
Introduction to Real-Time Systems

ECE 397-1

Northwestern University

Department of Computer Science

Department of Electrical and Computer Engineering

Teachers: Robert Dick Peter Dinda
Office: L477 Tech 338, 1890 Maple Ave.
Email: dickrp@ece.northwestern.edu pdinda@cs.northwestern.edu
Phone: 467–2298 467-7859
Webpage: http://www.ece.northwestern.edu/EXTERNAL/realtime

1

Homework index

1 Reading assignment (for next class) 56

2 Hanford security network design 66

3 Reading assignment (18 January) 108

4 Reading assignment 151

5 Bizarre scheduling idea 176

6 Reading assignment 177

7 Reading assignment 204

8 Lab six . 207

2

Topics list: Real-time networking

• Chapter 11, Tenet Paper, K&R chapter 7

• Workload models – describing burstiness

– Leaky Bucket

– Ferarri

– Why we can’t just do “average bandwidth”

• How does a queue deal with burstiness? What are the

consequences for latency

• Weighted fair queuing (WFQ)

3

Topics list: Real-time networking

• How to combine WFQ and Leaky Bucket to estimate the queuing

delay at a node and thus to do admission control for it.

• End-to-end admission control and reservations

• Why it is difficult to make per-flow real-time behavior scale

• RTP - why should we care if there is no guarantee

• RSVP

• Diffserve versus Intserve

• Overlay networks

4

Media networking

• K&R Chapter 7

• What buffering does to latency and why/when we might want to

use it anyway

• Workloads of media (ie, self-similarity issue) and how buffering

can be of less help than expected.

• Why is the workload so complex? Scene dynamics and

compression

• RT queuing theory (read the Lehokzy paper)

5

Distributed real-time systems

• Ramamritham, Bestavros, Schmidt, Quorum

• Scaling behavior - job sizes, deadlines, and transmission times

scale as the system scales

• Initial placement versus migration

• Scheduling all of the workload versus just a part of it

• Having full control over local schedulers versus not.

6

Distributed real-time systems

• Structures of RT systems

– single node (master) with global admission control, multiple

backend servers

– peer nodes with local admission control

– scaling versus being able to admit all admittable tasks

– bidding versus focused addressing

– work stealing

7

Distributed real-time systems

• Parallel jobs

– fork-join task graphs and their implications

– Cluster scheduling

– space sharing versus gang scheduling versus synchronized

periodic real-time schedules

8

Real-time adaptive systems

• Dinda, Noble, Mitzenmacher

• Power-of-two-choices

• Workload prediction

– Predicting job sizes and arrivals

– Predicting queue depth

• Scheduler modeling

9

Real-time adaptive systems

• Adaptation mechanisms

– job placement and migration

– job selection (which function to call)

– quality modulation

– network path selection

10

Real-time adaptive systems

• Application goals / QoS

– minimize response time, maximize throughput

– deadlines

– QoS parameters (frame rate, frame latency, etc)

– utility functions

• Control problem

• Event-driven simulators

11

Lecture packet one

• Taxonomy of real-time systems

• Graph definitions

• Graph algorithms

• Timing constraints

• Cost functions

• Jagged edges in real-time problem categorization

• Allocation, assignment, and scheduling

• Real-Time Operating systems

• Distributed systems

• Formal problem definitions: Optimization

12

Lecture packet two

• Example optimization problem

• Crash course in computational complexity (why?)

• Design representations: SW-oriented, HW-oriented, graph-based

• Introduction to NesC

13

Lecture packets three and four

• Processors

• Communication resources

• Graph extensions

• Taxonomy of scheduling problems

• Example real scheduling problems

• Scheduling methods

• Scheduling examples

14

Lecture packet five *

• Rate monotonic scheduling

• Critical instants and utilization bounds

• Threads and processes

• Example scheduler implementations

15

Lecture packets six and seven *

• Recent work in RTOS performance/power analysis

• Recent solution to off-line hard real-time

allocation/assignment/scheduling problem

• Implicit vs. explicit representation of time in formal methods

16

Goals for lecture

• Handle a few administrative details

• Form lab groups

• Broad overview of real-time systems

• Definitions that will come in handy later

• Example of real-time sensor network

17

Administrative tasks

• Backgrounds

• Question rule

• Office hours

18

Backgrounds

• Lab teams had best be balanced (low-level vs. high-level

experience)

• Name

• Which are you better at?

– Low-level ANSI-C/assembly experience

– High-level object-oriented programming experience

• What’s your major?

19

Question rule

• If something in lecture doesn’t make sense, please ask

• You’re paying a huge amount of money for this

• Letting something important from lecture slip by for want of a

question is like burning handfulls of money

20

Core course goal

By the end of this course, we want you to

learn how to build real-time systems

and build a useful real-time sensor network.

21

Office hours

• When shall I schedule my office hours?

22

Today’s topics

• Taxonomy of real-time systems

• Optimization and costs

• Definitions

• Optimization formulation

• Overview of primary areas of study within real-time systems

23

Taxonomy of real-time systems

DynamicStatic Soft Hard Single rate Multi−rate

Periodic Aperiodic

Bounded
arrival interval

Unbounded
arrival interval

24

Taxonomy: Static

• Task arrival times can be predicted.

• Static (compile-time) analysis possible.

• Allows good resource usage (low processor idle time

proportions).

• Sometimes designers shoehorn dynamic problems into static

formulations allowing a good solution to the wrong problem.

25

Taxonomy: Dynamic

• Task arrival times unpredictable.

• Static (compile-time) analysis possible only for simple cases.

• Even then, the portion of required processor utilization efficiency

goes to 0.693.

• In many real systems, this is very difficult to apply in reality (more

on this later).

• Use the right tools but don’t over-simplify, e.g.,

We assume, without loss of generality, that all tasks are

independent.

If you do this people will make jokes about you.

26

Taxonomy: Soft real-time

• More slack in implementation

• Timing may be suboptimal without being incorrect

• Problem formulation can be much more complicated than hard

real-time

• Two common (and one uncommon) methods of dealing with

non-trivial soft real-time system requirements

– Set somewhat loose hard timing constraints

– Informal design and testing

– Formulate as optimization problem

27

Taxonomy: Hard real-time

• Difficult problem. Some timing constraints inflexible.

• Simplifies problem formulation.

28

Taxonomy: Periodic

• Each task (or group of tasks) executes repeatedly with a

particular period.

• Allows some nice static analysis techniques to be used.

• Matches characteristics of many real problems...

• ... and has little or no relationship with many others that

designers try to pretend are periodic.

29

Taxonomy: Periodic → Single-rate

• One period in the system.

• Simple.

• Inflexible.

• This is how a lot of wireless sensor networks are implemented.

30

Taxonomy: Periodic → Multirate

• Multiple periods.

