
CS 343 Operating Systems Winter 2026 Dinda

 Page 1 of 10

Operating Systems
Syllabus

Note Mid-quarter Reordering to Move FS Earlier
Class Resources

Course Website http://pdinda.org/os
All public course details, syllabus, schedule, etc.

~cs343/HANDOUT Directory on course server
 Some private materials
Canvas https://canvas.northwestern.edu/courses/246616
 Grade reports, occasional zoom stuff, Gradescope
 link to class calendar
Piazza https://piazza.com/class/mjga158172n40v
 Discussion. we will enroll you.
Github Classroom https://classroom.github.com/classrooms/58953242-
northwesternos-cs-343-winter-2026
 Lab access. We will enroll you.
Gradescope Accessed via Canvas. Some handins. We will enroll you.

Instructor
 Peter Dinda
 pdinda@northwestern.edu

Teaching Assistance
Friedrich Doku (TA)
FriedrichDoku2030@u.northwestern.edu

Hasan Aybars Ari (PM)
HasanAri2027@u.northwestern.edu

Harry Guan (PM)
harryguan2027@u.northwestern.edu

Kevin Hayes (PM)
kevinhayes2026@u.northwestern.edu

Jack Riconosciuto (PM)
jackriconosciuto2027@u.northwestern.edu

Liam Strand (PM)
ltrs@u.northwestern.edu

CS 343 Operating Systems Winter 2026 Dinda

 Page 2 of 10

Haresh Wedanayake (PM)
HareshWedanayake2027@u.northwestern.edu

Leo Zhang (PM)
leozhang2027@u.northwestern.edu

Location and Time
Lectures: MW, 3:30-4:50, Tech L211 (in person, no recording)

 Office Hours: See Course Calendar (Link on Canvas Home Page)
Midterm Exam: TBD, mid-quarter, out of class Details to come.
 This will be preceded by a review session outside of class

 Final Exam: Friday, March 20, 3-5pm, Tech L211 (Official Date/Time)
 This will be preceded by a review session outside of class
 We will try to improve this…

Prerequisites
 Required CS 213 or CE 205 or equivalent
 Required CS 214 or equivalent
 Required Experience with C or C++
 Required Some experience with programming in a Unix

environment (e.g., as in CS 211 and CS 213)

Any current version of CS 213 or CE 205 is acceptable, but we will expect that you
have seen basic concepts such as the existence of exceptional control flow and
virtual memory, and the typical Unix system calls for processes, threads, and
files+I/O. The CS 213 syllabus shown in pdinda.org/ics is a good starting point,
though all versions of CS 213 now have essentially the same coverage.

Any version of CS 214 is acceptable, but we will expect that you have seen basic
data structures, algorithms, and their implementation. These include linked lists,
balanced search trees, hashing and hash tables, heaps, graphs, sorting, etc.

Experience with C or C++ in part means familiarity with arrays, structs, unions,
and, most importantly, pointers and pointer-based data structures. Low-level
pointer-based mechanisms are used throughout an OS, and by the underlying
hardware.

Experience with programming on Unix means being able to navigate the Unix
command line, remote access, use/extend Makefiles, etc.

CS 343 satisfies one of the Systems Breadth, Systems Concentration, Tech
Elective, and Project requirements in in the Computer Science curriculum in both
McCormick and Weinberg. CS 343 can also be taken for credit within the Computer
Engineering curriculum.

CS 343 Operating Systems Winter 2026 Dinda

 Page 3 of 10

Textbook
Andrew S. Tanenbaum and Herbert Bos, Modern Operating Systems, 4th Edition,
Pearson, 2014, (ISBN-13: 978-0133591620, ISBN-10: 013359162X)

We also considered several other books for this course, which may be useful as
further references:

• Abraham Silberschatz, Peter Galvin, and Greg Gagne, Operating Systems
Concepts, 10th edition, Wiley, 2018.

