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Topics list: Real-time networking

• Chapter 11, Tenet Paper, K&R chapter 7

• Workload models – describing burstiness

– Leaky Bucket

– Ferarri

– Why we can’t just do “average bandwidth”

• How does a queue deal with burstiness? What are the

consequences for latency

• Weighted fair queuing (WFQ)
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Topics list: Real-time networking

• How to combine WFQ and Leaky Bucket to estimate the queuing

delay at a node and thus to do admission control for it.

• End-to-end admission control and reservations

• Why it is difficult to make per-flow real-time behavior scale

• RTP - why should we care if there is no guarantee

• RSVP

• Diffserve versus Intserve

• Overlay networks
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Media networking

• K&R Chapter 7

• What buffering does to latency and why/when we might want to

use it anyway

• Workloads of media (ie, self-similarity issue) and how buffering

can be of less help than expected.

• Why is the workload so complex? Scene dynamics and

compression

• RT queuing theory (read the Lehokzy paper)
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Distributed real-time systems

• Ramamritham, Bestavros, Schmidt, Quorum

• Scaling behavior - job sizes, deadlines, and transmission times

scale as the system scales

• Initial placement versus migration

• Scheduling all of the workload versus just a part of it

• Having full control over local schedulers versus not.
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Distributed real-time systems

• Structures of RT systems

– single node (master) with global admission control, multiple

backend servers

– peer nodes with local admission control

– scaling versus being able to admit all admittable tasks

– bidding versus focused addressing

– work stealing
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Distributed real-time systems

• Parallel jobs

– fork-join task graphs and their implications

– Cluster scheduling

– space sharing versus gang scheduling versus synchronized

periodic real-time schedules
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Real-time adaptive systems

• Dinda, Noble, Mitzenmacher

• Power-of-two-choices

• Workload prediction

– Predicting job sizes and arrivals

– Predicting queue depth

• Scheduler modeling
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Real-time adaptive systems

• Adaptation mechanisms

– job placement and migration

– job selection (which function to call)

– quality modulation

– network path selection

10

Real-time adaptive systems

• Application goals / QoS

– minimize response time, maximize throughput

– deadlines

– QoS parameters (frame rate, frame latency, etc)

– utility functions

• Control problem

• Event-driven simulators
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Lecture packet one

• Taxonomy of real-time systems

• Graph definitions

• Graph algorithms

• Timing constraints

• Cost functions

• Jagged edges in real-time problem categorization

• Allocation, assignment, and scheduling

• Real-Time Operating systems

• Distributed systems

• Formal problem definitions: Optimization
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Lecture packet two

• Example optimization problem

• Crash course in computational complexity (why?)

• Design representations: SW-oriented, HW-oriented, graph-based

• Introduction to NesC
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Lecture packets three and four

• Processors

• Communication resources

• Graph extensions

• Taxonomy of scheduling problems

• Example real scheduling problems

• Scheduling methods

• Scheduling examples
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Lecture packet five *

• Rate monotonic scheduling

• Critical instants and utilization bounds

• Threads and processes

• Example scheduler implementations
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Lecture packets six and seven *

• Recent work in RTOS performance/power analysis

• Recent solution to off-line hard real-time

allocation/assignment/scheduling problem

• Implicit vs. explicit representation of time in formal methods
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Goals for lecture

• Handle a few administrative details

• Form lab groups

• Broad overview of real-time systems

• Definitions that will come in handy later

• Example of real-time sensor network
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Administrative tasks

• Backgrounds

• Question rule

• Office hours
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Backgrounds

• Lab teams had best be balanced (low-level vs. high-level

experience)

• Name

• Which are you better at?

– Low-level ANSI-C/assembly experience

– High-level object-oriented programming experience

• What’s your major?
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Question rule

• If something in lecture doesn’t make sense, please ask

• You’re paying a huge amount of money for this

• Letting something important from lecture slip by for want of a

question is like burning handfulls of money
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Core course goal

By the end of this course, we want you to

learn how to build real-time systems

and build a useful real-time sensor network.
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Office hours

• When shall I schedule my office hours?
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Today’s topics

• Taxonomy of real-time systems

• Optimization and costs

• Definitions

• Optimization formulation

• Overview of primary areas of study within real-time systems
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Taxonomy of real-time systems

DynamicStatic Soft Hard Single rate Multi−rate

Periodic Aperiodic

Bounded
arrival interval

Unbounded
arrival interval
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Taxonomy: Static

• Task arrival times can be predicted.

• Static (compile-time) analysis possible.

• Allows good resource usage (low processor idle time

proportions).

• Sometimes designers shoehorn dynamic problems into static

formulations allowing a good solution to the wrong problem.
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Taxonomy: Dynamic

• Task arrival times unpredictable.

• Static (compile-time) analysis possible only for simple cases.

• Even then, the portion of required processor utilization efficiency

goes to 0.693.

• In many real systems, this is very difficult to apply in reality (more

on this later).

• Use the right tools but don’t over-simplify, e.g.,

We assume, without loss of generality, that all tasks are

independent.

If you do this people will make jokes about you.
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Taxonomy: Soft real-time

• More slack in implementation

• Timing may be suboptimal without being incorrect

• Problem formulation can be much more complicated than hard

real-time

• Two common (and one uncommon) methods of dealing with

non-trivial soft real-time system requirements

– Set somewhat loose hard timing constraints

– Informal design and testing

– Formulate as optimization problem
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Taxonomy: Hard real-time

• Difficult problem. Some timing constraints inflexible.

• Simplifies problem formulation.
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Taxonomy: Periodic

• Each task (or group of tasks) executes repeatedly with a

particular period.

• Allows some nice static analysis techniques to be used.

• Matches characteristics of many real problems...

• ... and has little or no relationship with many others that

designers try to pretend are periodic.
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Taxonomy: Periodic → Single-rate

• One period in the system.

• Simple.

• Inflexible.

• This is how a lot of wireless sensor networks are implemented.
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Taxonomy: Periodic → Multirate

• Multiple periods.

• Can use notion of circular time to simplify static (compile-time)

schedule analysis E. L. Lawler and D. E. Wood,

“Branch-and-bound methods: A survey,” Operations Research,

pp. 699–719, July 1966.

• Co-prime periods leads to analysis problems.
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Taxonomy: Periodic → Other

• It is possible to have tasks with deadlines less than, equal to, or

greater than their periods.

• Results in multi-phase, circular-time schedules with multiple

concurrent task instances.

– If you ever need to deal with one of these, see me (take my

code). This class of scheduler is nasty to code.
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Taxonomy: Aperiodic

• Also called sporadic, asynchronous, or reactive

• Implies dynamic

• Bounded arrival time interval permits resource reservation

• Unbounded arrival time interval impossible to deal with for any

resource-constrained system
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Definitions

• Task

• Processor

• Graph representations

• Deadline violation

• Cost functions
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Definitions: Task

• Some operation that needs to be carried out

• Atomic completion: A task is all done or it isn’t

• Non-atomic execution: A task may be interrupted and resumed
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Definitions: Processor

• Processors execute tasks

• Distributed systems

– Contain multiple processors

– Inter-processor communication has impact on system

performance

– Communication is challenging to analyze

• One processor type: Homogeneous system

• Multiple processor types: Heterogeneous system
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Task/processor relationship

Matrix

FIR

Tooth

Road

WC exec time (s)

310E−3

...

...

...

...

7.7E−6

330E−9

4.1E−6

IBM PowerPC 405GP 266 MHz

IDT79RC32364 100 MHz

Imsys Cjip 40 MHz

Relationship between tasks, processors, and costs

E.g., power consumption or worst-case execution time
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Graph definitions

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms

• Set of vertices (V )– usually operations

• Set of edges (E)– directed or undirected relationships on vertex

pairs
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Example graph classifications

graph

tree reconvergent

undirected directed

acyclic cyclic
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Some graph uses

• Problem representations

• Timing constraint specification

• Resource binding

• And many more. . .

