
Introduction to Real-Time Systems

ECE 397-1

Northwestern University

Department of Computer Science

Department of Electrical and Computer Engineering

Teachers: Robert Dick Peter Dinda
Office: L477 Tech 338, 1890 Maple Ave.
Email: dickrp@ece.northwestern.edu pdinda@cs.northwestern.edu
Phone: 467–2298 467-7859
Webpage: http://ziyang.ece.northwestern.edu/EXTERNAL/realtime

1

Homework index

1 Bizarre scheduling idea 27

2 Reading assignment 28

2

Goals for lecture

• Sensor networks

• Finish overview of scheduling algorithms

• Mixing off-line and on-line

• Design a scheduling algorithm: DCP

– Will initially focus on static scheduling

• Useful properties of some off-line schedulers

3

Lab two?

• Everybody able to finish?

• Any problems to warn classmates about?

• 18 motes should be arriving tomorrow

– No equipment sign-out required for next motes lab

• Linux vs. Windows development environments

4

Sensor networks

• Gather information over wide region

• Frequently no infrastructure

• Battery-powered, wireless common

• Battery lifespan of central concern

5

Low-power sensor networks

• Power consumption central concern in design

• Processor?

– RISC µ-controllers common

• Wireless protocol?

– Low data-rate, simple: Proprietary, Zigbee

• OS design?

– Static, eliminate context switches, compile-time analysis

6

Low-power sensor networks

• Power consumption central concern in design

• Runtime environment?

– Avoid unnecessary dynamism

• Language?

– Compile-time analysis of everything practical

7

Multi-rate tricks

• Contract deadline

– Usually safe

• Contract period

– Sometimes safe

• Consequences?

8

Scheduling methods

• Clock

• Weighted round-robbin

• List scheduling

• Priority

– EDF, LST

– Slack

– Multiple costs

9

Scheduling methods

• MILP

• Force-directed

• Frame-based

• PSGA

10

Linear programming

• Minimize a linear equation subject to linear constraints

– In P

• Mixed integer linear programming: One or more variables

discrete

– NP-complete

• Many good solvers exist

• Don’t rebuild the wheel

11

MILP scheduling

P the set of tasks

tmax maximum time

start(p, t) 1 if task p starts at time t, 0 otherwise

D the set of execution delays

E the set of precedence constraints

tstart (p) =
tmax

∑
t=0

t · start(p, t) the start time of p

12

MILP scheduling

Each task has a unique start time

∀p∈P,

tmax

∑
t=0

start(p, t) = 1

Each task must satisfy its precedence constraints and timing delays

∀{pi, p j} ∈ E,

tmax

∑
t=0

tstart (pi) ≥ tstart (p j)+d j

Other constraints may exist

• Resource constraints

• Communication delay constraints

13

MILP scheduling

• Too slow for large instances of NP-complete scheduling

problems

• Numerous optimization algorithms may be used for scheduling

• List scheduling is one popular solution

• Integrated solution to allocation/assignment/scheduling problem

possible

• Performance problems exist for this technique

14

Force directed scheduling

• P. G. Paulin and J. P. Knight, “Force-directed scheduling for the

behavioral synthesis of ASICs,” IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, vol. 8, pp. 661–679,

June 1989

• Calculate EST and LST of each node

• Determine the force on each vertex at each time-step

• Force: Increase in probabilistic concurrency

– Self force

– Predecessor force

– Successor force

15

Self force

Fi all slots in time frame for i

F ′
i all slots in new time frame for i

Dt probability density (sum) for slot t

δDt change in density (sum) for slot t resulting from scheduling

self force

A = ∑
t∈Fa

Dt ·δDt

16

Predecessor and successor forces

pred all predecessors of node under consideration

succ all successors of node under consideration

predecessor force

B = ∑
b∈pred

∑
t∈Fb

Dt ·δDt

successor force

C = ∑
c∈succ

∑
t∈Fc

Dt ·δDt

17

Intuition

total force: A+B+C

• Schedule operation and time slot with minimal total force

– Then recompute forces and schedule the next operation

• Attempt to balance concurrency during scheduling

18

Force directed scheduling

probabilistic
concurrency

19

Force directed scheduling

• Limitations?

• What classes of problems may this be used on?

20

Implementation: Frame-based scheduling

• Break schedule into (usually fixed) frames

• Large enough to hold a long job

– Avoid preemption

• Evenly divide hyperperiod

• Scheduler makes changes at frame start

• Network flow formulation for frame-based scheduling

• Could this be used for on-line scheduling?

21

Problem space genetic algorithm

• Let’s finish off-line scheduling algorithm examples on a bizarre

example

• Use conventional scheduling algorithm

• Transform problem instance

• Solve

• Validate

• Evolve transformations

22

Examples: Mixing on-line and off-line

• Book mixes off-line and on-line with little warning

• Be careful, actually different problem domains

• However, can be used together

• Superloop (cyclic executive) with non-critical tasks

• Slack stealing

• Processor-based partitioning

23

Problem: Vehicle routing

• Low-price, slow, ARM-based system

• Long-term shortest path computation

• Greedy path calculation algorithm available, non-preemptable

• Don’t make the user wait

– Short-term next turn calculation

• 200 ms timer available

24

Examples: Mixing on-line and off-line

• Slack stealing

• Processor-based partitioning

25

Scheduling summary

• Scheduling is a huge area

• This lecture only introduced the problem and potential solutions

• Some scheduling problems are easy

• Most useful scheduling problems are hard

– Committing to decisions makes problems hard: Lookahead

required

– Interdependence between tasks and processors makes

problems hard

– On-line scheduling next Tuesday

26

Bizarre scheduling idea

• Scheduling and validity checking algorithms considered so far

operate in time domain

• This is a somewhat strange idea

• Think about it and tell/email me if you have any thoughts on it

• Could one very quickly generate a high-quality real-time off-line

multi-rate periodic schedule by operating in the frequency

domain?

• If not, why not?

• What if the deadlines were soft?

27

Reading assignment

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Read Chapter 7

28