• Can use notion of circular time to simplify static (compile-time)

schedule analysis E. L. Lawler and D. E. Wood,

“Branch-and-bound methods: A survey,” Operations Research,

pp. 699–719, July 1966.

• Co-prime periods leads to analysis problems.

31

Taxonomy: Periodic → Other

• It is possible to have tasks with deadlines less than, equal to, or

greater than their periods.

• Results in multi-phase, circular-time schedules with multiple

concurrent task instances.

– If you ever need to deal with one of these, see me (take my

code). This class of scheduler is nasty to code.

32

Taxonomy: Aperiodic

• Also called sporadic, asynchronous, or reactive

• Implies dynamic

• Bounded arrival time interval permits resource reservation

• Unbounded arrival time interval impossible to deal with for any

resource-constrained system

33

Definitions

• Task

• Processor

• Graph representations

• Deadline violation

• Cost functions

34

Definitions: Task

• Some operation that needs to be carried out

• Atomic completion: A task is all done or it isn’t

• Non-atomic execution: A task may be interrupted and resumed

35

Definitions: Processor

• Processors execute tasks

• Distributed systems

– Contain multiple processors

– Inter-processor communication has impact on system

performance

– Communication is challenging to analyze

• One processor type: Homogeneous system

• Multiple processor types: Heterogeneous system

36

Task/processor relationship

Matrix

FIR

Tooth

Road

WC exec time (s)

310E−3

...

...

...

...

7.7E−6

330E−9

4.1E−6

IBM PowerPC 405GP 266 MHz

IDT79RC32364 100 MHz

Imsys Cjip 40 MHz

Relationship between tasks, processors, and costs

E.g., power consumption or worst-case execution time

37

Graph definitions

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms

• Set of vertices (V)– usually operations

• Set of edges (E)– directed or undirected relationships on vertex

pairs

38

Example graph classifications

graph

tree reconvergent

undirected directed

acyclic cyclic

39

Some graph uses

• Problem representations

• Timing constraint specification

• Resource binding

• And many more. . .

40

A few basic graph algorithms

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms

• Depth-first search (DFS)

• Breadth-first search (BFS)

• Topological sort

• Minimal spanning tree

(MST)

41

Depth-first search (DFS) – Pre-order for trees

C
A

D

G

FB

E

O(|V |+ |E|)

42

Breadth-first search (BFS) – Pre-order for trees

C E

A

B

D

G

F

O(|V |)

43

Topological sort

C E

A

B

D

G

F

Static timing analysis of data-dependent real-time systems

• Earliest finish time (EFT)

• Earliest start time (EST)

• Latest finish time (LFT)

• Latest start time (LST)

O(|V |+ |E|)

44

Definition: Deadline violation

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms

45

Cost functions

• Mapping of real-time system design problem solution instance to

cost value

• I.e., allows price, or hard deadline violation, of a particular

multi-processor implementation to be determined

46

Back to real-time problem taxonomy:

Jagged edges

• Some things dramatically complicate real-time scheduling

• These are horrific, especially when combined

– Data dependencies

– Unpredictability

– Distributed systems

• These are irksome

– Heterogeneous processors

– Preemption

47

Central areas of real-time study

• Allocation, assignment and scheduling

• Operating systems and scheduling

• Distributed systems and scheduling

• Scheduling is at the core or real-time systems study

48

Allocation, assignment and scheduling

How does one best

• Analyze problem instance specifications

– E.g., worst-case task execution time

• Select (and build) hardware components

• Select and produce software

• Decide which processor will be used for each task

• Determine the time(s) at which all tasks will execute

49

Allocation, assignment and scheduling

• In order to efficiently and (when possible) optimally minimize

– Price, power consumption, soft deadline violations

• Under hard timing constraints

• Providing guarantees whenever possible

• For all the different classes of real-time problem classes

This is what I did for a Ph.D.

50

Operating systems and scheduling

How does one best design operating systems to

• Support sufficient detail in workload specification to allow good

control, e.g., over scheduling, without increasing design error rate

• Design operating system schedulers to support real-time

constraints?

• Support predictable costs for task and OS service execution

51

Distributed systems and scheduling

How does one best dynamically control

• The assignment of tasks to processing nodes...

• ... and their schedules

for systems in which computation nodes may be separated by vast

distances such that

• Task deadline violations are bounded (when possible)...

• ... and minimized when no bounds are possible

This is part of what Professor Dinda did for a Ph.D.

52

The value of formality: Optimization and costs

• The design of a real-time system is fundamentally a cost

optimization problem

• Minimize costs under constraints while meeting functionality

requirements

– Slight abuse of notation here, functionality requirements are

actually just constraints

• Why view problem in this manner?

• Without having a concrete definition of the problem

– How is one to know if an answer is correct?

– More subtly, how is one to know if an answer is optimal?

53

Optimization

Thinking of a design problem in terms of optimization gives design

team members objective criterion by which to evaluate the impact of

a design change on quality.

• Still need to do a lot of hacking

• Know whether its taking you in a good direction

54

Summary

• Real-time systems taxonomy and overview

• Definitions

• Importance of problem formulation

55

Reading assignment (for next class)

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Chapter 2

• Start on Chapter 3

56

Goals for lecture

• Justify treating real-time design problem as optimization problem

• Example problem to illustrate specification and design

• Tractable algorithm design (NP-completeness in a nutshell)

• Detail on design representations

• Sensor network motivations

• NesC overview

57

The value of formality: Optimization and costs

• The design of a real-time system is fundamentally a cost

optimization problem

• Minimize costs under constraints while meeting functionality

requirements

– Slight abuse of notation here, functionality requirements are

actually just constraints

• Why view problem in this manner?

• Without having a concrete definition of the problem

– How is one to know if an answer is correct?

– More subtly, how is one to know if an answer is optimal?

58

Optimization

Thinking of a design problem in terms of optimization gives design

team members objective criterion by which to evaluate the impact of

a design change on quality.

• Still need to do a lot of hacking

• Know whether its taking you in a good direction

59

Simple example

• Ensure that a wireless data display 300 m away from a

temperature sensor always displays the correct temperature with

a lag of, at most, 100 ms.

• Wireless broadcasts reach 100 m with high probability and 200 m

with very low probability.

• There are two, evenly distributed, rebroadcast nodes between

the sensor and the data display.

• Functional requirements?

• Constraints?

• Costs?

60

Example problem

• Richland, Washington’s Hanford Reservation plutonium finishing

facility

• July 1988 facility’s last reactor, Reactor N, put into cold standby

due the nation’s surplus of plutonium

• Was used for processing weapons-grade fissile material

61

Example problem

• Currently holds 11.0 metric tons of plutonium-239 and 0.6 metric

tons of uranium-235

– The two fissile materials most commonly used in nuclear

weapons

• Even without refining, a small quantity of either would convert

conventional explosives into weapons capable of causing

long-term damage far beyond their blast radii

• Ongoing provisions for security required

62

Example problem

• Build perimeter security network

• Functional requirements?