40



A few basic graph algorithms

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms

• Depth-first search (DFS)

• Breadth-first search (BFS)

• Topological sort

• Minimal spanning tree

(MST)
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Depth-first search (DFS) – Pre-order for trees

C
A

D

G

FB

E

O(|V |+ |E|)
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Breadth-first search (BFS) – Pre-order for trees

C E

A

B

D

G

F

O(|V |)
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Topological sort

C E

A

B

D

G

F

Static timing analysis of data-dependent real-time systems

• Earliest finish time (EFT)

• Earliest start time (EST)

• Latest finish time (LFT)

• Latest start time (LST)

O(|V |+ |E|)
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Definition: Deadline violation

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms
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Cost functions

• Mapping of real-time system design problem solution instance to

cost value

• I.e., allows price, or hard deadline violation, of a particular

multi-processor implementation to be determined
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Back to real-time problem taxonomy:

Jagged edges

• Some things dramatically complicate real-time scheduling

• These are horrific, especially when combined

– Data dependencies

– Unpredictability

– Distributed systems

• These are irksome

– Heterogeneous processors

– Preemption
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Central areas of real-time study

• Allocation, assignment and scheduling

• Operating systems and scheduling

• Distributed systems and scheduling

• Scheduling is at the core or real-time systems study
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Allocation, assignment and scheduling

How does one best

• Analyze problem instance specifications

– E.g., worst-case task execution time

• Select (and build) hardware components

• Select and produce software

• Decide which processor will be used for each task

• Determine the time(s) at which all tasks will execute
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Allocation, assignment and scheduling

• In order to efficiently and (when possible) optimally minimize

– Price, power consumption, soft deadline violations

• Under hard timing constraints

• Providing guarantees whenever possible

• For all the different classes of real-time problem classes

This is what I did for a Ph.D.
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Operating systems and scheduling

How does one best design operating systems to

• Support sufficient detail in workload specification to allow good

control, e.g., over scheduling, without increasing design error rate

• Design operating system schedulers to support real-time

constraints?

• Support predictable costs for task and OS service execution
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Distributed systems and scheduling

How does one best dynamically control

• The assignment of tasks to processing nodes...

• ... and their schedules

for systems in which computation nodes may be separated by vast

distances such that

• Task deadline violations are bounded (when possible)...

• ... and minimized when no bounds are possible

This is part of what Professor Dinda did for a Ph.D.
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The value of formality: Optimization and costs

• The design of a real-time system is fundamentally a cost

optimization problem

• Minimize costs under constraints while meeting functionality

requirements

– Slight abuse of notation here, functionality requirements are

actually just constraints

• Why view problem in this manner?

• Without having a concrete definition of the problem

– How is one to know if an answer is correct?

– More subtly, how is one to know if an answer is optimal?
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Optimization

Thinking of a design problem in terms of optimization gives design

team members objective criterion by which to evaluate the impact of

a design change on quality.

• Still need to do a lot of hacking

• Know whether its taking you in a good direction
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Summary

• Real-time systems taxonomy and overview

• Definitions

• Importance of problem formulation
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Reading assignment (for next class)

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Chapter 2

• Start on Chapter 3
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Goals for lecture

• Justify treating real-time design problem as optimization problem

• Example problem to illustrate specification and design

• Tractable algorithm design (NP-completeness in a nutshell)

• Detail on design representations

• Sensor network motivations

• NesC overview
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The value of formality: Optimization and costs

• The design of a real-time system is fundamentally a cost

optimization problem

• Minimize costs under constraints while meeting functionality

requirements

– Slight abuse of notation here, functionality requirements are

actually just constraints

• Why view problem in this manner?

• Without having a concrete definition of the problem

– How is one to know if an answer is correct?

– More subtly, how is one to know if an answer is optimal?
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Optimization

Thinking of a design problem in terms of optimization gives design

team members objective criterion by which to evaluate the impact of

a design change on quality.

• Still need to do a lot of hacking

• Know whether its taking you in a good direction
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Simple example

• Ensure that a wireless data display 300 m away from a

temperature sensor always displays the correct temperature with

a lag of, at most, 100 ms.

• Wireless broadcasts reach 100 m with high probability and 200 m

with very low probability.

• There are two, evenly distributed, rebroadcast nodes between

the sensor and the data display.

• Functional requirements?

• Constraints?

• Costs?
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Example problem

• Richland, Washington’s Hanford Reservation plutonium finishing

facility

• July 1988 facility’s last reactor, Reactor N, put into cold standby

due the nation’s surplus of plutonium

• Was used for processing weapons-grade fissile material
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Example problem

• Currently holds 11.0 metric tons of plutonium-239 and 0.6 metric

tons of uranium-235

– The two fissile materials most commonly used in nuclear

weapons

• Even without refining, a small quantity of either would convert

conventional explosives into weapons capable of causing

long-term damage far beyond their blast radii

• Ongoing provisions for security required
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Example problem

• Build perimeter security network

• Functional requirements?

• Constraints?

• Costs?
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Example tasks

• Sense audio

• Compress it

• Determine whether it is unusual

• Sense, compress, and stream video

• Analyze information from region to determine most promising

messages to forward, given network contention
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Example constraints

• Data rate

• Dependencies between tasks

• Price

• Lifetime of battery-powered devices

• Etc.
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Hanford security network design

• By 18 January, working with your lab partner, provide

– A paragraph formalizing the real-time system design goals

– A paragraph giving an overview of the design you propose

• Keep it within a page. We want you thinking about this and

learning but you should focus on the lab assignment.

• Have questions? Do research. The Hanford Reservation is real.

– Post to the newsgroup if you get stuck.
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Lab one

• Subversion working for everybody?

• Access to mailing list?

• Anybody stuck on development?
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NP-completeness

• Scheduling is central to real-time systems design and research

• Tractable algorithm design is central to scheduling

• Many (but not all) interesting and useful scheduling problems are

NP-complete

• We need to understand what this means, at least at a high level
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NP-completeness

Recall that sorting may be done in O(n lgn) time

DFS ∈ O(|V |+ |E|), BFS ∈ O(|V |), Topological sort ∈ O(|V |+ |E|)
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NP-completeness

There also exist exponential-time algorithms: O
(

2lgn), O(2n), O(3n)
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NP-completeness

For t(n) = 2n seconds

t(1) = 2 seconds

t(10) = 17 minutes

t(20) = 12 days

t(50) = 35,702,052 years

t(100) = 40,196,936,841,331,500,000,000 years
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NP-completeness

• There is a class of problems, NP-complete, for which nobody

has found polynomial time solutions

• It is possible to convert between these problems in polynomial

time

• Thus, if it is possible to solve any problem in NP-complete in

polynomial time, all can be solved in polynomial time

• Unproven conjecture: NP 6= P
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NP-completeness

• What is NP? Nondeterministic polynomial time.

• A computer that can simultaneously follow multiple paths in a

solution space exploration tree is nondeterministic. Such a

computer can solve NP problems in polynomial time.

• Nobody has been able to prove either

P 6= NP

or

P = NP
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NP-completeness

If we define NP-complete to be a set of problems in NP for which

any problem’s instance may be converted to an instance of another

problem in NP-complete in polynomial time, then

P ( NP⇒ NP-complete∩P = ∅
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Basic complexity classes

PSfrag replacements
NP-complete NP P

• P solvable in polynomial time by a computer (Turing Machine)

• NP solvable in polynomial time by a nondeterministic computer

• NP-complete converted to other NP-complete problems in

polynomial time
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Hard (NP-complete) scheduling problems

• Uniprocessor scheduling with hard deadlines and release times

• Uniprocessor scheduling to minimize tardy tasks

• Multiprocessor scheduling

– Easy if all tasks are identical

• Multiprocessor precedence constrained scheduling

• Multiprocessor preemptive scheduling

• etc.
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How to deal with hard problems

• What should you do when you encounter an apparently hard

problem?

• Is it in NP-complete?

• If not, solve it

• If so, then what?

Determine whether all encountered problem instances are

constrained.

Wonderful when it works.
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One example

O. Coudert, “Exact coloring of real-life graphs is easy,” Design

Automation, pp. 121–126, June 1997.
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Terminology

• Book’s terminology fine, others also exist

• Different groups → different terminology

• Not confusing, terse definitions provided

• Book on jobs, tasks: Jobs discrete, tasks groups of related jobs

• Other sources: Tasks discrete, hierarchical
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Additional terminology

• Or vs. And data dependencies

• Conditionals

– Doesn’t help hard real-time unless perfect path correlation

– Can help soft real-time
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Terminology

• Scheduling, allocation, and assignment

• Scheduling central but not only thing

• Book treats scheduling as combination of scheduling and

assignment

• More fine-grained definitions exist
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Substantial quirks

1. Every processor is assigned to at most one job at any time

• O.K.

2. Every job is assigned at most one processor at any time

• Broken

3. No job scheduled before its release time

• O.K., but the whole notion of absolute release times is broken

for some useful classes of real-time systems.

