
Introduction to Real-Time Systems

ECE 397-1

Northwestern University

Department of Computer Science

Department of Electrical and Computer Engineering

Teachers: Robert Dick Peter Dinda
Office: L477 Tech 338, 1890 Maple Ave.
Email: dickrp@ece.northwestern.edu pdinda@cs.northwestern.edu
Phone: 467–2298 467-7859
Webpage: http://ziyang.ece.northwestern.edu/EXTERNAL/realtime

1

Homework index

1 Reading assignment (for next class) 42

2

Goals for lecture

• Handle a few administrative details

• Form lab groups

• Broad overview of real-time systems

• Definitions that will come in handy later

• Example of real-time sensor network

3

Administrative tasks

• Backgrounds

• Question rule

• Office hours

4

Backgrounds

• Lab teams had best be balanced (low-level vs. high-level

experience)

• Name

• Which are you better at?

– Low-level ANSI-C/assembly experience

– High-level object-oriented programming experience

• What’s your major?

5

Question rule

• If something in lecture doesn’t make sense, please ask

• You’re paying a huge amount of money for this

• Letting something important from lecture slip by for want of a

question is like burning handfulls of money

6

Core course goal

By the end of this course, we want you to

learn how to build real-time systems

and build a useful real-time sensor network.

7

Office hours

• When shall I schedule my office hours?

8

Today’s topics

• Taxonomy of real-time systems

• Optimization and costs

• Definitions

• Optimization formulation

• Overview of primary areas of study within real-time systems

9

Taxonomy of real-time systems

DynamicStatic Soft Hard Single rate Multi−rate

Periodic Aperiodic

Bounded
arrival interval

Unbounded
arrival interval

10

Taxonomy: Static

• Task arrival times can be predicted.

• Static (compile-time) analysis possible.

• Allows good resource usage (low processor idle time

proportions).

• Sometimes designers shoehorn dynamic problems into static

formulations allowing a good solution to the wrong problem.

11

Taxonomy: Dynamic

• Task arrival times unpredictable.

• Static (compile-time) analysis possible only for simple cases.

• Even then, the portion of required processor utilization efficiency

goes to 0.693.

• In many real systems, this is very difficult to apply in reality (more

on this later).

• Use the right tools but don’t over-simplify, e.g.,

We assume, without loss of generality, that all tasks are

independent.

If you do this people will make jokes about you.

12

Taxonomy: Soft real-time

• More slack in implementation

• Timing may be suboptimal without being incorrect

• Problem formulation can be much more complicated than hard

real-time

• Two common (and one uncommon) methods of dealing with

non-trivial soft real-time system requirements

– Set somewhat loose hard timing constraints

– Informal design and testing

– Formulate as optimization problem

13

Taxonomy: Hard real-time

• Difficult problem. Some timing constraints inflexible.

• Simplifies problem formulation.

14

Taxonomy: Periodic

• Each task (or group of tasks) executes repeatedly with a

particular period.

• Allows some nice static analysis techniques to be used.

• Matches characteristics of many real problems...

• ... and has little or no relationship with many others that

designers try to pretend are periodic.

15

Taxonomy: Periodic → Single-rate

• One period in the system.

• Simple.

• Inflexible.

• This is how a lot of wireless sensor networks are implemented.

16

Taxonomy: Periodic → Multirate

• Multiple periods.

• Can use notion of circular time to simplify static (compile-time)

schedule analysis E. L. Lawler and D. E. Wood,

“Branch-and-bound methods: A survey,” Operations Research,

pp. 699–719, July 1966.

• Co-prime periods leads to analysis problems.

17

Taxonomy: Periodic → Other

• It is possible to have tasks with deadlines less than, equal to, or

greater than their periods.

• Results in multi-phase, circular-time schedules with multiple

concurrent task instances.

– If you ever need to deal with one of these, see me (take my

code). This class of scheduler is nasty to code.