• Remzi Arpaci-Dusseau, and Andrea Arpaci-Dusseau, Operating Systems:
Three Easy Pieces, 2018. [freely available]

• Thomas Anderson, and Michael Dahlin, Operating Systems: Principles
and Practice, Recursive, 2014.

• William Stallings, Operating Systems: Internals and Design Principles,
9th edition, Pearson, 2017.

The choice of Tanenbaum as the textbook for this course is a compromise. All of
these books have strengths and weaknesses. Tanenbaum allows us to pair high-
level presentation of OS concepts with their implementation within particular OSes.
In your assigned readings, you will often see this pairing, combining early chapters
(concepts) with much later chapters (implementations). There are also several
handouts created specifically for this course on topics that we think need a treatment
beyond what Tanenbaum provides.

It is important to note that your CS 213 textbook (Randal Bryant, and David
O'Hallaron, Computer Systems: A Programmer's Perspective) has an excellent
“what every programmer should know” treatment of some of the topics we will
cover, including threads, processes, virtual memory, and the various Linux/Unix
system call interfaces. If you’ve taken any version of CS 213 in Fall 2021 or later,
you will have seen this treatment.

There are also books on specific operating systems that advanced students might
be interested in, particularly on FreeBSD and Linux. Ask if you're curious.

Objectives, framework, philosophy, and caveats
This course introduces you to the basic, foundational concepts and principles of
operating systems, many of which generalize to other areas of computer science
and engineering. You will learn many of these concepts and principles by applying
them in practice on a modern machine though labs that are designed to put you in
the shoes of a systems-level developer. OS (and systems more broadly) is very
much a learn-by-doing kind of area.

The following concepts and principles are included:

CS 343 Operating Systems Winter 2026 Dinda

 Page 4 of 10

• OS Structure: kernel, device drivers, file systems, network stacks,
schedulers, system calls, libraries, toolchains, language virtual machines,
user interface/shell, applications, etc.

• OS Models: monolithic kernel, microkernel, virtual machine
monitor/hypervisor, jail/zone/container, exokernel, unikernel, ...

• OS Abstractions: thread, name space, address space, process, IPC, virtual
machine, container, file, directory stream, plus abstraction design within
the kernel (devices, file systems, ...)

• Concurrency Sources: multiprocessors, devices, interrupts, threads,
processes, horror stories, ...

• Concurrency Challenges: memory system coherence/consistency, race
conditions, deadlock, livelock, horror stories, ...

• Concurrency Control: interrupt control, atomics, spinlocks, critical
sections, blocking vs waiting, mutexes, semaphores, condvars, monitors,
barriers, lockfree/waitfree models, plus typical synchronization problems
such as producer-consumer, reader-writer, and dining philosophers.

• Scheduling and Resource Management: theory, FCFS, GPS, SRPT,
dynamic priority (e.g. Unix), lottery, fixed priority, stride, preemptive vs
non-preemptive, real-time vs non-real-time, horror stories, ...

• Virtual Memory: hardware-software co-design, paging, swapping,
segmentation and (possibly) current alternatives.

• Device Drivers: interrupts, DMA vs PIO, MMIO vs PMIO, atomics,
hardware memory barriers, software memory barriers.

• Protection and Security: kernel/user mode, mode/ring transitions, role of
encryption, interaction with virtual memory, horror stories.

• Memory management: page allocation versus heap allocation, garbage
collection, allocation in special contexts (e.g. interrupt context), page
replacement, working set.