4. Etc.
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Design representations

• Introduction

• Software oriented

• Hardware oriented

• Graph based

• Resource description
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Specification language requirements

• Specify constraints on design

• Indicate system-level building blocks

• To allow flexibility in compilation/synthesis, must be abstract

– Specify implementation details only when necessary (e.g.,

HW/SW)

– Concentrate on requirements, not implementation

– Make few assumptions about platform
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Design representations

• Introduction

• Software oriented

– ANSI-C

– SystemC

– Other SW language-based, e.g., Ada

• Hardware oriented

• Graph based

• Resource description
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ANSI-C advantages

• Huge code base

• Many experienced programmers

• Efficient means of SW implementation

• Good compilers for many SW processors
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ANSI-C disadvantages

• Little implementation flexibility

– Strongly SW oriented

– Makes many assumptions about platform

• Little (volatile)/no built-in support for synchronization

– Especially fine-scale HW synchronization

• Doesn’t directly support specification of timing constraints
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SystemC

Advantages

• Support from big players

– Synopsys, Cadence, ARM, Red Hat, Ericsson, Fujitsu,
Infineon Technologies AG, Sony Corp., STMicroelectronics,
and Texas Instruments

• Familiar for SW engineers

Disadvantages

• Extension of SW language

– Not designed for HW from the start

• Compiler available for limited number of SW processors

– New
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Other SW language-based

• Numerous competitors

• Numerous languages

– ANSI-C, C++, and Java are most popular starting points

• In the end, few can survive

• SystemC has broad support
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Design representations

• Software oriented

• Hardware oriented

– VHDL

– Verilog

– Esterel

• Graph based

• Resource description
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VHDL

Advantages

• Supports abstract data types

• System-level modeling supported

• Better support for test harness design

Disadvantages

• Requires extensions to easily operate at the gate-level

• Difficult to learn

• Slow to code
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Verilog

Advantages

• Easy to learn

• Easy for small designs

Disadvantages

• Not designed to handle large designs

• Not designed for system-level
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Verilog vs. VHDL

• March 1995, Synopsys Users Group meeting

• Create a gate netlist for the fastest fully synchronous loadable

9-bit increment-by-3 decrement-by-5 up/down counter that

generated even parity, carry and borrow

• 5 / 9 Verilog users completed

• 0 / 5 VHDL users competed

Does this mean that Verilog is better?

Maybe, but maybe it only means that Verilog is easier to use for

simple designs.
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Esterel

• Easily allows synchronization among parallel tasks

• Works at a high level of abstraction

– Doesn’t require explicit enumeration of all states and

transitions

• Recently extended for specifying datapaths and flexible clocking

schemes

• Amenible to theorem proving

• Translation to RTL or C possible

• Commercialized by Esterel Technologies
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Design representations
• Software oriented

• Hardware oriented

• Graph based
– Dataflow graph (DFG)
– Synchronous dataflow graph (SDFG)
– Control flow graph (CFG)
– Control dataflow graph (CDFG)
– Finite state machine (FSM)
– Petri net
– Periodic vs. aperiodic
– Real-time vs. best effort
– Discrete vs. continuous timing
– Example from research

• Resource description
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Dataflow graph (DFG)

5 kb
NEG

IOP

FIL

FT

DCT

3 kb

4 kb 4 kb

6 kb
3 kb

Soft DL = 150 ms

Soft DL = 230 ms

• Nodes are tasks

• Edges are data dependencies

• Edges have communication

quantities

• Used for digital signal

processing (DSP)

• Often acyclic when real-time

• Can be cyclic when best-effort
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Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C
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Control flow graph (CFG)
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• Nodes are tasks

• Supports conditionals, loops

• No communication quantities

• SW background

• Often cyclic
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Control dataflow graph (CDFG)
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• Supports conditionals, loops

• Supports communication

quantities

• Used by some high-level

synthesis algorithms
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Finite state machine (FSM)

1 1 0

1
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Finite state machine (FSM)

input

0 1

00 10 00

01 01 00

10 00 01

11 10 00

current next

• Normally used at lower levels

• Difficult to represent independent

behavior

– State explosion

• No built-in representation for data flow

– Extensions have been proposed

• Extensions represent SW, e.g.,

co-design finite state machines (CFSMs)
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Petri net

• Graph composed of places, transitions, and arcs

• Tokens are produced and consumed

• Useful model for asynchronous and stochastic processes

• Places can have priorities

• Not well-suited for representing dataflow systems

• Timing analysis quite difficult

• Large flat graphs difficult to understand

• Real-time use: Specification and formal timing verification
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Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.
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NesC

• View as a ANSI C with additional layer

• Specify interfaces between components

• Centers on commands and events

• Commands

– Provided by interface, do things

– Non-blocking, split-phase (response from events)

– Call down

– E.g., transmit data
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NesC

Events

• Provided by interface

• Used to signal command completion

• Interrupt tasks

• Require concurrency control (atomic blocks)
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NesC

• Tasks: Interrupted only by events, no normal preemption

• Asynchronous code: can be reached by interrupt handlers

• Synchronous code: can be reached only from tasks

• Not the only option
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Summary

• Justify treating real-time design problem as optimization problem

• Example problem to illustrate specification and design

• Tractable algorithm design (NP-completeness in a nutshell)

• Detail on design representations

• Sensor network motivations

• NesC overview
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Reading assignment (18 January)

• M. R. Garey and D. S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman &

Company, NY, 1979.

– Chapter 1

– Chapter A5: Sequencing and scheduling

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000.

– Chapter 3

– Chapter 4
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Goals for lecture

• Resource representations

• Graph extensions for pre/post-computation and

streaming/pipelining

• Scheduling problem categories

• Overview of scheduling algorithms

– Will initially focus on static scheduling

• Sensor networks
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Processing resource description

• Often table-based

• Price, area

• For each task

– Execution time

– Power consumption

– Preemption cost

– etc.

• etc.

Similar characterization for communication resources

Wise to use process-based
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Communication resource description

• Can use bus-bridge based models for distributed systems

– Some protocols make static analysis difficult

• Wireless models

• System-level design, especially for a single chip, depends on wire

delays!
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Graph extensions

b) pre− and post−
computation

K

J J1/3

J3/3

J2/3 K1/3

K2/3

K3/3

J1/3

J2/3

J3/3

K1/3

K2/3

K3/3

a) conventional

0 kb

3 kb

3 kb

c) streaming

9 kb 0 kb

0 kb

9 kb
0 kb

0 kb

3 kb

0 kb

0 kb0 kb

Allows pipelining and pre/post-computation

In contrast with book, not difficult to use if conversion automated
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Problem definition

PE 0 PE 1minimize completion time

D

A

B

C

E

• Given a set of tasks,

• a cost function,

• and a set of resources,

• decide the exact time each task will execute on each resource

113

Types of scheduling problems
• Discrete time – Continuous time

• Hard deadline – Soft deadline

• Unconstrained resources – Constrained resources

• Uni-processor – Multi-processor

• Homogeneous processors – Heterogeneous processors

• Free communication – Expensive communication

• Independent tasks – Precedence constraints

• Homogeneous tasks – Heterogeneous tasks

• One-shot – Periodic

• Single rate – Multirate

• Non-preemptive – Preemptive

• Off-line – On-line
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Discrete vs. continuous timing

System-level: Continuous

• Operations are not small integer multiples of the clock cycle

High-level: Discrete

• Operations are small integer multiples of the clock cycle

Implications:

• System-level scheduling is more complicated. . .

• . . . however, high-level also very difficult.

• Can we solve this by quantizing time? Why or why not?
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Hard deadline – Soft deadline

Tasks may have hard or soft deadlines

• Hard deadline

– Task must finish by given time or schedule invalid

• Soft deadline

– If task finishes after given time, schedule cost increased
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Real-time – Best effort

• Why make decisions about system implementation statically?