• Constraints?

• Costs?

63

Example tasks

• Sense audio

• Compress it

• Determine whether it is unusual

• Sense, compress, and stream video

• Analyze information from region to determine most promising

messages to forward, given network contention

64

Example constraints

• Data rate

• Dependencies between tasks

• Price

• Lifetime of battery-powered devices

• Etc.

65

Hanford security network design

• By 18 January, working with your lab partner, provide

– A paragraph formalizing the real-time system design goals

– A paragraph giving an overview of the design you propose

• Keep it within a page. We want you thinking about this and

learning but you should focus on the lab assignment.

• Have questions? Do research. The Hanford Reservation is real.

– Post to the newsgroup if you get stuck.

66

Lab one

• Subversion working for everybody?

• Access to mailing list?

• Anybody stuck on development?

67

NP-completeness

• Scheduling is central to real-time systems design and research

• Tractable algorithm design is central to scheduling

• Many (but not all) interesting and useful scheduling problems are

NP-complete

• We need to understand what this means, at least at a high level

68

NP-completeness

Recall that sorting may be done in O(n lgn) time

DFS ∈ O(|V |+ |E|), BFS ∈ O(|V |), Topological sort ∈ O(|V |+ |E|)

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

PSfrag replacements

n2

n lgn

n

n

f(
n)

69

NP-completeness

There also exist exponential-time algorithms: O
(

2lgn), O(2n), O(3n)

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 1e+35

 1e+40

 1e+45

 1e+50

 0 20 40 60 80 100

PSfrag replacements

3n 2n

2lgn

2lgn,n2,n lgn,n

n

f(
n)

70

NP-completeness

For t(n) = 2n seconds

t(1) = 2 seconds

t(10) = 17 minutes

t(20) = 12 days

t(50) = 35,702,052 years

t(100) = 40,196,936,841,331,500,000,000 years

71

NP-completeness

• There is a class of problems, NP-complete, for which nobody

has found polynomial time solutions

• It is possible to convert between these problems in polynomial

time

• Thus, if it is possible to solve any problem in NP-complete in

polynomial time, all can be solved in polynomial time

• Unproven conjecture: NP 6= P

72

NP-completeness

• What is NP? Nondeterministic polynomial time.

• A computer that can simultaneously follow multiple paths in a

solution space exploration tree is nondeterministic. Such a

computer can solve NP problems in polynomial time.

• Nobody has been able to prove either

P 6= NP

or

P = NP

73

NP-completeness

If we define NP-complete to be a set of problems in NP for which

any problem’s instance may be converted to an instance of another

problem in NP-complete in polynomial time, then

P (NP⇒ NP-complete∩P = ∅

74

Basic complexity classes

PSfrag replacements
NP-complete NP P

• P solvable in polynomial time by a computer (Turing Machine)

• NP solvable in polynomial time by a nondeterministic computer

• NP-complete converted to other NP-complete problems in

polynomial time

75

Hard (NP-complete) scheduling problems

• Uniprocessor scheduling with hard deadlines and release times

• Uniprocessor scheduling to minimize tardy tasks

• Multiprocessor scheduling

– Easy if all tasks are identical

• Multiprocessor precedence constrained scheduling

• Multiprocessor preemptive scheduling

• etc.

76

How to deal with hard problems

• What should you do when you encounter an apparently hard

problem?

• Is it in NP-complete?

• If not, solve it

• If so, then what?

Determine whether all encountered problem instances are

constrained.

Wonderful when it works.

77

One example

O. Coudert, “Exact coloring of real-life graphs is easy,” Design

Automation, pp. 121–126, June 1997.

78

Terminology

• Book’s terminology fine, others also exist

• Different groups → different terminology

• Not confusing, terse definitions provided

• Book on jobs, tasks: Jobs discrete, tasks groups of related jobs

• Other sources: Tasks discrete, hierarchical

79

Additional terminology

• Or vs. And data dependencies

• Conditionals

– Doesn’t help hard real-time unless perfect path correlation

– Can help soft real-time

80

Terminology

• Scheduling, allocation, and assignment

• Scheduling central but not only thing

• Book treats scheduling as combination of scheduling and

assignment

• More fine-grained definitions exist

81

Substantial quirks

1. Every processor is assigned to at most one job at any time

• O.K.

2. Every job is assigned at most one processor at any time

• Broken

3. No job scheduled before its release time

• O.K., but the whole notion of absolute release times is broken

for some useful classes of real-time systems.

4. Etc.

82

Design representations

• Introduction

• Software oriented

• Hardware oriented

• Graph based

• Resource description

83

Specification language requirements

• Specify constraints on design

• Indicate system-level building blocks

• To allow flexibility in compilation/synthesis, must be abstract

– Specify implementation details only when necessary (e.g.,

HW/SW)

– Concentrate on requirements, not implementation

– Make few assumptions about platform

84

Design representations

• Introduction

• Software oriented

– ANSI-C

– SystemC

– Other SW language-based, e.g., Ada

• Hardware oriented

• Graph based

• Resource description

85

ANSI-C advantages

• Huge code base

• Many experienced programmers

• Efficient means of SW implementation

• Good compilers for many SW processors

86

ANSI-C disadvantages

• Little implementation flexibility

– Strongly SW oriented

– Makes many assumptions about platform

• Little (volatile)/no built-in support for synchronization

– Especially fine-scale HW synchronization

• Doesn’t directly support specification of timing constraints

87

SystemC

Advantages

• Support from big players

– Synopsys, Cadence, ARM, Red Hat, Ericsson, Fujitsu,
Infineon Technologies AG, Sony Corp., STMicroelectronics,
and Texas Instruments

• Familiar for SW engineers

Disadvantages

• Extension of SW language

– Not designed for HW from the start

• Compiler available for limited number of SW processors

– New

88

Other SW language-based

• Numerous competitors

• Numerous languages

– ANSI-C, C++, and Java are most popular starting points

• In the end, few can survive

• SystemC has broad support

89

Design representations

• Software oriented

• Hardware oriented

– VHDL

– Verilog

– Esterel

• Graph based

• Resource description

90

VHDL

Advantages

• Supports abstract data types

• System-level modeling supported

• Better support for test harness design

Disadvantages

• Requires extensions to easily operate at the gate-level

• Difficult to learn

• Slow to code

91

Verilog

Advantages

• Easy to learn

• Easy for small designs

Disadvantages

• Not designed to handle large designs

• Not designed for system-level

92

Verilog vs. VHDL

• March 1995, Synopsys Users Group meeting

• Create a gate netlist for the fastest fully synchronous loadable

9-bit increment-by-3 decrement-by-5 up/down counter that

generated even parity, carry and borrow

• 5 / 9 Verilog users completed

• 0 / 5 VHDL users competed

Does this mean that Verilog is better?