• File systems: issues/interfaces, data structures on block devices, examples
(V7, FAT+, ext2+)

• Principles: policy versus mechanism, orthogonality, worse-is-better, lazy
evaluation, caching, end-to-end argument, mythical man-month, no silver
bullet, hardware/software co-design

The hardware environment that we will focus on is Intel/AMD machines running
in 64 bit mode ("x64"), which is the commonplace platform for systems ranging
from laptops to supercomputers today.1 Your lab work will be done on Linux in the
C programming language.2 Two of your labs (on concurrency and scheduling) will
be done in user-level Linux. The remaining labs will be in the context of the
Nautilus kernel framework ("NK"), a research kernel develop at Northwestern and

1 Most of what you learn about x64 vis a vis OS will generalize to the other main platform, ARM, which is
the basis for phones and tablets, as well as current Macs, and to the up and coming RISC-V architecture.
2 Linux is the common OS on everything except laptops and desktops. It is also the OS underlying Android.
C is the lingua franca of low-level software development.

CS 343 Operating Systems Winter 2026 Dinda

 Page 5 of 10

other institutions. The experience you gain in NK will generalize to the Linux
kernel, for the most part.3

Note that we will prioritize among these points so that if more time is needed to
cover a high priority topic, there may be less or no coverage of a lower priority
topic. There are also only 19 lectures in this instance of the course.

Reading / Lectures / Attendance Requirement
Lectures will be held in person in the scheduled room at the scheduled time. It is
important that you complete the reading assigned for each officially scheduled class
session before that session (the reading for the first session is an exception).
Based on your reading, you should prepare at least one question for each
lecture. You will submit this question on a form in Canvas. This is due by
noon on the day of the lecture.

There is plenty of content that is separate from the textbook, handouts, and
codebases, and I do not use slides in lecture.

You are encouraged to ask questions or provide comments, either verbally, in chat,
or on Piazza. You can also help answer other student’s questions and comments.
What I’m asking of you is: Read. Attend. Ask. Answer. There is no such thing as
a dumb question (or too esoteric of a question) - we will try our best to answer or
comment on all questions.

Getting Help
Your instructor, TA, and PMs will also have regularly scheduled office hours and
be available by appointment if these do not work. We have scheduled our office
hours to try to spread them across the week. The course calendar is linked to from
the Canvas home page.

We will use an online discussion group on Piazza as well. We will enroll you. The
link is on the course web page. The intent is to have multiple venues for discussion
with different styles so that all students feel comfortable participating. If you have

3 In the design of this course, we considered several other options. The most desirable would have been to
have you work within the Linux kernel itself. This proved to be intractable from a pedagogical point of
view. The complexity we would have to shield you from would have been overwhelming to manage. We
also considered the teaching OS xv6 for IA32 and for RISC-V. IA32 and RISC-V both would require
revisiting material students have already learned, for x64, in CS 213, plus xv6 for IA32 would have made a
device driver lab particularly challenging to pull off. Another consideration was to use CMU's Pebbles OS
specification and have students build Pebbles from scratch as in CMU's course. This was also limited to
IA32, and seemed intractable to execute in a single quarter. The intent behind using NK is to give a view
inside a modern, x64 codebase with clear internal interfaces that has a development model (e.g., Kbuild, C,
etc) that is similar to Linux. While the specific NK kernel codebase you will use in this class is x64-
specific, the current research version of NK is architecture-independent and can also target ARM and
RISC-V. Ask us if you’re curious about it. Several of the staff are among the owners of NK.

CS 343 Operating Systems Winter 2026 Dinda

 Page 6 of 10

a question, answer, or comment, please put it forward. We will try our best to
answer.

Labs will be done using GitHub Classroom. One goal here is to make it
straightforward for us to see the current state of your lab work, so that we do not
have to spend a lot of time reconstructing setups during office hours, etc. Push early
and often! We will also use Gradescope for handin of some labs.

Computing Resources
You will have Linux accounts on the Wilkinson machines, and it should be possible
to do some of your work on them, or other 64-bit Linux machines. You will also
have access to a high-end server which has a range of software set up for use by
this course. This is the easiest option and is also where we will grade labs. The very
first lab is intended to get you familiar with this environment by having you build
and run a kernel on it.

