ECE 397-1

Northwestern University

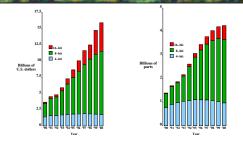
Department of Computer Science Department of Electrical and Computer Engineering

Teachers:	Robert Dick	Peter Dinda
Office:	L477 Tech	338, 1890 Maple Ave.
Email:	dickrp@ece.northwestern.edu	pdinda@cs.northwestern.edu
Phone:	467–2298	467-7859
Webpage:	http://www.ece.northwester	n.edu/EXTERNAL/realtime

Goals for lecture

- Explain details of a real-time design problem
- · Give some background on development of area
- · Synthesis solution
- · Current commercial status

Homework index


² Distributed real-time: Part one

- Distributed needn't mean among cities or offices Same IC?
- Process scaling trends
- · Cross-layer design now necessary

Embedded system / SOC synthesis motivation

- · Wireless: effects of the communication medium important
- · Hard real-time: deadlines must not be violated
- · Reliable: anti-lock brake controllers shouldn't crash
- Rapidly implemented: IP use, simultaneous HW-SW development
- High-performance: massively parallel, using ASICs
- SOC market from \$1.1 billion in 1996 to \$14 billion in 2000 (Dataquest), to \$43 billion in 2009 (Global Information, Inc.)

Global μ -controller sales

Source: Embedded Processor and Microcontroller Primer and FAQ by Russ Hersch

Low-power motivation

- · Embedded systems frequently battery-powered, portable
- · High heat dissipation results in
 - Expensive, bulky packaging
 - Limited performance
- · High-level trade-offs between
 - Power
 - Speed
 - Price
 - Area

Past embedded system synthesis work

- Early 1990s: Optimal MILP co-synthesis of small systems [Prakash & Parker], [Bender], [Schwiegershausen & Pirsch]
- Mid 1990s: One CPU-One ASIC
 [Ernst, Henkel & Benner], [Gupta & De Micheli]
 [Barros, Rosenstiel, & Xiong], [D'Ambrosio & Hu]
- Late 1990s present: Co-synthesis of heterogeneous distributed embedded systems [Kuchcinski], [Quan, Hu, & Greenwood], [Wolf]

Past low-power work

- Mid 1990s: VLSI power minimization design surveys [Pedram], [Devadas & Malik]
- Mid late 1990s: High-level power analysis and optimization [Raghunathan, Jha, & Dey], [Chandrakasan & Brodersen]
- · Late 1990s: Embedded processor energy estimation [Li & Henkel], [Sinha & Chandrakasan]
- Late 1990s present: Low-power hardware-software co-synthesis [Dave, Lakshminarayana, & Jha], [Kirrovski & Potkonjak]

Overview of system synthesis projects

- · Synthesize embedded systems
 - heterogeneous processors and communication resources

11

Definitions

Specify

resource

resource

- task types

deadlines periods

data dependencies

- hard and soft task

· Analyze performance of

each task on each resource Allocate resources Assign each task to a

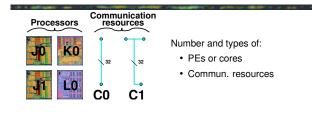
Schedule the tasks on each

- multi-rate
- hard real-time
- Optimize
 - price
 - power consumption

eriod = 200 ms

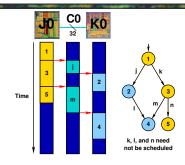
d DI - 220

- response time

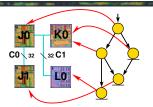

Overview of system synthesis projects

- TGFF: Generates parametric task graphs and resource databases
- MOGAC: Multi-chip distributed systems
- · CORDS: Dynamically reconfigurable
- · COWLS: Multi-chip distributed, wireless, client-server
- · MOCSYN: System-on-a-chip composed of hard cores, area optimized

10 Overview of system synthesis projects


- TGFF: Generates parametric task graphs and resource databases
- MOGAC: Multi-chip distributed systems
- CORDS: Dynamically reconfigurable
- · COWLS: Multi-chip distributed, wireless, client-server
- MOCSYN: System-on-a-chip composed of hard cores, area optimized

12 Allocation



14

Schedule

13 Assignment

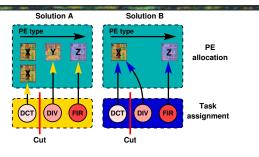
- · Assignment of tasks to PEs
 - · Connection of
 - communication resources to PEs

15

Costs

- Soft constraints:
- price
- power
- area

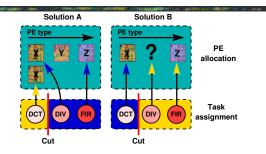
· response time

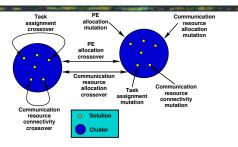

sions

- Hard constraints: • deadline violations
- PE overload
- unschedulable tasks
- unschedulable transmis-

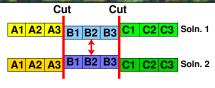
Solutions which violate hard constraints not shown to designer – pruned out.