Maybe, but maybe it only means that Verilog is easier to use for

simple designs.

93

Esterel

• Easily allows synchronization among parallel tasks

• Works at a high level of abstraction

– Doesn’t require explicit enumeration of all states and

transitions

• Recently extended for specifying datapaths and flexible clocking

schemes

• Amenible to theorem proving

• Translation to RTL or C possible

• Commercialized by Esterel Technologies

94

Design representations
• Software oriented

• Hardware oriented

• Graph based
– Dataflow graph (DFG)
– Synchronous dataflow graph (SDFG)
– Control flow graph (CFG)
– Control dataflow graph (CDFG)
– Finite state machine (FSM)
– Petri net
– Periodic vs. aperiodic
– Real-time vs. best effort
– Discrete vs. continuous timing
– Example from research

• Resource description

95

Dataflow graph (DFG)

5 kb
NEG

IOP

FIL

FT

DCT

3 kb

4 kb 4 kb

6 kb
3 kb

Soft DL = 150 ms

Soft DL = 230 ms

• Nodes are tasks

• Edges are data dependencies

• Edges have communication

quantities

• Used for digital signal

processing (DSP)

• Often acyclic when real-time

• Can be cyclic when best-effort

96

Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C

97

Control flow graph (CFG)

PSfrag replacements
false

false

false

true

true

true

if i < 2

if k = 3

k = k−1

j = j +5

• Nodes are tasks

• Supports conditionals, loops

• No communication quantities

• SW background

• Often cyclic

98

Control dataflow graph (CDFG)

PSfrag replacements
false

false

false

true

true

true

if i < 2

if k = 3

240 Kb

30 Kb

387 Kb

27 Kb

k = k−1

j = j +5

• Supports conditionals, loops

• Supports communication

quantities

• Used by some high-level

synthesis algorithms

99

Finite state machine (FSM)

1 1 0

1
0

1 0

0

00 01

1011

100

Finite state machine (FSM)

input

0 1

00 10 00

01 01 00

10 00 01

11 10 00

current next

• Normally used at lower levels

• Difficult to represent independent

behavior

– State explosion

• No built-in representation for data flow

– Extensions have been proposed

• Extensions represent SW, e.g.,

co-design finite state machines (CFSMs)

101

Petri net

• Graph composed of places, transitions, and arcs

• Tokens are produced and consumed

• Useful model for asynchronous and stochastic processes

• Places can have priorities

• Not well-suited for representing dataflow systems

• Timing analysis quite difficult

• Large flat graphs difficult to understand

• Real-time use: Specification and formal timing verification

102

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

103

NesC

• View as a ANSI C with additional layer

• Specify interfaces between components

• Centers on commands and events

• Commands

– Provided by interface, do things

– Non-blocking, split-phase (response from events)

– Call down

– E.g., transmit data

104

NesC

Events

• Provided by interface

• Used to signal command completion

• Interrupt tasks

• Require concurrency control (atomic blocks)

105

NesC

• Tasks: Interrupted only by events, no normal preemption

• Asynchronous code: can be reached by interrupt handlers

• Synchronous code: can be reached only from tasks

• Not the only option

106

Summary

• Justify treating real-time design problem as optimization problem

• Example problem to illustrate specification and design

• Tractable algorithm design (NP-completeness in a nutshell)

• Detail on design representations

• Sensor network motivations

• NesC overview

107

Reading assignment (18 January)

• M. R. Garey and D. S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman &

Company, NY, 1979.

– Chapter 1

– Chapter A5: Sequencing and scheduling

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000.

– Chapter 3

– Chapter 4

108

Goals for lecture

• Resource representations

• Graph extensions for pre/post-computation and

streaming/pipelining

• Scheduling problem categories

• Overview of scheduling algorithms

– Will initially focus on static scheduling

• Sensor networks

109

Processing resource description

• Often table-based

• Price, area

• For each task

– Execution time

– Power consumption

– Preemption cost

– etc.

• etc.

Similar characterization for communication resources

Wise to use process-based

110

Communication resource description

• Can use bus-bridge based models for distributed systems

– Some protocols make static analysis difficult

• Wireless models

• System-level design, especially for a single chip, depends on wire

delays!

111

Graph extensions

b) pre− and post−
computation

K

J J1/3

J3/3

J2/3 K1/3

K2/3

K3/3

J1/3

J2/3

J3/3

K1/3

K2/3

K3/3

a) conventional

0 kb

3 kb

3 kb

c) streaming

9 kb 0 kb

0 kb

9 kb
0 kb

0 kb

3 kb

0 kb

0 kb0 kb

Allows pipelining and pre/post-computation

In contrast with book, not difficult to use if conversion automated

112

Problem definition

PE 0 PE 1minimize completion time

D

A

B

C

E

• Given a set of tasks,

• a cost function,

• and a set of resources,

• decide the exact time each task will execute on each resource

113

Types of scheduling problems
• Discrete time – Continuous time

• Hard deadline – Soft deadline

• Unconstrained resources – Constrained resources

• Uni-processor – Multi-processor

• Homogeneous processors – Heterogeneous processors

• Free communication – Expensive communication

• Independent tasks – Precedence constraints

• Homogeneous tasks – Heterogeneous tasks

• One-shot – Periodic

• Single rate – Multirate

• Non-preemptive – Preemptive

• Off-line – On-line

114

Discrete vs. continuous timing

System-level: Continuous

• Operations are not small integer multiples of the clock cycle

High-level: Discrete

• Operations are small integer multiples of the clock cycle

Implications:

• System-level scheduling is more complicated. . .

• . . . however, high-level also very difficult.

• Can we solve this by quantizing time? Why or why not?

115

Hard deadline – Soft deadline

Tasks may have hard or soft deadlines

• Hard deadline

– Task must finish by given time or schedule invalid

• Soft deadline

– If task finishes after given time, schedule cost increased

116

Real-time – Best effort

• Why make decisions about system implementation statically?