It is also possible to work on your own machine. Generally speaking, using Linux
will be easiest. I often do development with Ubuntu installed in a VMWare VM on
my (x64) Mac or PC. We will provide instructions in Piazza for those who would
like to set up their own environment.

Labs
We will have five programming labs. Except for the first lab, labs should be done
in groups of up to three. Start looking for a partner on day one.

There are five labs. 60% of the grade in the class will be based on lab work, with a
breakdown as follows:

5% Getting Started Lab (done individually)
10% Producer-Consumer Lab
15% Queueing/Scheduling Lab
15% File Systems Lab
15% Device Driver Lab (may be replaced with a File Systems Lab)
15% Paging Lab

We will use GitHub Classroom for disseminating and handing in labs. It is
important that you and your partners make sure that your repositories are private.
Only your group and the course staff should be able to see your repos.

The Producer-Consumer Lab and Queueing/Scheduling Lab are user-level Linux
labs. The others are all done within the NK research kernel developed at
Northwestern. All hardware is x64. All code is in C and assembly.

CS 343 Operating Systems Winter 2026 Dinda

 Page 7 of 10

Exams
There will be a midterm exam and a final exam. The final exam will not be
cumulative. I do not provide practice exams. Instead, we will schedule midterm
and final exam review sessions. Exams are on-paper and in-person.

Grading
60% Labs (breakdown above)
20 % Midterm (covers first half of the course)
20 % Final (covers second half of the course)

There is extra credit in many of the programming labs.

Reading and preparation for lecture is expected. As noted above, you will fill out
a web form about your reading by noon on the day of the lecture. The TAs will
review these submissions and I will attempt to weave the most common questions
into lecture. You may miss up to 5 of these submissions. Missing more will
result in you failing the course.

Your score in the course is the weighted average of your scores on each of the
components. You can view all currently graded material, and your score, at any
time on Canvas. Final grades are based on the course score (the weighted average),
with the basic model being that the 90s are A territory, 80s are B territory, and so
on. This model will be adapted toward lower thresholds if necessary based on
overall class performance. That is, this is NOT a curved class.

The instructor ultimately assigns scores and grades in consultation with the TA and
peer mentors. If you have a problem with a score on an assignment/exam or your
grade, you are welcome to bring it up with him or the TA, but only the instructor is
empowered to change grades.

Lab Late Policy
For each calendar day, or portion thereof, after the due date for a lab, 10% is lost.
After 1 day, the maximum score is 90%, after 2 days, 80%, etc, for a maximum of
10 days.

Cheating, LLMs, and Inadvertent Disclosures
Since cheaters are mostly hurting themselves, we do not have the time or energy to
hunt them down. We much prefer that you act collegially and help each other to
learn the material and to solve problems than to have you live in fear of our wrath
and not talk to each other. Nonetheless, if we detect blatant cheating, we will deal
with the cheaters as per Northwestern guidelines.

CS 343 Operating Systems Winter 2026 Dinda

 Page 8 of 10

Just LLMing your way through labs is a great way to not learn anything. The labs
are a substantial portion of the grade for a good reason. In systems, clue is
generally gained by doing, not just by “prompt engineering” or “vibe coding” the
latest copyright infringement engine. A competent technical interviewer can detect
a lack of clue very quickly. Don’t make it easy on them.

As we note above, it is important that you control access to your GitHub repos.

Please do not place class materials from on any public site. If it's on the course web
site, it's already public and will remain public. If it's from the discussion group or
from the handout directory on the course servers, it should not be shared publicly.

Accessibility
Any student requesting accommodations related to a disability or other condition is
required to register with ANU (accessiblenu@northwestern.edu; 847-467-5530)
and provide professors with an accommodation notification from ANU, preferably
within the first two weeks of class. This will probably only affect exams, and we
will set up a testing contract with ANU for affected students. All information will
remain confidential.

Should you need them, additional campus resources are available, including, but
not limited to:

• Accessible NU https://www.northwestern.edu/accessiblenu/
• CAPS https://www.northwestern.edu/counseling/
• Student Enrichment Services https://www.northwestern.edu/enrichment/

If you have special concerns, please reach out.