17

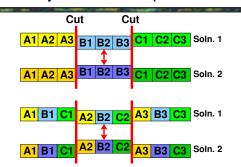

Cluster genetic operator constraints motivation


Genetic algorithms

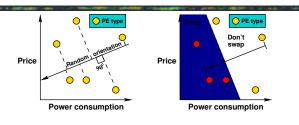
- Multiple solutions
- · Local randomized changes to solutions
- · Solutions share information with each other
- · Can escape sub-optimal local minima
- Scalable


Cluster genetic operator constraints motivation

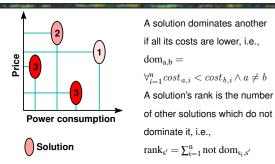
Cluster genetic operator constraints

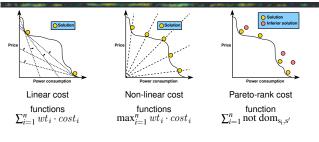


Locality in solution representation



A, B, and C attributes each solve sub-problems


Locality in solution representation


²² Information trading

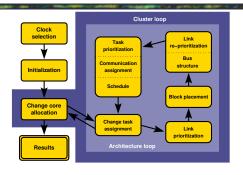
Ranking

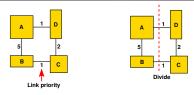
Multiobjective optimization

Reproduction

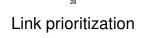
Solution are selected for reproduction by conducting Boltzmann trials between parents and children.

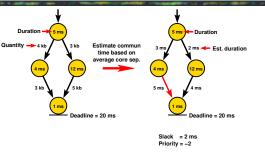
Given a global temperature T, a solution with rank J beats a solution with rank K with probability:

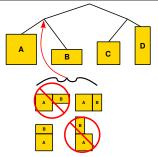



MOCSYN related work

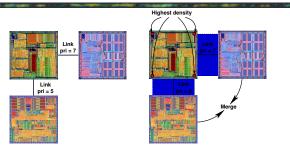
- Floorplanning block placement Fiduccia and Mattheyses, 1982
 Stockmeyer, 1983
- Parallel recombinative simulated annealing Mahfoud and Goldberg, 1995
- Linear interpolating clock synthesizers Bazes, Ashuri, and Knoll, 1996
- Interconnect performance estimation models Cong & Pan, 2001



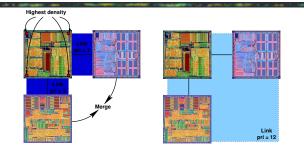

²⁹ Floorplanning block placement


Balanced binary tree of cores formed Division takes into account:

- Link priorities
- · Area of cores on each side of division



Floorplanning block placement



Bus formation

Use efficient red-black tree data structure for intersection tests

³³ Bus formation

35 Scheduling

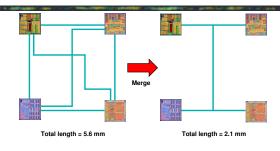
 3 copies

 3 copies

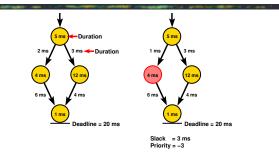
 Decide 20 ms

 Decidine = 20 ms

 Decidine = 20 ms

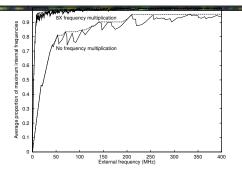

 Decidine = 40 ms

 2 copies


System hyperperiod = 60 ms

- Fast list scheduler
- Multi-rate
- Handles period < deadline as well as period ≥ deadline
- Uses alternative
 prioritization methods:
- slack, EST, LFTOther features depend on target

RMST bus length reduction


Task prioritization

Cost calculation

- Price
- Average power consumption
- Area
- PE overload
- · Hard deadline violation
- Soft deadline violation
- etc.

³⁷ Clock selection quality

³⁸ MOCSYN feature comparisons experiments

Example	MOCSYN price (\$)	Worst-case commun. price (\$)	Best-case commun. price (\$)	Single bus price (\$)
15	216	n.a.	n.a.	n.a.
16	138	n.a.	n.a.	177
17	283	n.a.	n.a.	n.a.
18	253	n.a.	n.a.	253
19	211	n.a.	n.a.	n.a.
Better		38	44	28
Worse		3	1	9

17 processors, 34 core types, five task graphs, 10 tasks each, 21 task types from networking and telecomm examples.