– Allows easy timing analysis, hard real-time guarantees

• If a system doesn’t have hard real-time deadlines, resources can

be more efficiently used by making late, dynamic decisions

• Can combine real-time and best-effort portions within the same

specification

– Reserve time slots

– Take advantage of slack when tasks complete sooner than

their worst-case finish times

117

Unconstrained – Constrained resources

• Unconstrained resources

– Additional resources may be used at will

• Constrained resources

– Limited number of devices may be used to execute tasks

118

Uni-processor – Multi-processor

• Uni-processor

– All tasks execute on the same resource

– This can still be somewhat challenging

– However, sometimes in P

• Multi-processor

– There are multiple resources to which tasks may be scheduled

• Usually NP-complete

119

Homogeneous – Heterogeneous processors

• Homogeneous processors

– All processors are the same type

• Heterogeneous processors

– There are different types of processors

– Usually NP-complete

120

Free – Expensive communication

• Free communication

– Data transmission between resources has no time cost

• Expensive communication

– Data transmission takes time

– Increases problem complexity

– Generation of schedules for communication resources

necessary

– Usually NP-complete

121

Independent tasks –

Precedence constraints

NEG

IOP

FIL

FT

DCT

• Independent tasks: No previous execution sequence imposed

• Precedence constraints: Weak order on task execution order

122

Homogeneous – Heterogeneous tasks

IOP

NEG

DCT

FIL

FT

• Homogeneous tasks: All tasks are identical

• Heterogeneous tasks: Tasks differ

123

One-shot – Periodic

time

• One-shot: Assume that the task set executes once

• Periodic: Ensure that the task set can repeatedly execute at

some period

124

Single rate – Multirate

3 copies

2 copies

period = 30 ms

system hyperperiod = 60 ms

time

period = 20 ms

• Single rate: All tasks have the same period

• Multirate: Different tasks have different periods
– Complicates scheduling
– Can copy out to the least common multiple of the periods

(hyperperiod)

125

Periodic graphs

period = 20 ms
deadline = 20 ms

3 copies

period = 30 ms
deadline = 40 ms

system hyperperiod = 60 ms

2 copies

time

126

Aperiodic/sporadic graphs

• No precise periods imposed on task execution

• Useful for representing reactive systems

• Difficult to guarantee hard deadlines in such systems

– Possible if minimum inter-arrival time known

127

Periodic vs. aperiodic

Periodic applications

• Power electronics

• Transportation applications
– Engine controllers
– Brake controllers

• Many multimedia applications
– Video frame rate
– Audio sample rate

• Many digital signal processing (DSP) applications

However, devices which react to unpredictable external stimuli have
aperiodic behavior

Many applications contain periodic and aperiodic components

128

Aperiodic to periodic

Can design periodic specifications that meet requirements posed by

aperiodic/sporadic specifications

• Some resources will be wasted

Example:

• At most one aperiodic task can arrive every 50 ms

• It must complete execution within 100 ms of its arrival time

129

Aperiodic to periodic

• Can easily build a periodic representation with a deadline and

period of 50 ms

– Problem, requires a 50 ms execution time when 100 ms

should be sufficient

• Can use overlapping graphs to allow an increase in execution

time

– Parallelism required

The main problem with representing aperiodic problems with periodic

representations is that the tradeoff between deadline and period must

be made at design/synthesis time

130

Non-preemptive – Preemptive

O.K.

non−ideal
preempt.

ideal
preempt.

A

B

A1

B

A2

A1
P
B
P

A2

A ready

B ready

B deadline

A deadline

non−preempt.

• Non-preemptive: Tasks must run to completion

• Ideal preemptive: Tasks can be interrupted without cost

• Non-ideal preemptive: Tasks can be interrupted with cost

131

Off-line – On-line

Off-line

• Schedule generated before system execution

• Stored, e.g., in dispatch table. for later use

• Allows strong design/synthesis/compile-time guarantees to be
made

• Not well-suited to strongly reactive systems

On-line

• Scheduling decisions made during the execution of the system

• More difficult to analyze than off-line
– Making hard deadline guarantees requires high idle time
– No known guarantee for some problem types

• Well-suited to reactive systems

132

Hardware-software co-synthesis scheduling

Automatic allocation, assignment, and scheduling of system-level

specification to hardware and software

Scheduling problem is hard

• Hard and soft deadlines

• Constrained resources, but resources unknown (cost functions)

• Multi-processor

• Strongly heterogeneous processors and tasks

– No linear relationship between the execution times of a tasks

on processors

133

Hardware-software co-synthesis scheduling

• Expensive communication

– Complicated set of communication resources

• Precedence constraints

• Periodic

• Multirate

• Strong interaction between NP-complete

allocation-assignment and NP-complete scheduling problems

• Will revisit problem later in course if time permits

134

Behavioral synthesis scheduling

• Difficult real-world scheduling problem

– Not multirate

– Discrete notion of time

– Generally less heterogeneity among resources and tasks

• What scheduling algorithms should be used for these problems?

135

Scheduling methods

• Clock

• Weighted round-robbin

• List scheduling

• Priority

– EDF, LST

– Slack

– RMS

– Multiple costs

• MILP

• Force-directed

136

Clock-driven scheduling

Clock-driven: Pre-schedule, repeat schedule

Music box:

• Periodic

• Multi-rate

• Heterogeneous

• Off-line

• Clock-driven

137

Weighted round robbin

B
A

C
D

Time
Weighted round-robbin: Time-sliced with variable time slots

138

List scheduling

• Pseudo-code:

– Keep a list of ready jobs

– Order by priority metric

– Schedule

– Repeat

• Simple to implement

• Can be made very fast

• Difficult to beat quality

139

Priority-driven

• Impose linear order based on priority metric

• Possible metrics

– Earliest start time (EST)

– Latest start time

* Danger! LST also stands for least slack time.

– Shortest execution time first (SETF)

– Longest execution time first (LETF)

– Slack (LFT - EFT)

140

List scheduling

• Assigns priorities to nodes

• Sequentially schedules them in order of priority

• Usually very fast

• Can be high-quality

• Prioritization metric is important

141

Prioritization

• As soon as possible (ASAP)

• As late as possible (ALAP)

• Slack-based

• Dynamic slack-based

• Multiple considerations

142

As soon as possible (ASAP)

4 5

3

2

3

2
3

0 3

5

7

6

11

16

11

11

• From root, topological sort on the precedence graph

• Propagate execution times, taking the max at reconverging paths

• Schedule in order of increasing earliest start time (EST)

143

As late as possible (ALAP)

deadline = 37

deadline = 20

4 5

3

2 2
6

3

18

342925

1210

7

• From deadlines, topological sort on the precedence graph

• Propagate execution times, taking the min at reconverging paths

• Consider precedence-constraint satisfied tasks
– Schedule in order of increasing latest start time (LST)

144

Slack-based

• Compute EFT, LFT

• For all tasks, find the difference, LFT − EFT

• This is the slack

• Schedule precedence-constraint satisfied tasks in order of

increasing slack

• Can recompute slack each step, expensive but higher-quality

result

– Dynamic critical path scheduling

145

Multiple considerations

• Nothing prevents multiple prioritization methods from being used

• Try one method, if it fails to produce an acceptable schedule,

reschedule with another method

146

Effective release times

• Ignore the book on this

– Considers simplified, uniprocessor, case

• Use EFT, LFT computation

• Example?

147

EDF, LST optimality

• EDF optimal if zero-cost preemption, uniprocessor assumed

– Why?

– What happens when preemption has cost?

• Same is true for slack-based list scheduling in absence of

preemption cost

148

Breaking EDF, LST optimality

• Non-zero preemption cost

• Multiprocessor

• Why?

