
EECS 213 Introduction to Computer Systems Dinda, Spring 2016

 Page 1 of 3

Homework 4
Virtual Memory and I/O

1. Suppose we have a machine with a 2^48 (48 bit) virtual address space, a maximum of

2^32 bytes of physical memory, and a page size of 2^20 bytes. Assume a single-level
page table to begin.

a. Draw a virtual address, splitting it into the virtual page number and the virtual
page offset. Note how many bits are used for each.

b. Draw a plausible page table entry, showing the length in bits of each of the
fields. How many of your entries fit on a page?

c. Assume virtual addresses from 0x100000000000 to 0x100000ffffff and from
0x700010000000 to 0x9fffffffffff are in use. How much space does your page
table occupy?

d. Describe a plausible 2-level page table approach for this system and repeat a-c
assuming that approach.

2. The fork() system call is used to create a new process that is a duplicate of the
process that makes the system call. The created process (the child) and the original
process (the parent) have the same memory content. However, their memory is not
shared: when the child modifies its memory, these changes do not affect the memory
of the parent, and vice versa. Here is an example:

int val = 0;
int ret = fork();
if (ret > 0) {
 // the parent
 val = 1;
} else if (ret == 0) {
 // the child
 val = 2;
 execl(“/bin/ls”, “/bin/ls”, NULL);
} else {
 // ret < 0, fork() failed.
 exit(1);
}

Here, if fork()succeeds, the parent and the child will each hold an individual copy of
the variable val. Note the parent sets val to 1 while the child sets val to 2. Each
of the processes will see only its own change to val – these modifications will not
interfere with each other. Notice this is very different from the pthread_create()
function you are using in the SETILab.

A naïve implementation of fork() would simply allocate memory for the child,
create a page table for it, and then copy all the memory contents of the parent process
to the child process. Copying a process's memory is very expensive, which would
make the fork() system call take a long time. However, Linux's implementation of

EECS 213 Introduction to Computer Systems Dinda, Spring 2016

 Page 2 of 3

fork() is extremely quick because it avoids this expense - its immediate cost is just
the creation of the child process's page table. Its long term cost is that the first write
to any page by the parent or the child will take longer than under the naïve
implementation.

A. Can you describe how such a low overhead procedure could be implemented

using virtual memory mechanisms? You may want to re-read the section on copy-
on-write in your textbook.

B. It is a common case that the child process will call execl() to load and run a new
program very soon after the fork()function call, like the above example does.
execl() discards all current memory content in the process and its page table.
Thus, even the fast mechanism in Linux (part A of this problem) is slower than it
could be. vfork() is system call that can optimize this case even further. A
vfork() is similar to a fork(), but after a vfork(), the child should not write
any memory before it calls execl(). If it does, the results are specified as being
undefined.1 How may vfork()be implemented?

3. Your book talks about mark-and-sweep garbage collection. A completely different
approach is known as stop-and-copy garbage collection. In this approach, the heap
memory is divided in half into the “working memory” and the “free memory”. The
program always uses just the working memory. When the program runs out of
memory, it stops and garbage collection is invoked. As the garbage collector
traverses the graph of nodes reachable from the root nodes, it copies each reachable
node to the free memory, placing the nodes sequentially in the free memory in the
order in which they are traversed. By means of mechanisms that are not important
here, each node is copied only once, and all the pointers between the reachable nodes
are updated appropriately. Then, the garbage collector simply starts treating the free
memory as the working memory and vice versa, essentially throwing away all the
unreachable nodes en masse. One often finds that stop-and-copy greatly increases
cache hit rates, especially for pointer-based data structures such as lists, trees, and
graphs. Why?

4. Traceroute (/bin/traceroute) lets you trace the route which your packets take from
source to destination. Read about traceroute and find the routes to several of your
favorite sites. Ping lets you measure the round-trip latency to a host. Use ping to
determine the latencies to several sites. Dig (/usr/bin/dig) and whois (installed on
some systems) let you find detailed information about DNS names. Try them out.
There is nothing to hand in here.

5. The read() and write() system calls are designed for byte streams. You can also
use them with packet-oriented communication, for example with UDP (the Unreliable
Datagram Protocol). In UDP, each write() call sends a packet. However, packets

1 If you see the term “undefined” in a specification or manual, be aware that it is the
committee-speak way of saying “all hell may break loose if you do this.”

EECS 213 Introduction to Computer Systems Dinda, Spring 2016

 Page 3 of 3

have a minimum and a maximum size (they cannot be either “too small” or “too
big”). If a write()is too small or too large, this not an error. Instead, the system
sends a packet containing some or all of the data being written. What is in the packet
if the write() is too small or too large?