Northwestern Syllabus Standards
This course and its instructor are in agreement with the numerous syllabus
standard texts given at https://www.registrar.northwestern.edu/registration-
graduation/northwestern-university-syllabus-standards.html These apply to you.

Common sense
Be excellent to each other. The goal here is to learn something about operating
systems. This is not a competition (recall there is no curve). If you have some
background coming into the class, or this comes easy to you, help others. Also,
while all of the course staff are quite happy to go off into the deep end, we also
welcome a nudge to come back. This is an introductory course, after all.

CS 343 Operating Systems Winter 2026 Dinda

 Page 9 of 10

 Schedule

Lecture Date Topics Readings Labs
1 1/5 M Introduction, OS Structure, OS

Models, HW/SW interface,
History

Chapter 1,
8.1.2, 10.1,
10.2

Start lab out

2 1/7 W Concurrency Sources: hw,
interrupts, threads, processes, ...

2.1, 2.2, 5.1.5,
8.1.1

3 1/12 M Concurrency Sources:
continued

2.1, 2.2, 5.1.5,
8.1.1

Start lab in,
PC lab out

4 1/14 W Concurrency Challenges and
Control: races, mutual
exclusion, critical sections

2.3,
Concurrency,
Unix

1/19 M is MLK Day – No Class
5 1/21 W Concurrency Challenges and

Control: blocking, mutexes,
spinlocks, semaphores,
condvars, barriers, monitors,
etc.

2.3 (cont.),
8.1.3, Therac

6 1/26 M Concurrency Challenges and
Control: deadlocks, detection,
avoidance, prevention,
starvation, lockfree/waitfree
data structures

6, 2.5

7 1/28 W Scheduling: classic treatment 2.4, 10.3, 8.1.4 PC lab in,
Queue lab out

8 2/2 M Scheduling: workload,
queueing, and real-time
perspectives

Workload,
Queueing,
Mars

9 2/4 W Virtualization/Containers/Clou
d, Special topic or Slack

7 (if first
option)

10 2/9 M File systems: principles and
issues

4.1-4.4

Midterm Exam Review: 2/9, M, 6pm, Mudd 3514 and on zoom
Midterm Exam: 2/10, 6pm, Tech LR5 (Covers Lectures 1-9 (no file systems)
11 2/11 W File systems: examples 4.5, 10.6 Queue Lab

in, File
Systems lab
out

2/13 is the last day to drop a class.
12 2/16 M Devices and drivers: principles 5.1-5.3, 10.5
13 2/18 W Devices and drivers: examples 5.4-5.8
14 2/23 M OS design principles Chapter 12

CS 343 Operating Systems Winter 2026 Dinda

 Page 10 of 10

15 2/25 W Virtual memory with paging
and segmentation

3.1, 3.2, 3.3,
3.7

File Systems
lab in, Paging
lab out

16 3/2 M Paging and swapping policies
and their effects, working set,
allocation

3.4-3.6

17 3/4 W Paging on x64 and Linux 10.4
18 3/9 M Security and Protection 9.1-9.6,

Spectre

19 3/11 W Research Topic, Special topic
or Slack

 Paging lab in

Final Exam Review: Around here, outside of class, time+location TBD
Finals week – Final Exam is Friday, 3/20, 3-5pm
Grades due on Monday, 3/23, 3pm
We will attempt to work out an earlier Final Exam time
A prospective replacement in M 3/16, 12pm, but this is not locked in yet

Readings are from the textbook, with these exceptions:

Therac THERAC-25 article
Mars Mars Pathfinder article
Spectre Meltdown/Spectre article
Unix Unix Systems Programming in a Nutshell Handout
Workload Workload Characterization Handout
Queueing Queueing Theory Handout
Concurrency Concurrency Handout

