	development	environment	via:	
	
Hanlon> source ~cs213/HANDOUT/cuda_env 
	

• Implement	convolution	through	FFT.			This	is	an	alternative	algorithm	to	the	one	given	in	the	
example	code	that	is	asymptotically	much	better.				However,	to	make	it	parallel,	you	would	
have	to	figure	out	a	parallel	FFT	transform.					

• Implement	the	band_scan	as	a	parallel	filter	bank.			This	is	another	potential	way	to	improve	
the	algorithm	of	the	problem	and	possibly	its	performance.	

• We	have	a	few	other	ideas,	so	let	us	know	if	you	are	interested	

	