MOCSYN multiobjective experiments

Example	Price (\$)	Average power (mW)	Soft DL viol. prop.	Area (mm ²)
automotive- industrial	91 91 110 110	120 120 113 115	0.60 0.61 0.88 0.60	3.0 2.0 4.0 4.0
networking	61	72	0.94	38.4
telecomm	223 223 233 236 242 242 242 242 242 242 242 242 242 24	246 255 247 249 221 230 237 226 226 258	2.31 2.76 3.47 2.29 2.60 2.67 2.44 1.72 2.22 2.34 1.23	9.9 6.0 4.5 9.9 8.0 3.0 25.9 6.0 192.1 9.4 4.0
consumer	134 134	281 281	1.40 1.50	34.1 21.6
office automation	64 66	370 55	0.23 0.00	36.8 7.2

MOGAC run on Prakash & Parker's examples

A CONTRACTOR OF A DESCRIPTION OF A DESCR			-		
Example	Prakash & Parker's System		MOGAC		
(Perform)	Price (\$)	CPU Time (s)	Price (\$)	CPU Time (s)	Tuned CPU Time (s)
Prakash & Parker 1 $\langle 4 \rangle$	7	28	7	3.3	0.2
Prakash & Parker 1 (7)	5	37	5	2.1	0.1
Prakash & Parker 2 $\langle 8 \rangle$	7	4,511	7	2.1	0.2
Prakash & Parker 2 $\langle 15 \rangle$	5	385,012	5	2.3	0.1

Quickly gets optimal when getting optimal is tractable.

3 PE types, Example 1 has 4 tasks, Example 2 has 9 tasks

43

MOCSYN contributions, conclusions

First core-based system-on-chip synthesis algorithm

- Novel problem formulation
- Multiobjective (price, power, area, response time, etc.)
- · New clocking solution

New bus topology generation algorithm

Important for system-on-chip synthesis to do

- Clock selection
- Block placement
- · Generalized bus topology generation

MOGAC run on Hou's examples

	Yen's System		MOGAC		
Example	Price (\$)	CPU Time (s)	Price (\$)	CPU Time (s)	Tuned CPU Time (s)
Hou 1 & 2 (unclustered)	170	10,205	170	5.7	2.8
Hou 3 & 4 (unclustered)	210	11,550	170	8.0	1.6
Hou 1 & 2 (clustered)	170	16.0	170	5.1	0.7
Hou 3 & 4 (clustered)	170	3.3	170	2.2	0.6

Robust to increase in problem complexity.

2 task graphs each example, 3 PE types Unclustered: 10 tasks per task graph Clustered: approx. 4 tasks per task graph

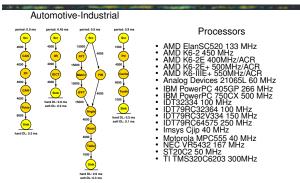
42

MOGAC run Yen's large random examples

	Yen's S	Yen's System		MOGAC		
Example	Dring (¢)	CPU	Price (\$)	CPU	Tuned CPU	
	Price (\$)	Time (s)		Time (s)	Time (s)	
Random 1	281	10,252	75	6.4	0.2	
Random 2	637	21,979	81	7.8	0.2	

Handles large problem specifications.

No communication links: communication costs = 0


Random 1: 6 task graphs, approx. 20 tasks each, 8 PE types Random 2: 8 task graphs, approx. 20 tasks each, 12 PE types

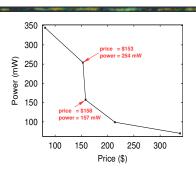
44

Research contributions

- · TGFF: Used by a number of researchers in published work
- MOGAC: Real-time distributed embedded system synthesis
 - First true multiobjective (price, power, etc.) system synthesis
- Solution quality \geq past work, often in orders of magnitude less time
- CORDS: First reconfigurable systems synthesis, schedule reordering
- · COWLS: First wireless client-server systems synthesis, task migration

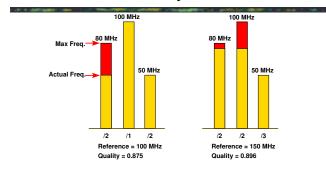
EEMBC-based embedded benchmarks

Recently started and future work

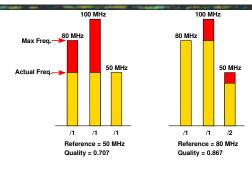

- Market-based energy allocation in low-power wireless mobile networks
 - paper under review
- Evolutionary algorithms for multi-dimensional optimization

 future work
- Task and processor characterization
 - EEMBC-based resource database completed will publicly release
- Tightly coupling low-level, high-level design automation algorithms

- recently started work in this area


MOGAC run on Yen's second large random

example


49

Counter-division only clock selection

51

Counter-division only clock selection

Bus formation inner kernel

- *l* is number of communicating core pairs
- For each bus, *i*, intersecting with highest density point: $O(l^2)$
 - For each bus, $j: \mathfrak{O}(l^3)$ Tentatively merge i and $j \mathfrak{O}(l^4)$
 - Evaluate the density, *new_dens*, of *congest* $O(l^3)$
 - Evaluate new maximum contention estimate, *cont_est* $O(l^4)$

52

If *new_dens* decreased for any tentative merge: Merge the pair with greatest *new_dens* decrease $O(l^2)$ Break ties by selecting merge with least *cont_est* increase.