149

Rate mononotic scheduling (RMS)

• Single processor

• Independent tasks

• Differing arrival periods

• Schedule in order of increasing periods

• No fixed-priority schedule will do better than RMS

• Guaranteed valid for loading ≤ ln2 = 0.69

• For loading > ln2 and < 1, correctness unknown

• Usually works up to a loading of 0.88

• More detail in later lectures

150

Reading assignment

• Skim and refer to K. Ramamritham and J. Stankovic, “Scheduling

algorithms and operating systems support for real-time systems,”

Proc. IEEE, vol. 82, pp. 55–67, Jan. 1994

• Skim and refer to Y.-K. Kwok and I. Ahmad, “Static scheduling

algorithms for allocating directed task graphs to multiprocessors,”

ACM Computing Surveys, vol. 31, no. 4, pp. 406–471, 1999

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Finish Chapter 5, read Chapter 6 by Thursday

151

Goals for lecture

• Sensor networks

• Finish overview of scheduling algorithms

• Mixing off-line and on-line

• Design a scheduling algorithm: DCP

– Will initially focus on static scheduling

• Useful properties of some off-line schedulers

152

Lab two?

• Everybody able to finish?

• Any problems to warn classmates about?

• 18 motes should be arriving tomorrow

– No equipment sign-out required for next motes lab

• Linux vs. Windows development environments

153

Sensor networks

• Gather information over wide region

• Frequently no infrastructure

• Battery-powered, wireless common

• Battery lifespan of central concern

154

Low-power sensor networks

• Power consumption central concern in design

• Processor?

– RISC µ-controllers common

• Wireless protocol?

– Low data-rate, simple: Proprietary, Zigbee

• OS design?

– Static, eliminate context switches, compile-time analysis

155

Low-power sensor networks

• Power consumption central concern in design

• Runtime environment?

– Avoid unnecessary dynamism

• Language?

– Compile-time analysis of everything practical

156

Multi-rate tricks

• Contract deadline

– Usually safe

• Contract period

– Sometimes safe

• Consequences?

157

Scheduling methods

• Clock

• Weighted round-robbin

• List scheduling

• Priority

– EDF, LST

– Slack

– Multiple costs

158

Scheduling methods

• MILP

• Force-directed

• Frame-based

• PSGA

159

Linear programming

• Minimize a linear equation subject to linear constraints

– In P

• Mixed integer linear programming: One or more variables

discrete

– NP-complete

• Many good solvers exist

• Don’t rebuild the wheel

160

MILP scheduling

P the set of tasks

tmax maximum time

start(p, t) 1 if task p starts at time t, 0 otherwise

D the set of execution delays

E the set of precedence constraints

tstart (p) =
tmax

∑
t=0

t · start(p, t) the start time of p

161

MILP scheduling

Each task has a unique start time

∀p∈P,
tmax

∑
t=0

start(p, t) = 1

Each task must satisfy its precedence constraints and timing delays

∀{pi, p j} ∈ E,
tmax

∑
t=0

tstart (pi) ≥ tstart (p j)+d j

Other constraints may exist

• Resource constraints

• Communication delay constraints

162

MILP scheduling

• Too slow for large instances of NP-complete scheduling

problems

• Numerous optimization algorithms may be used for scheduling

• List scheduling is one popular solution

• Integrated solution to allocation/assignment/scheduling problem

possible

• Performance problems exist for this technique

163

Force directed scheduling

• P. G. Paulin and J. P. Knight, “Force-directed scheduling for the

behavioral synthesis of ASICs,” IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems, vol. 8, pp. 661–679,

June 1989

• Calculate EST and LST of each node

• Determine the force on each vertex at each time-step

• Force: Increase in probabilistic concurrency

– Self force

– Predecessor force

– Successor force

164

Self force

Fi all slots in time frame for i

F ′
i all slots in new time frame for i

Dt probability density (sum) for slot t

δDt change in density (sum) for slot t resulting from scheduling

self force

A = ∑
t∈Fa

Dt ·δDt

165

Predecessor and successor forces

pred all predecessors of node under consideration

succ all successors of node under consideration

predecessor force

B = ∑
b∈pred

∑
t∈Fb

Dt ·δDt

successor force

C = ∑
c∈succ

∑
t∈Fc

Dt ·δDt

166

Intuition

total force: A+B+C

• Schedule operation and time slot with minimal total force

– Then recompute forces and schedule the next operation

• Attempt to balance concurrency during scheduling

167

Force directed scheduling

probabilistic
concurrency

168

Force directed scheduling

• Limitations?

• What classes of problems may this be used on?

169

Implementation: Frame-based scheduling

• Break schedule into (usually fixed) frames

• Large enough to hold a long job

– Avoid preemption

• Evenly divide hyperperiod

• Scheduler makes changes at frame start

• Network flow formulation for frame-based scheduling

• Could this be used for on-line scheduling?

170

Problem space genetic algorithm

• Let’s finish off-line scheduling algorithm examples on a bizarre

example

• Use conventional scheduling algorithm

• Transform problem instance

• Solve

• Validate

• Evolve transformations

171

Examples: Mixing on-line and off-line

• Book mixes off-line and on-line with little warning

• Be careful, actually different problem domains

• However, can be used together

• Superloop (cyclic executive) with non-critical tasks

• Slack stealing

• Processor-based partitioning

172

Problem: Vehicle routing

• Low-price, slow, ARM-based system

• Long-term shortest path computation

• Greedy path calculation algorithm available, non-preemptable

• Don’t make the user wait

– Short-term next turn calculation

• 200 ms timer available

173

Examples: Mixing on-line and off-line

• Slack stealing

• Processor-based partitioning

174

Scheduling summary

• Scheduling is a huge area

• This lecture only introduced the problem and potential solutions

• Some scheduling problems are easy

• Most useful scheduling problems are hard

– Committing to decisions makes problems hard: Lookahead

required

– Interdependence between tasks and processors makes

problems hard

– On-line scheduling next Tuesday

175

Bizarre scheduling idea

• Scheduling and validity checking algorithms considered so far

operate in time domain

• This is a somewhat strange idea

• Think about it and tell/email me if you have any thoughts on it

• Could one very quickly generate a high-quality real-time off-line

multi-rate periodic schedule by operating in the frequency

domain?

• If not, why not?

• What if the deadlines were soft?

176

Reading assignment

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000

• Read Chapter 7

177

Goals for lecture

• Lab four

• Example scheduling algorithm design problem

– Will initially focus on static scheduling

• Real-time operating systems

• Comparison of on-line and off-line scheduling code

178

Lab four

• Talk with Promi SD101

• Sample sound at 3 kHz

• Multihop

179

Example problem: Static scheduling

• What is an FPGA?

• Why should real-time systems designers care about them?