18

Taxonomy: Aperiodic

• Also called sporadic, asynchronous, or reactive

• Implies dynamic

• Bounded arrival time interval permits resource reservation

• Unbounded arrival time interval impossible to deal with for any

resource-constrained system

19

Definitions

• Task

• Processor

• Graph representations

• Deadline violation

• Cost functions

20

Definitions: Task

• Some operation that needs to be carried out

• Atomic completion: A task is all done or it isn’t

• Non-atomic execution: A task may be interrupted and resumed

21

Definitions: Processor

• Processors execute tasks

• Distributed systems

– Contain multiple processors

– Inter-processor communication has impact on system

performance

– Communication is challenging to analyze

• One processor type: Homogeneous system

• Multiple processor types: Heterogeneous system

22

Task/processor relationship

Matrix

FIR

Tooth

Road

WC exec time (s)

310E−3

...

...

...

...

7.7E−6

330E−9

4.1E−6

IBM PowerPC 405GP 266 MHz

IDT79RC32364 100 MHz

Imsys Cjip 40 MHz

Relationship between tasks, processors, and costs

E.g., power consumption or worst-case execution time

23

Graph definitions

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms

• Set of vertices (V)– usually operations

• Set of edges (E)– directed or undirected relationships on vertex

pairs

24

Example graph classifications

graph

tree reconvergent

undirected directed

acyclic cyclic

25

Some graph uses

• Problem representations

• Timing constraint specification

• Resource binding

• And many more. . .

26

A few basic graph algorithms

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms

• Depth-first search (DFS)

• Breadth-first search (BFS)

• Topological sort

• Minimal spanning tree

(MST)

27

Depth-first search (DFS) – Pre-order for trees

C
A

D

G

FB

E

O(|V |+ |E|)

28

Breadth-first search (BFS) – Pre-order for trees

C E

A

B

D

G

F

O(|V |)

29

Topological sort

C E

A

B

D

G

F

Static timing analysis of data-dependent real-time systems

• Earliest finish time (EFT)

• Earliest start time (EST)

• Latest finish time (LFT)

• Latest start time (LST)

O(|V |+ |E|)

30

Definition: Deadline violation

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms

31

Cost functions

• Mapping of real-time system design problem solution instance to

cost value

• I.e., allows price, or hard deadline violation, of a particular

multi-processor implementation to be determined

32

Back to real-time problem taxonomy:

Jagged edges

• Some things dramatically complicate real-time scheduling

• These are horrific, especially when combined

– Data dependencies

– Unpredictability

– Distributed systems

• These are irksome

– Heterogeneous processors

– Preemption

33

Central areas of real-time study

• Allocation, assignment and scheduling

• Operating systems and scheduling

• Distributed systems and scheduling

• Scheduling is at the core or real-time systems study

34

Allocation, assignment and scheduling

How does one best

• Analyze problem instance specifications

– E.g., worst-case task execution time

• Select (and build) hardware components

• Select and produce software

• Decide which processor will be used for each task

• Determine the time(s) at which all tasks will execute

35

Allocation, assignment and scheduling

• In order to efficiently and (when possible) optimally minimize

– Price, power consumption, soft deadline violations

• Under hard timing constraints

• Providing guarantees whenever possible

• For all the different classes of real-time problem classes

This is what I did for a Ph.D.

36

Operating systems and scheduling

How does one best design operating systems to

• Support sufficient detail in workload specification to allow good

control, e.g., over scheduling, without increasing design error rate

• Design operating system schedulers to support real-time

constraints?

• Support predictable costs for task and OS service execution

37

Distributed systems and scheduling

How does one best dynamically control

• The assignment of tasks to processing nodes...

• ... and their schedules

for systems in which computation nodes may be separated by vast

distances such that

• Task deadline violations are bounded (when possible)...

• ... and minimized when no bounds are possible

This is part of what Professor Dinda did for a Ph.D.

38

The value of formality: Optimization and costs

• The design of a real-time system is fundamentally a cost

optimization problem

• Minimize costs under constraints while meeting functionality

requirements

– Slight abuse of notation here, functionality requirements are

actually just constraints

• Why view problem in this manner?

• Without having a concrete definition of the problem

– How is one to know if an answer is correct?

– More subtly, how is one to know if an answer is optimal?

39

Optimization

Thinking of a design problem in terms of optimization gives design

team members objective criterion by which to evaluate the impact of

a design change on quality.

• Still need to do a lot of hacking

• Know whether its taking you in a good direction

40

Summary

• Real-time systems taxonomy and overview

• Definitions

• Importance of problem formulation

41

Reading assignment (for next class)

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Chapter 2

• Start on Chapter 3

42