– Allows easy timing analysis, hard real-time guarantees

• If a system doesn’t have hard real-time deadlines, resources can

be more efficiently used by making late, dynamic decisions

• Can combine real-time and best-effort portions within the same

specification

– Reserve time slots

– Take advantage of slack when tasks complete sooner than

their worst-case finish times
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Unconstrained – Constrained resources

• Unconstrained resources

– Additional resources may be used at will

• Constrained resources

– Limited number of devices may be used to execute tasks
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Uni-processor – Multi-processor

• Uni-processor

– All tasks execute on the same resource

– This can still be somewhat challenging

– However, sometimes in P

• Multi-processor

– There are multiple resources to which tasks may be scheduled

• Usually NP-complete
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Homogeneous – Heterogeneous processors

• Homogeneous processors

– All processors are the same type

• Heterogeneous processors

– There are different types of processors

– Usually NP-complete
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Free – Expensive communication

• Free communication

– Data transmission between resources has no time cost

• Expensive communication

– Data transmission takes time

– Increases problem complexity

– Generation of schedules for communication resources

necessary

– Usually NP-complete
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Independent tasks –

Precedence constraints

NEG

IOP

FIL

FT

DCT

• Independent tasks: No previous execution sequence imposed

• Precedence constraints: Weak order on task execution order
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Homogeneous – Heterogeneous tasks

IOP

NEG

DCT

FIL

FT

• Homogeneous tasks: All tasks are identical

• Heterogeneous tasks: Tasks differ
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One-shot – Periodic

time

• One-shot: Assume that the task set executes once

• Periodic: Ensure that the task set can repeatedly execute at

some period
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Single rate – Multirate

3 copies

2 copies

period = 30 ms

system hyperperiod = 60 ms

time

period = 20 ms

• Single rate: All tasks have the same period

• Multirate: Different tasks have different periods
– Complicates scheduling
– Can copy out to the least common multiple of the periods

(hyperperiod)
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Periodic graphs

period = 20 ms
deadline = 20 ms

3 copies

period = 30 ms
deadline = 40 ms

system hyperperiod = 60 ms

2 copies

time
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Aperiodic/sporadic graphs

• No precise periods imposed on task execution

• Useful for representing reactive systems

• Difficult to guarantee hard deadlines in such systems

– Possible if minimum inter-arrival time known

127

Periodic vs. aperiodic

Periodic applications

• Power electronics

• Transportation applications
– Engine controllers
– Brake controllers

• Many multimedia applications
– Video frame rate
– Audio sample rate

• Many digital signal processing (DSP) applications

However, devices which react to unpredictable external stimuli have
aperiodic behavior

Many applications contain periodic and aperiodic components
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Aperiodic to periodic

Can design periodic specifications that meet requirements posed by

aperiodic/sporadic specifications

• Some resources will be wasted

Example:

• At most one aperiodic task can arrive every 50 ms

• It must complete execution within 100 ms of its arrival time
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Aperiodic to periodic

• Can easily build a periodic representation with a deadline and

period of 50 ms

– Problem, requires a 50 ms execution time when 100 ms

should be sufficient

• Can use overlapping graphs to allow an increase in execution

time

– Parallelism required

The main problem with representing aperiodic problems with periodic

representations is that the tradeoff between deadline and period must

be made at design/synthesis time
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Non-preemptive – Preemptive

O.K.

non−ideal
preempt.

ideal
preempt.

A

B

A1

B

A2

A1
P
B
P

A2

A ready

B ready

B deadline

A deadline

non−preempt.

• Non-preemptive: Tasks must run to completion

• Ideal preemptive: Tasks can be interrupted without cost

• Non-ideal preemptive: Tasks can be interrupted with cost
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Off-line – On-line

Off-line

• Schedule generated before system execution

• Stored, e.g., in dispatch table. for later use

• Allows strong design/synthesis/compile-time guarantees to be
made

• Not well-suited to strongly reactive systems

On-line

• Scheduling decisions made during the execution of the system

• More difficult to analyze than off-line
– Making hard deadline guarantees requires high idle time
– No known guarantee for some problem types

• Well-suited to reactive systems
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Hardware-software co-synthesis scheduling

Automatic allocation, assignment, and scheduling of system-level

specification to hardware and software

Scheduling problem is hard

• Hard and soft deadlines

• Constrained resources, but resources unknown (cost functions)

• Multi-processor

• Strongly heterogeneous processors and tasks

– No linear relationship between the execution times of a tasks

on processors
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Hardware-software co-synthesis scheduling

• Expensive communication

– Complicated set of communication resources

• Precedence constraints

• Periodic

• Multirate

• Strong interaction between NP-complete

allocation-assignment and NP-complete scheduling problems

• Will revisit problem later in course if time permits
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Behavioral synthesis scheduling

• Difficult real-world scheduling problem

– Not multirate

– Discrete notion of time

– Generally less heterogeneity among resources and tasks

• What scheduling algorithms should be used for these problems?
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Scheduling methods

• Clock

• Weighted round-robbin

• List scheduling

• Priority

– EDF, LST

– Slack

– RMS

– Multiple costs

• MILP

• Force-directed
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Clock-driven scheduling

Clock-driven: Pre-schedule, repeat schedule

Music box:

• Periodic

• Multi-rate

• Heterogeneous

• Off-line

• Clock-driven
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Weighted round robbin

B
A

C
D

Time
Weighted round-robbin: Time-sliced with variable time slots
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List scheduling

• Pseudo-code:

– Keep a list of ready jobs

– Order by priority metric

– Schedule

– Repeat

• Simple to implement

• Can be made very fast

• Difficult to beat quality
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Priority-driven

• Impose linear order based on priority metric

• Possible metrics

– Earliest start time (EST)

– Latest start time

* Danger! LST also stands for least slack time.

– Shortest execution time first (SETF)

– Longest execution time first (LETF)

– Slack (LFT - EFT)
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List scheduling

• Assigns priorities to nodes

• Sequentially schedules them in order of priority

• Usually very fast

• Can be high-quality

• Prioritization metric is important
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Prioritization

• As soon as possible (ASAP)

• As late as possible (ALAP)

• Slack-based

• Dynamic slack-based

• Multiple considerations
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As soon as possible (ASAP)

4 5

3

2

3

2
3

0 3

5

7

6

11

16

11

11

• From root, topological sort on the precedence graph

• Propagate execution times, taking the max at reconverging paths

• Schedule in order of increasing earliest start time (EST)
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As late as possible (ALAP)

deadline = 37

deadline = 20

4 5

3

2 2
6

3

18

342925

1210

7

• From deadlines, topological sort on the precedence graph

• Propagate execution times, taking the min at reconverging paths

• Consider precedence-constraint satisfied tasks
– Schedule in order of increasing latest start time (LST)
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Slack-based

• Compute EFT, LFT

• For all tasks, find the difference, LFT − EFT

• This is the slack

• Schedule precedence-constraint satisfied tasks in order of

increasing slack

• Can recompute slack each step, expensive but higher-quality

result

– Dynamic critical path scheduling

145

Multiple considerations

• Nothing prevents multiple prioritization methods from being used

• Try one method, if it fails to produce an acceptable schedule,

reschedule with another method
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Effective release times

• Ignore the book on this

– Considers simplified, uniprocessor, case

• Use EFT, LFT computation

• Example?
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EDF, LST optimality

• EDF optimal if zero-cost preemption, uniprocessor assumed

– Why?

– What happens when preemption has cost?

• Same is true for slack-based list scheduling in absence of

preemption cost
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Breaking EDF, LST optimality

• Non-zero preemption cost

• Multiprocessor

• Why?
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Rate mononotic scheduling (RMS)

• Single processor

• Independent tasks

• Differing arrival periods

• Schedule in order of increasing periods

• No fixed-priority schedule will do better than RMS

• Guaranteed valid for loading ≤ ln2 = 0.69

• For loading > ln2 and < 1, correctness unknown

• Usually works up to a loading of 0.88

• More detail in later lectures
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Reading assignment

• Skim and refer to K. Ramamritham and J. Stankovic, “Scheduling

algorithms and operating systems support for real-time systems,”

Proc. IEEE, vol. 82, pp. 55–67, Jan. 1994

• Skim and refer to Y.-K. Kwok and I. Ahmad, “Static scheduling

algorithms for allocating directed task graphs to multiprocessors,”

ACM Computing Surveys, vol. 31, no. 4, pp. 406–471, 1999

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Finish Chapter 5, read Chapter 6 by Thursday
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Goals for lecture

• Sensor networks

• Finish overview of scheduling algorithms

• Mixing off-line and on-line

• Design a scheduling algorithm: DCP

– Will initially focus on static scheduling

• Useful properties of some off-line schedulers
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Lab two?

• Everybody able to finish?

• Any problems to warn classmates about?

• 18 motes should be arriving tomorrow

– No equipment sign-out required for next motes lab

• Linux vs. Windows development environments
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Sensor networks

• Gather information over wide region

• Frequently no infrastructure

• Battery-powered, wireless common

• Battery lifespan of central concern
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Low-power sensor networks

• Power consumption central concern in design

• Processor?

– RISC µ-controllers common

• Wireless protocol?

– Low data-rate, simple: Proprietary, Zigbee

• OS design?

– Static, eliminate context switches, compile-time analysis
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Low-power sensor networks

• Power consumption central concern in design

• Runtime environment?

– Avoid unnecessary dynamism

• Language?