• Multiprocessor static scheduling

• No preemption

• No overhead for subsequent execution of tasks of same type

• High cost to change task type

• Scheduling algorithm?

180

Problem: Uniprocessor independent task

scheduling

• Problem

– Independent tasks

– Each has a period = hard deadline

– Zero-cost preemption

• How to solve?

181

Rate monotonic scheduling

Main idea

• 1973, Liu and Layland derived optimal scheduling algorithm(s) for
this problem

• Schedule the job with the smallest period (period = deadline) first

• Analyzed worst-case behavior on any task set of size n

• Found utilization bound: U(n) = n · (21/n −1)

• 0.828 at n = 2

• As n → ∞, U(n) → log2 = 0.693

• Result: For any problem instance, if a valid schedule is possible,
the processor need never spend more than 71% of its time idle

182

Optimality and utilization for limited case

• Simply periodic: All task periods are integer multiples of all lesser

task periods

• In this case, RMS/DMS optimal with utilization 1

• However, this case rare in practice

• Remains feasible, with decreased utilization bound, for in-phase

tasks with arbitrary periods

183

Rate monotonic scheduling

• Constrained problem definition

• Over-allocation often results

• However, in practice utilization of 85%–90% common

– Lose guarantee

• If phases known, can prove by generating instance

184

Critical instants

Main idea:

A job’s critical instant a time at which all possible concurrent

higher-priority jobs are also simultaneously released

Useful because it implies latest finish time

185

Proof sketch for RMS utilization bound

• Consider case in which no period exceeds twice the shortest

period

• Find a pathological case

– Utilization of 1 for some duration

– Any decrease in period/deadline of longest-period task will

cause deadline violations

– Any increase in execution time will cause deadline violations

186

RMS worst-case utilization

• In-phase

• ∀k s.t. 1≤k≤n−1 : ek = pk+1 − pk

• en = pn −2 ·∑n−1
k=1 ek

187

Proof sketch for RMS utilization bound

• See if there is a way to increase utilization while meeting all

deadlines

• Increase execution time of high-priority task

– e′i = pi+1 − pi + ε = ei + ε

• Must compensate by decreasing another execution time

• This always results in decreased utilization

– e′k = ek − ε

– U ′−U =
e′i
pi

+
e′k
pk
− ei

pi
− ek

pk
= ε

pi
− ε

pk

– Note that pi < pk →U ′ > U

188

Proof sketch for RMS utilization bound

• Same true if execution time of high-priority task reduced

• e′′i = pi+1 − pi − ε

• In this case, must increase other e or leave idle for 2 · ε

• e′′k = ek +2ε

• U ′′−U = 2ε
pk
− ε

pi

• Again, pk < 2 →U ′′ > U

• Sum over execution time/period ratios

189

Proof sketch for RMS utilization bound

• Get utilization as a function of adjacent task ratios

• Substitute execution times into ∑n
k=1

ek
pk

• Find minimum

• Extend to cases in which pn > 2 · pk

190

Notes on RMS

• Other abbreviations exist (RMA)

• DMS better than or equal RMA when deadline 6= period

• Why not use slack-based?

• What happens if resources are under-allocated and a deadline is

missed?

191

Essential features of RTOSs

• Provides real-time scheduling algorithms or primatives

• Bounded execution time for OS services

– Usually implies preemptive kernel

– E.g., linux can spend milliseconds handling interrupts,

especially disk access

192

Threads

• Threads vs. processes: Shared vs. unshared resources

• OS impact: Windows vs. Linux

• Hardware impact: MMU

193

Threads vs. processes

• Threads: Low context switch overhead

• Threads: Sometimes the only real option, depending on

hardware

• Processes: Safer, when hardware provides support

• Processes: Can have better performance when IPC limited

194

Software implementation of schedulers

• TinyOS

• Light-weight threading executive

• µC/OS-II

• Linux

• Static list scheduler

195

TinyOS

• Most behavior event-driven

• High rate → Livelock

• Research schedulers exist

196

BD threads

• Brian Dean: Microcontroller hacker

• Simple priority-based thread scheduling executive

• Tiny footprint (fine for AVR)

• Low overhead

• No MMU requirements

197

µC/OS-II

• Similar to BD threads

• More flexible

• Bigger footprint

198

Old linux scheduler

• Single run queue

• O(n) scheduling operation

• Allows dynamic goodness function

199

O(1) scheduler in Linux 2.6

• Written by Ingo Molnar

• Splits run queue into two queues prioritized by goodness

• Requires static goodness function

– No reliance on running process

• Compatible with preemptible kernel

200

Real-time linux

• Run linux as process under real-time executive

• Complicated programming model

• RTAI (Real-Time Application Interface) attempts to simplify

– Colleagues still have problems at > 18 kHz control period

201

Real-time operating systems

• Embedded vs. real-time

• Dynamic memory allocation

• Schedulers: General-purpose vs. real-time

• Timers and clocks: Relationship with HW

202

Summary

• Static scheduling

• Example of utilization bound proof

• Introduction to real-time operating systems

203

Reading assignment

• Read Chapter 12 in J. W. S. Liu, Real-Time Systems.

Prentice-Hall, Englewood Cliffs, NJ, 2000

• Read K. Ghosh, B. Mukherjee, and K. Schwan, “A survey of

real-time operating systems,” tech. rep., College of Computing,

Georgia Institute of Technology, Feb. 1994

204

Goals for lecture

• Lab four?

• Lab six

• Simulation of real-time operating systems

• Impact of modern architectural features

205

Lab four

• Please email or hand in the write-up for lab assignment four

• Problems? See me.

– Will need everything from lab four working for lab six

206

Lab six

• Develop priority-based cooperative scheduler for TinyOS that

keeps track of the percentage of idle time.

• Develop a tree routing algorithm for the sensor network.

• Send noise, light, and temperature data to a PPC, via the

network root.

• Have motes respond to send audio samples and buzz

commands.

• Play back or display this data on PPCs to verify the that the

system functions.

207

Outline
• Introduction

• Role of real-time OS in embedded system

• Related work and contributions

• Examples of energy optimization

• Simulation infrastructure

• Results

• Conclusions

208

Introduction

• Real-Time Operating Systems are often used in embedded

systems.

• They simplify use of hardware, ease management of multiple

tasks, and adhere to real-time constraints.

• Power is important in many embedded systems with RTOSs.

• RTOSs can consume significant amount of power.

• They are re-used in many embedded systems.

• They impact power consumed by application software.

• RTOS power effects influence system-level design.

209

Introduction

• Real Time Operating Systems important part of embedded

systems

– Abstraction of HW

– Resource management

– Meet real-time constraints

• Used in several low-power embedded systems

• Need for RTOS power analysis

– Significant power consumption

– Impacts application software power

– Re-used across several applications

210

Role of RTOS in embedded system

Memory
manager

Basic
IO

manager
Task

IPC

ISRTimer

ABS

etc.