– Compile-time analysis of everything practical
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Multi-rate tricks

• Contract deadline

– Usually safe

• Contract period

– Sometimes safe

• Consequences?
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Scheduling methods

• Clock

• Weighted round-robbin

• List scheduling

• Priority

– EDF, LST

– Slack

– Multiple costs
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Scheduling methods

• MILP

• Force-directed

• Frame-based

• PSGA
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Linear programming

• Minimize a linear equation subject to linear constraints

– In P

• Mixed integer linear programming: One or more variables

discrete

– NP-complete

• Many good solvers exist

• Don’t rebuild the wheel
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MILP scheduling

P the set of tasks

tmax maximum time

start(p, t) 1 if task p starts at time t, 0 otherwise

D the set of execution delays

E the set of precedence constraints

tstart (p) =
tmax

∑
t=0

t · start(p, t) the start time of p
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MILP scheduling

Each task has a unique start time

∀p∈P,
tmax

∑
t=0

start(p, t) = 1

Each task must satisfy its precedence constraints and timing delays

∀{pi, p j} ∈ E,
tmax

∑
t=0

tstart (pi) ≥ tstart (p j)+d j

Other constraints may exist

• Resource constraints

• Communication delay constraints
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MILP scheduling

• Too slow for large instances of NP-complete scheduling

problems

• Numerous optimization algorithms may be used for scheduling

• List scheduling is one popular solution

• Integrated solution to allocation/assignment/scheduling problem

possible

• Performance problems exist for this technique
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Force directed scheduling

• P. G. Paulin and J. P. Knight, “Force-directed scheduling for the

behavioral synthesis of ASICs,” IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, vol. 8, pp. 661–679,

June 1989

• Calculate EST and LST of each node

• Determine the force on each vertex at each time-step

• Force: Increase in probabilistic concurrency

– Self force

– Predecessor force

– Successor force
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Self force

Fi all slots in time frame for i

F ′
i all slots in new time frame for i

Dt probability density (sum) for slot t

δDt change in density (sum) for slot t resulting from scheduling

self force

A = ∑
t∈Fa

Dt ·δDt
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Predecessor and successor forces

pred all predecessors of node under consideration

succ all successors of node under consideration

predecessor force

B = ∑
b∈pred

∑
t∈Fb

Dt ·δDt

successor force

C = ∑
c∈succ

∑
t∈Fc

Dt ·δDt
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Intuition

total force: A+B+C

• Schedule operation and time slot with minimal total force

– Then recompute forces and schedule the next operation

• Attempt to balance concurrency during scheduling
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Force directed scheduling

probabilistic
concurrency
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Force directed scheduling

• Limitations?

• What classes of problems may this be used on?
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Implementation: Frame-based scheduling

• Break schedule into (usually fixed) frames

• Large enough to hold a long job

– Avoid preemption

• Evenly divide hyperperiod

• Scheduler makes changes at frame start

• Network flow formulation for frame-based scheduling

• Could this be used for on-line scheduling?
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Problem space genetic algorithm

• Let’s finish off-line scheduling algorithm examples on a bizarre

example

• Use conventional scheduling algorithm

• Transform problem instance

• Solve

• Validate

• Evolve transformations
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Examples: Mixing on-line and off-line

• Book mixes off-line and on-line with little warning

• Be careful, actually different problem domains

• However, can be used together

• Superloop (cyclic executive) with non-critical tasks

• Slack stealing

• Processor-based partitioning
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Problem: Vehicle routing

• Low-price, slow, ARM-based system

• Long-term shortest path computation

• Greedy path calculation algorithm available, non-preemptable

• Don’t make the user wait

– Short-term next turn calculation

• 200 ms timer available
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Examples: Mixing on-line and off-line

• Slack stealing

• Processor-based partitioning
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Scheduling summary

• Scheduling is a huge area

• This lecture only introduced the problem and potential solutions

• Some scheduling problems are easy

• Most useful scheduling problems are hard

– Committing to decisions makes problems hard: Lookahead

required

– Interdependence between tasks and processors makes

problems hard

– On-line scheduling next Tuesday
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Bizarre scheduling idea

• Scheduling and validity checking algorithms considered so far

operate in time domain

• This is a somewhat strange idea

• Think about it and tell/email me if you have any thoughts on it

• Could one very quickly generate a high-quality real-time off-line

multi-rate periodic schedule by operating in the frequency

domain?

• If not, why not?

• What if the deadlines were soft?
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Reading assignment

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Read Chapter 7
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Goals for lecture

• Lab four

• Example scheduling algorithm design problem

– Will initially focus on static scheduling

• Real-time operating systems

• Comparison of on-line and off-line scheduling code
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Lab four

• Talk with Promi SD101

• Sample sound at 3 kHz

• Multihop
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Example problem: Static scheduling

• What is an FPGA?

• Why should real-time systems designers care about them?

• Multiprocessor static scheduling

• No preemption

• No overhead for subsequent execution of tasks of same type

• High cost to change task type

• Scheduling algorithm?
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Problem: Uniprocessor independent task

scheduling

• Problem

– Independent tasks

– Each has a period = hard deadline

– Zero-cost preemption

• How to solve?
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Rate monotonic scheduling

Main idea

• 1973, Liu and Layland derived optimal scheduling algorithm(s) for
this problem

• Schedule the job with the smallest period (period = deadline) first

• Analyzed worst-case behavior on any task set of size n

• Found utilization bound: U(n) = n · (21/n −1)

• 0.828 at n = 2

• As n → ∞, U(n) → log2 = 0.693

• Result: For any problem instance, if a valid schedule is possible,
the processor need never spend more than 71% of its time idle

182

Optimality and utilization for limited case

• Simply periodic: All task periods are integer multiples of all lesser

task periods

• In this case, RMS/DMS optimal with utilization 1

• However, this case rare in practice

• Remains feasible, with decreased utilization bound, for in-phase

tasks with arbitrary periods
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Rate monotonic scheduling

• Constrained problem definition

• Over-allocation often results

• However, in practice utilization of 85%–90% common

– Lose guarantee

• If phases known, can prove by generating instance
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Critical instants

Main idea:

A job’s critical instant a time at which all possible concurrent

higher-priority jobs are also simultaneously released

Useful because it implies latest finish time
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Proof sketch for RMS utilization bound

• Consider case in which no period exceeds twice the shortest

period

• Find a pathological case

– Utilization of 1 for some duration

– Any decrease in period/deadline of longest-period task will

cause deadline violations

– Any increase in execution time will cause deadline violations
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RMS worst-case utilization

• In-phase

• ∀k s.t. 1≤k≤n−1 : ek = pk+1 − pk

• en = pn −2 ·∑n−1
k=1 ek
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Proof sketch for RMS utilization bound

• See if there is a way to increase utilization while meeting all

deadlines

• Increase execution time of high-priority task

– e′i = pi+1 − pi + ε = ei + ε

• Must compensate by decreasing another execution time

• This always results in decreased utilization

– e′k = ek − ε

– U ′−U =
e′i
pi

+
e′k
pk
− ei

pi
− ek

pk
= ε

pi
− ε

pk

– Note that pi < pk →U ′ > U
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Proof sketch for RMS utilization bound

• Same true if execution time of high-priority task reduced

• e′′i = pi+1 − pi − ε

• In this case, must increase other e or leave idle for 2 · ε

• e′′k = ek +2ε

• U ′′−U = 2ε
pk
− ε

pi

• Again, pk < 2 →U ′′ > U

• Sum over execution time/period ratios
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Proof sketch for RMS utilization bound

• Get utilization as a function of adjacent task ratios

• Substitute execution times into ∑n
k=1

ek
pk

• Find minimum

• Extend to cases in which pn > 2 · pk
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Notes on RMS

• Other abbreviations exist (RMA)

• DMS better than or equal RMA when deadline 6= period

• Why not use slack-based?

• What happens if resources are under-allocated and a deadline is

missed?
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Essential features of RTOSs

• Provides real-time scheduling algorithms or primatives

• Bounded execution time for OS services

– Usually implies preemptive kernel

– E.g., linux can spend milliseconds handling interrupts,

especially disk access
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Threads

• Threads vs. processes: Shared vs. unshared resources

• OS impact: Windows vs. Linux

• Hardware impact: MMU
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Threads vs. processes

• Threads: Low context switch overhead

• Threads: Sometimes the only real option, depending on

hardware

• Processes: Safer, when hardware provides support

• Processes: Can have better performance when IPC limited
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Software implementation of schedulers

• TinyOS

• Light-weight threading executive

• µC/OS-II

• Linux

• Static list scheduler
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TinyOS

• Most behavior event-driven

• High rate → Livelock

• Research schedulers exist
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BD threads

• Brian Dean: Microcontroller hacker

• Simple priority-based thread scheduling executive

• Tiny footprint (fine for AVR)

• Low overhead

• No MMU requirements
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µC/OS-II

• Similar to BD threads

• More flexible

• Bigger footprint
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Old linux scheduler

• Single run queue

• O(n) scheduling operation

• Allows dynamic goodness function
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O(1) scheduler in Linux 2.6

• Written by Ingo Molnar

• Splits run queue into two queues prioritized by goodness

• Requires static goodness function

– No reliance on running process

• Compatible with preemptible kernel
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Real-time linux

• Run linux as process under real-time executive

• Complicated programming model

• RTAI (Real-Time Application Interface) attempts to simplify

– Colleagues still have problems at > 18 kHz control period
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Real-time operating systems

• Embedded vs. real-time

• Dynamic memory allocation

• Schedulers: General-purpose vs. real-time

• Timers and clocks: Relationship with HW
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Summary

• Static scheduling

• Example of utilization bound proof

• Introduction to real-time operating systems
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Reading assignment

• Read Chapter 12 in J. W. S. Liu, Real-Time Systems.

Prentice-Hall, Englewood Cliffs, NJ, 2000

• Read K. Ghosh, B. Mukherjee, and K. Schwan, “A survey of

real-time operating systems,” tech. rep., College of Computing,

Georgia Institute of Technology, Feb. 1994
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Goals for lecture

• Lab four?

• Lab six

• Simulation of real-time operating systems

• Impact of modern architectural features
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Lab four

• Please email or hand in the write-up for lab assignment four

• Problems? See me.

– Will need everything from lab four working for lab six
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Lab six

• Develop priority-based cooperative scheduler for TinyOS that

keeps track of the percentage of idle time.

• Develop a tree routing algorithm for the sensor network.

• Send noise, light, and temperature data to a PPC, via the

network root.

• Have motes respond to send audio samples and buzz

commands.

• Play back or display this data on PPCs to verify the that the

system functions.
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Outline
• Introduction

• Role of real-time OS in embedded system

• Related work and contributions

• Examples of energy optimization

• Simulation infrastructure

• Results

• Conclusions
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Introduction

• Real-Time Operating Systems are often used in embedded

systems.

• They simplify use of hardware, ease management of multiple

tasks, and adhere to real-time constraints.

• Power is important in many embedded systems with RTOSs.

• RTOSs can consume significant amount of power.

• They are re-used in many embedded systems.

• They impact power consumed by application software.

• RTOS power effects influence system-level design.
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Introduction

• Real Time Operating Systems important part of embedded

systems

– Abstraction of HW

– Resource management

– Meet real-time constraints

• Used in several low-power embedded systems

• Need for RTOS power analysis

– Significant power consumption

– Impacts application software power

– Re-used across several applications
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Role of RTOS in embedded system

Memory
manager

Basic
IO

manager
Task

IPC

ISRTimer

ABS

etc.

MPEG
encoding

Applications

RTOS
services

Memory

Timer

Processor

Other hardware

Network interface

Communication

Micro−
browser

Database
Message
composer

Organizer

Hardware

Tasks
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Related work and contributions

• Instruction level power analysis
V. Tiwari, S. Malik, A. Wolfe, and T.C. Lee, Int. Conf. VLSI

Design, 1996

• System-level power simulation
Y. Li and J. Henkel, Design Automation Conf., 1998

• MicroC/OS-II: J.J. Labrosse, R & D Books, Lawrence, KS, 1998

• Our work

– First step towards detailed power analysis of RTOS

– Applications: low-power RTOS, energy-efficient software

architecture, incorporate RTOS effects in system design

212

Simulated embedded system

bus
Processor

SPARClite 86832

Other ASICs
and peripherals

On−chip cache

Fujitsu

Timer

IBM
0118160PT3−60

DRAM

IBM
0118160PT3−60

DRAM

EPROM

LEDs

UART

Interrupts

• Easy to add new

devices

• Cycle-accurate model

• Fujitsu board support

library used in model

• µC/OS-II RTOS used
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Single task network interface

Checksum computation
and output

Get packet Compute
checksum

Procure
Ethernet

controller

Transfer
packet

Release
Ethernet

controller

Procuring Ethernet controller has high energy cost
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TCP example

Checksum computation
and output

Get packet Compute
checksum

Procure
Ethernet

controller

Transfer
packet

Release
Ethernet

controller

Checksum
computation

Compute
checksum

Get packet

Procure
Ethernet
controller

Transfer
packets

Release
Ethernet
controller

Buffer
management

Output

Straight-forward implementation Multi-task implementation
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Multi-tasking network interface
Checksum

computation

Compute
checksum

Get packet

Procure
Ethernet

controller

Transfer
packets

Release
Ethernet

controller

Buffer
management

Output

RTOS power analysis used for process re-organization to reduce

energy

21% reduction in energy consumption. Similar power consumption.
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ABS example

N

Y

Timer
transition?

Sense speed and
pedal conditions

Compute
acceleration

Brake decision

Actuate brakeSleep
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ABS example timing

Brake
pedal

ABS
process

Brake
action

sensor
Wheel

Time

Timer
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Straight-forward ABS implementation

N

Y

Timer
transition?

Sense speed and
pedal conditions

Compute
acceleration

Brake decision

Actuate brakeSleep

Brake
pedal
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Periodically triggered ABS
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Periodically triggered ABS timing
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Selectively triggered ABS
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Selectively triggered ABS timing

Brake
pedal
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Brake
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sensor
Wheel

Timer

Time

63% reduction in energy and power consumption
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Power-optimized ABS example
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Infrastructure
Energy by call
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task A
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Experimental results
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Experimental results – time
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Agent example

Broadcast

Price advertisement
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Commodity 3
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Agent 4Agent 5
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Experimental results
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Experimental results
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Optimization effects
TCP example:

• 20.5% energy reduction

• 0.2% power reduction

• RTOS directly accounted for 1% of system energy

ABS example:

• 63% energy reduction

• 63% power reduction

• RTOS directly accounted for 50% of system energy

Mailbox example: RTOS directly accounted for 99% of system energy

Semaphore example: RTOS directly accounted for 98.7% of system
energy

231

Partial semaphore hierarchical results

Function Energy/invocation (uJ) Energy (%) Time (mS) Calls
realstart init tvecs 0.41 0.00 0.00 1

6.41 mJ total init timer liteled 1.31 0.00 0.00 1
2.02 % 5.51 mJ total

1.74 %
startup do main 887.44 0.28 2.18 1

0.90 mJ total save data 1.56 0.00 0.00 1
0.28 % init data 1.31 0.00 0.00 1

init bss 0.88 0.00 0.00 1
cache on 2.72 0.00 0.01 1

Task1 win unf trap 1.90 1.20 9.73 1999
155.18 mJ total OSDisableInt 0.29 0.09 0.78 1000

48.88 % OSEnableInt 0.32 0.10 0.89 1000
sparcsim terminate 0.75 0.00 0.00 1

OSSemPend win unf trap 2.48 0.78 6.33 999
31.18 mJ total OSDisableInt 0.29 0.18 1.59 1999

9.82 % OSEnableInt 0.29 0.18 1.59 1999
OSEventTaskWait 3.76 1.18 9.22 999

OSSched 19.07 6.00 47.97 999
OSSemPost OSDisableInt 0.29 0.09 0.78 1000
2.90 mJ total OSEnableInt 0.29 0.09 0.78 1000

0.91 %
OSTimeGet OSDisableInt 0.27 0.08 0.70 1000
1.43 mJ total OSEnableInt 0.29 0.09 0.78 1000

0.45 %
CPUInit BSPInit 1.09 0.00 0.00 1

0.09 mJ total exceptionHandler 4.77 0.02 0.17 15
0.03 %
printf win unf trap 2.05 0.65 5.06 1000

112.90 mJ total vfprintf 108.89 34.30 258.53 1000
35.56 %
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Energy per invocation for µC/OS-II services

Minimum MaximumService energy (µJ) energy (µJ)
OSEventTaskRdy 18.02 20.03
OSEventTaskWait 7.98 9.05

OSEventWaitListInit 20.43 21.16
OSInit 1727.70 1823.26

OSMboxCreate 27.51 28.82
OSMboxPend 7.07 82.91
OSMboxPost 5.82 84.55
OSMemCreate 19.40 19.75
OSMemGet 6.64 8.22
OSMemInit 27.41 27.47
OSMemPut 6.38 7.91
OSQInit 20.10 20.93
OSSched 6.96 52.34

OSSemCreate 27.87 29.04
OSSemPend 6.54 73.64

etc. etc. etc.
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Conclusions

• RTOS can significantly impact power

• RTOS power analysis can improve application software design

• Applications

– Low-power RTOS design

– Energy-efficient software architecture

– Consider RTOS effects during system design
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Impact of modern architectural features

• Memory hierarchy

• Bus protocols ISA vs. PCI

• Pipelining

• Superscalar execution

• SIMD

• VLIW
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Summary

• Labs

• Simulation of real-time operating systems

• Impact of modern architectural features
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Goals for lecture

• Explain details of a real-time design problem

• Give some background on development of area

• Synthesis solution

• Current commercial status
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Distributed real-time: Part one

• Distributed needn’t mean among cities or offices – Same IC?

• Process scaling trends

• Cross-layer design now necessary
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Embedded system / SOC synthesis motivation

• Wireless: effects of the communication medium important

• Hard real-time: deadlines must not be violated

• Reliable: anti-lock brake controllers shouldn’t crash

• Rapidly implemented: IP use, simultaneous HW-SW

development

• High-performance: massively parallel, using ASICs

• SOC market from $1.1 billion in 1996 to $14 billion in 2000

(Dataquest), to $43 billion in 2009 (Global Information, Inc.)
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Global µ-controller sales

Billions of
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’90 ’91 ’92 ’93 ’94 ’95 ’97’96 ’98 ’99 ’00

Year

16−bit

8−bit

4−bit

17.5

15

12.5

10

7.5

5

2.5

0

Billions of
parts

’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 ’99 ’00

Year

16−bit

8−bit

4−bit

0

1

2

3

4

5

Source: Embedded Processor and Microcontroller Primer and

FAQ by Russ Hersch
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Low-power motivation

• Embedded systems frequently battery-powered, portable

• High heat dissipation results in

– Expensive, bulky packaging

– Limited performance

• High-level trade-offs between

– Power

– Speed

– Price

– Area
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Past embedded system synthesis work

• Early 1990s: Optimal MILP co-synthesis of small systems

[Prakash & Parker], [Bender], [Schwiegershausen & Pirsch]

• Mid 1990s: One CPU-One ASIC

[Ernst, Henkel & Benner], [Gupta & De Micheli]

[Barros, Rosenstiel, & Xiong], [D’Ambrosio & Hu]

• Late 1990s – present: Co-synthesis of heterogeneous

distributed embedded systems [Kuchcinski],

[Quan, Hu, & Greenwood], [Wolf]
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Past low-power work

• Mid 1990s: VLSI power minimization design surveys

[Pedram], [Devadas & Malik]

• Mid – late 1990s: High-level power analysis and optimization

[Raghunathan, Jha, & Dey], [Chandrakasan & Brodersen]

• Late 1990s: Embedded processor energy estimation

[Li & Henkel], [Sinha & Chandrakasan]

• Late 1990s – present: Low-power hardware-software

co-synthesis

[Dave, Lakshminarayana, & Jha], [Kirrovski & Potkonjak]
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Overview of system synthesis projects

• TGFF: Generates parametric task graphs and resource

databases

• MOGAC: Multi-chip distributed systems

• CORDS: Dynamically reconfigurable

• COWLS: Multi-chip distributed, wireless, client-server

• MOCSYN: System-on-a-chip composed of hard cores, area

optimized
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Overview of system synthesis projects

• Synthesize embedded systems

– heterogeneous processors and communication resources

– multi-rate

– hard real-time

• Optimize

– price

– power consumption

– response time
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Overview of system synthesis projects

• TGFF: Generates parametric task graphs and resource

databases

• MOGAC: Multi-chip distributed systems

• CORDS: Dynamically reconfigurable

• COWLS: Multi-chip distributed, wireless, client-server

• MOCSYN: System-on-a-chip composed of hard cores, area

optimized
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Definitions

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms

• Specify
– task types
– data dependencies
– hard and soft task

deadlines
– periods

• Analyze performance of
each task on each resource

• Allocate resources
• Assign each task to a

resource
• Schedule the tasks on each

resource

247

Allocation

32 32

Processors resources
Communication

C1C0

K0

L0J1

J0
Number and types of:

• PEs or cores

• Commun. resources
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Assignment

32 32

J0 K0

L0J1

C0 C1

• Assignment of tasks to

PEs

• Connection of

communication resources

to PEs
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Schedule

32

k, l, and n need
not be scheduled

j

m

2

4

2

1

3

54

5

3

1

Time
nm

kj

l

J0 K0C0
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Costs

Soft constraints:

• price

• power

• area

• response time

Hard constraints:

• deadline violations

• PE overload

• unschedulable tasks

• unschedulable transmis-

sions

Solutions which violate hard constraints not shown to designer –

pruned out.
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Genetic algorithms

• Multiple solutions

• Local randomized changes to solutions

• Solutions share information with each other

• Can escape sub-optimal local minima

• Scalable
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Cluster genetic operator constraints motivation

PE type

Solution A Solution B

PE type

assignment
Task

allocation
PE

Cut Cut

DCT FIRDIV DCT DIV FIR

X

X

Y Z X Z
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Cluster genetic operator constraints motivation

?

Solution A Solution B

PE type PE type

assignment
Task

allocation
PE

Cut Cut

DCT FIRDIV DCT DIV FIR

X Z

X

ZYX
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Cluster genetic operator constraints
Task

assignment
crossover

Communication
resource

connectivity
crossover

Communication
resource

connectivity
mutation

Task
assignment

mutation

Communication
resource
allocation
crossover

Solution

Cluster

Communication
resource

mutation
allocation

allocation
mutation

PE
allocation
crossover

PE
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Locality in solution representation
CutCut

A1 A2 A3

B1 B2 B3A1 A2 A3

B1 B2 B3

C1 C2 C3

C1 C2 C3

Soln. 1

Soln. 2

A, B, and C attributes each solve sub-problems
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Locality in solution representation
CutCut

A1 C1B1 A3 B3B2A2

A2 A3A1 B1 B2 B3C1

A1 A2 A3

B1 B2 B3A1 A2 A3

B1 B2 B3

C1 C2 C3

C1 C2 C3

Soln. 1

Soln. 2

C3C2

C3C2 Soln. 1

Soln. 2
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Information trading

90Random   orientation

PE type

Power consumption

Price

PE type

Power consumption

Price

Don’t
swap

Swap
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Ranking

P
ri

ce

Solution

3

2

3

1

Power consumption

A solution dominates another

if all its costs are lower, i.e.,

doma,b =

∀n
i=1costa,i < costb,i ∧a 6= b

A solution’s rank is the number

of other solutions which do not

dominate it, i.e.,

ranks′ = ∑n
i=1 not domsi,s′
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Multiobjective optimization

Price

Solution

Power consumption

Linear cost

functions

Price

Solution

Power consumption

Non-linear cost

functions

Price

Solution
Inferior solution

Power consumption

Pareto-rank cost

function
∑n

i=1 wt i · cost i maxn
i=1 wt i · cost i ∑n

i=1 not domsi,s′

260

Reproduction

Solution are selected for reproduction by conducting Boltzmann trials

between parents and children.

Given a global temperature T , a solution with rank J beats a solution

with rank K with probability:

1
1+ e(K-J)/T

-5
0

5 0
5

10
0

0.2
0.4
0.6
0.8

1

K - J
T
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MOCSYN related work

• Floorplanning block placement – Fiduccia and Mattheyses, 1982

– Stockmeyer, 1983

• Parallel recombinative simulated annealing – Mahfoud and

Goldberg, 1995

• Linear interpolating clock synthesizers – Bazes, Ashuri, and

Knoll, 1996

• Interconnect performance estimation models – Cong & Pan, 2001

262

MOCSYN algorithm overview

re−prioritization
Link

Bus
structure

Task
prioritization

Communication
assignment

Schedule

Block placement

Change task
assignment Link

prioritization

Cluster loop

Architecture loop

Initialization

selection
Clock

Results

allocation
Change core
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Link prioritization

Estimate commun
time based on

average core sep.

Priority = −2
Slack    = 2 ms

5 ms

4 ms 12 ms

1 ms

3 kb

3 kb4 kb

5 kb 5 ms 4 ms

5 ms

3 ms 2 ms

4 ms

1 ms

12 ms

Deadline = 20 ms Deadline = 20 ms

Duration

Quantity

Duration

Est. duration

264



Floorplanning block placement

5 2

1

1

Link priority

B

A D

C

Divide

1

2

1

5

DA

B C

Balanced binary tree of cores formed

Division takes into account:

• Link priorities

• Area of cores on each side of division
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Floorplanning block placement

C
D

A

A

B

A

B
A

A
B

B

B
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Bus formation
Highest density

Link
pri = 5

Link
pri = 7

Highest density

Merge

Link
pri = 7

Link
pri = 5

Use efficient red-black tree data structure for intersection tests
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RMST bus length reduction

Merge

Total length = 2.1 mmTotal length = 5.6 mm
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Bus formation
Highest density

Merge

Link
pri = 7

Link
pri = 5

Highest density

Link
pri = 12
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Task prioritization

5 ms

4 ms 12 ms

1 ms

2 ms 3 ms

6 ms 4 ms

5 ms

4 ms 12 ms

1 ms

1 ms 3 ms

6 ms 4 ms

Deadline = 20 ms

Duration

Duration

Deadline = 20 ms

Slack    = 3 ms
Priority = −3
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Scheduling

3 copies

Period = 30 ms

Period = 20 ms
Deadline = 20 ms

Deadline = 40 ms

2 copies

System hyperperiod = 60 ms

Time

• Fast list scheduler

• Multi-rate

• Handles period < deadline

as well as period ≥ deadline

• Uses alternative

prioritization methods:

slack, EST, LFT

• Other features depend on

target
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Cost calculation

• Price

• Average power consumption

• Area

• PE overload

• Hard deadline violation

• Soft deadline violation

• etc.
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Clock selection quality
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MOCSYN feature comparisons experiments

Worst-case Best-case Single
Example MOCSYN commun. commun. bus

price ($) price ($) price ($) price ($)

. . . . . . . . . . . . . . .
15 216 n.a. n.a. n.a.
16 138 n.a. n.a. 177
17 283 n.a. n.a. n.a.
18 253 n.a. n.a. 253
19 211 n.a. n.a. n.a.
. . . . . . . . . . . . . . .

Better 38 44 28
Worse 3 1 9

17 processors, 34 core types, five task graphs, 10 tasks each, 21 task types

from networking and telecomm examples.
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MOCSYN multiobjective experiments

Average Soft DLExample Price ($) power (mW) viol. prop. Area (mm2)

91 120 0.60 3.0
automotive- 91 120 0.61 2.0

industrial 110 113 0.88 4.0
110 115 0.60 4.0

networking 61 72 0.94 38.4
223 246 2.31 9.9
223 246 2.76 6.0
233 255 3.47 4.5
236 247 2.29 9.9
236 249 2.60 8.0

telecomm 242 221 2.67 3.0
242 230 2.44 25.9
242 237 1.72 6.0
272 226 2.22 192.1
272 226 2.34 9.4
353 258 1.23 4.0
134 281 1.40 34.1consumer 134 281 1.50 21.6

office 64 370 0.23 36.8
automation 66 55 0.00 7.2
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MOGAC run on Hou’s examples

Yen’s System MOGAC
Example Price ($)

CPU
Time (s)

Price ($)
CPU

Time (s)
Tuned CPU

Time (s)

Hou 1 & 2
(unclustered)

170 10,205 170 5.7 2.8

Hou 3 & 4
(unclustered)

210 11,550 170 8.0 1.6

Hou 1 & 2
(clustered)

170 16.0 170 5.1 0.7

Hou 3 & 4
(clustered)

170 3.3 170 2.2 0.6

Robust to increase in problem complexity.

2 task graphs each example, 3 PE types

Unclustered: 10 tasks per task graph Clustered: approx. 4 tasks per task graph
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MOGAC run on Prakash & Parker’s examples

Example
Prakash &

Parker’s System
MOGAC

〈Perform〉 Price ($)
CPU

Time (s)
Price ($)

CPU
Time (s)

Tuned CPU
Time (s)

Prakash &
Parker 1 〈4〉 7 28 7 3.3 0.2

Prakash &
Parker 1 〈7〉 5 37 5 2.1 0.1

Prakash &
Parker 2 〈8〉 7 4,511 7 2.1 0.2

Prakash &
Parker 2 〈15〉 5 385,012 5 2.3 0.1

Quickly gets optimal when getting optimal is tractable.

3 PE types, Example 1 has 4 tasks, Example 2 has 9 tasks
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MOGAC run Yen’s large random examples

Yen’s System MOGAC

Example Price ($)
CPU

Time (s)
Price ($)

CPU

Time (s)

Tuned CPU

Time (s)

Random 1 281 10,252 75 6.4 0.2

Random 2 637 21,979 81 7.8 0.2

Handles large problem specifications.

No communication links: communication costs = 0

Random 1: 6 task graphs, approx. 20 tasks each, 8 PE types

Random 2: 8 task graphs, approx. 20 tasks each, 12 PE types
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MOCSYN contributions, conclusions
First core-based system-on-chip synthesis algorithm

• Novel problem formulation

• Multiobjective (price, power, area, response time, etc.)

• New clocking solution

• New bus topology generation algorithm

Important for system-on-chip synthesis to do

• Clock selection

• Block placement

• Generalized bus topology generation
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Research contributions

• TGFF: Used by a number of researchers in published work

• MOGAC: Real-time distributed embedded system synthesis

– First true multiobjective (price, power, etc.) system synthesis

– Solution quality ≥ past work, often in orders of magnitude less time

• CORDS: First reconfigurable systems synthesis, schedule reordering

• COWLS: First wireless client-server systems synthesis, task migration
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EEMBC-based embedded benchmarks

Automotive-Industrial

hard DL: 0.9 ms
soft DL: 0.3 ms

hard DL: 0.5 ms
soft DL: 0.1 ms

hard DL: 0.9 ms
soft DL: 0.2 ms

4000

4000

4000

4000

8000

4000

4000

4000

15000

4000

4000

4000

4000

1000

15000

15000

15000
1000

4000

1000

4000

hard DL: 0.3 ms

period: 0.9 msperiod: 0.9 msperiod: 0.45 msperiod: 0.9 ms

Src

CAN

FP

CAN

Pulse

Sink

Sink

IDCT

IIR

Src

FFT

Matrix

IFFT

Angle

Road

Src

FIR

Table

Sink

Tooth

Cache

Ptr

Src

Sink

Processors
• AMD ElanSC520 133 MHz
• AMD K6-2 450 MHz
• AMD K6-2E 400MHz/ACR
• AMD K6-2E+ 500MHz/ACR
• AMD K6-IIIE+ 550MHz/ACR
• Analog Devices 21065L 60 MHz
• IBM PowerPC 405GP 266 MHz
• IBM PowerPC 750CX 500 MHz
• IDT32334 100 MHz
• IDT79RC32364 100 MHz
• IDT79RC32V334 150 MHz
• IDT79RC64575 250 MHz
• Imsys Cjip 40 MHz
• Motorola MPC555 40 MHz
• NEC VR5432 167 MHz
• ST20C2 50 MHz
• TI TMS320C6203 300MHz
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Recently started and future work

• Market-based energy allocation in low-power wireless mobile
networks

– paper under review

• Evolutionary algorithms for multi-dimensional optimization

– future work

• Task and processor characterization

– EEMBC-based resource database completed will publicly
release

• Tightly coupling low-level, high-level design automation
algorithms

– recently started work in this area
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MOGAC run on Yen’s second large random

example

100

150

200

250

300

350

100 150 200 250 300

P
o
w

e
r 

(m
W

)

Price ($)

price   = $153
power = 254 mW

power = 157 mW
price   = $158
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Counter-division only clock selection
100 MHz

50 MHz

80 MHz
Max Freq.

/1 /1 /1

Reference = 50 MHz
Quality = 0.707

Actual Freq. 50 MHz

100 MHz

80 MHz

/1/1 /2

Reference = 80 MHz
Quality = 0.867
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Counter-division only clock selection

50 MHz

100 MHz

Max Freq.

Actual Freq.

Reference = 100 MHz
Quality = 0.875

/2 /1 /2

80 MHz

100 MHz

50 MHz

80 MHz

/2/2 /3

Reference = 150 MHz
Quality = 0.896
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Bus formation inner kernel

l is number of communicating core pairs
For each bus, i, intersecting with highest density point: O

(

l2)

For each bus, j: O
(

l3)

Tentatively merge i and j O
(

l4)

Evaluate the density, new dens, of congest O
(

l3)

Evaluate new maximum contention estimate, cont est O
(

l4)

If new dens decreased for any tentative merge:
Merge the pair with greatest new dens decrease O

(

l2)

Break ties by selecting merge with least cont est increase.
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