MPEG
encoding

Applications

RTOS
services

Memory

Timer

Processor

Other hardware

Network interface

Communication

Micro−
browser

Database
Message
composer

Organizer

Hardware

Tasks

211

Related work and contributions

• Instruction level power analysis
V. Tiwari, S. Malik, A. Wolfe, and T.C. Lee, Int. Conf. VLSI

Design, 1996

• System-level power simulation
Y. Li and J. Henkel, Design Automation Conf., 1998

• MicroC/OS-II: J.J. Labrosse, R & D Books, Lawrence, KS, 1998

• Our work

– First step towards detailed power analysis of RTOS

– Applications: low-power RTOS, energy-efficient software

architecture, incorporate RTOS effects in system design

212

Simulated embedded system

bus
Processor

SPARClite 86832

Other ASICs
and peripherals

On−chip cache

Fujitsu

Timer

IBM
0118160PT3−60

DRAM

IBM
0118160PT3−60

DRAM

EPROM

LEDs

UART

Interrupts

• Easy to add new

devices

• Cycle-accurate model

• Fujitsu board support

library used in model

• µC/OS-II RTOS used

213

Single task network interface

Checksum computation
and output

Get packet Compute
checksum

Procure
Ethernet

controller

Transfer
packet

Release
Ethernet

controller

Procuring Ethernet controller has high energy cost

214

TCP example

Checksum computation
and output

Get packet Compute
checksum

Procure
Ethernet

controller

Transfer
packet

Release
Ethernet

controller

Checksum
computation

Compute
checksum

Get packet

Procure
Ethernet
controller

Transfer
packets

Release
Ethernet
controller

Buffer
management

Output

Straight-forward implementation Multi-task implementation

215

Multi-tasking network interface
Checksum

computation

Compute
checksum

Get packet

Procure
Ethernet

controller

Transfer
packets

Release
Ethernet

controller

Buffer
management

Output

RTOS power analysis used for process re-organization to reduce

energy

21% reduction in energy consumption. Similar power consumption.

216

ABS example

N

Y

Timer
transition?

Sense speed and
pedal conditions

Compute
acceleration

Brake decision

Actuate brakeSleep

217

ABS example timing

Brake
pedal

ABS
process

Brake
action

sensor
Wheel

Time

Timer

218

Straight-forward ABS implementation

N

Y

Timer
transition?

Sense speed and
pedal conditions

Compute
acceleration

Brake decision

Actuate brakeSleep

Brake
pedal

ABS
process

Brake
action

sensor
Wheel

Time

Timer

219

Periodically triggered ABS

N

Y

Timer
transition?

Sense speed and
pedal conditions

Compute
acceleration

Brake decision

Actuate brakeSleep

220

Periodically triggered ABS timing

Brake
pedal

ABS
process

Brake
action

sensor
Wheel

Time

Timer

221

Selectively triggered ABS

Y

N

N

Y

Pedal
pressed?

Sense speed and
pedal conditions

Compute
acceleration

Sleep

Brake decision

Actuate brake
Timer

transition?

222

Selectively triggered ABS timing

Brake
pedal

ABS
process

Brake
action

sensor
Wheel

Timer

Time

63% reduction in energy and power consumption

223

Power-optimized ABS example

Y

N

N

Y

Pedal
pressed?

Sense speed and
pedal conditions

Compute
acceleration

Sleep

Brake decision

Actuate brake
Timer

transition?

Brake
pedal

ABS
process

Brake
action

sensor
Wheel

Timer

Time

224

Infrastructure
Energy by call

tree position for
task A

Application
code

OS code

External
stimulus

Timer
model

SPARClite cache
simulator

UART
model

Models for
other

peripherals

Instruction−level
energy model

SPARClite ISS

Memory
energy model

Memory model

model

Cache
controller

interface
unit model

Bus

���������������������	�		�	
�
���

������ ��������������������������������

����������������� !�!"#�#$%&'''''((((())*
*

++,,--..///0001�11�1223�33�33�3444
Energy by call

tree position for
task B

SPARClite
compiler

main()

OSSem()

OSSched()

225

Experimental results

Energy
(mJ)

565767
868868868969969969:6::6::6:;6;;6;;6;
<6<<6<=6==6=>6>
>6>?6??6?

@6@@6@A6AA6AB6BB6BB6B
B6BB6BB6BB6BC6CC6CC6CC6C
C6CC6CC6CD6DE6E

F6F6FF6F6FG6GG6GH6H6HH6H6HI6II6IJ6J6JK6KL6L6LM6MN6N6NO6O P6PQ6QR6RS6ST6TT6TU6UU6UV6VW6WX6XY6Y Z6Z[6[\6\]6]^6^^6^_6__6_`6`a6ab6bc6c d6d6dd6d6de6ee6ef6f6fg6gh6h6hi6ij6j6jk6kl6l6ll6l6ll6l6lm6mm6mm6m n6no6op6pq6qr6rs6st6tt6tu6uu6uv6vv6v
v6vv6vv6vw6ww6ww6ww6w
w6w

ABS−1
ABS−2

Semaphore

Mailbox

Sleep

Synchronization

Task control

Semaphore

Application

Floating−point

Initialization

Input/output

Interrupt

Memory

Mailbox

Misc.

Scheduling

Net−2
Net−1

0

100

200

300

400

500

600

700

800

900

1000

1100

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000

0
10
20
30
40
50
60
70
80
90

100
110

0
25
50
75

100
125
150
175
200
225
250
275
300
325

226

Experimental results – time

(ms)
Time

xyxzyz{y{{y{{y{
{y{{y{{y{{y{
{y{{y{{y{{y{
{y{{y{{y{{y{

y		y		y		y
y		y		y		y
y		y		y		y
y		y		y		

}y}~y~�y��y��y�
�y��y��y��y�
�y��y��y��y�
�y��y��y��y�
�y��y��y��y�
�y��y��y��y�
�y��y�

�y��y��y��y�
�y��y��y��y�
�y��y��y��y�
�y��y��y��y�
�y��y��y��y�
�y��y��y��y�
�y�

�y�y��y��y�y��y�y��y�y��y��y��y� �y��y��y��y��y��y��y��y��y��y�
�y��y��y��y��y��y��y�
�y�

�y�y��y�y�
�y�y��y�y��y�y��y�y�
�y�y��y�y��y�y��y�y�
�y�y��y�y��y�y��y�y��y�y��y�y��y�y��y�y�

�y��y��y��y��y�
�y��y��y��y�
�y�
�y��y��y��y�
�y��y��y��y��y��y�

�y�y��y�y��y�y��y�y��y�y� y y
TCP/IP−1

TCP/IP−2

ABS−1
ABS−2

Semaphore

Mailbox

Synchronization

Task control

Sleep

Semaphore

Application

Floating−point

Initialization

Input/output

Interrupt

Memory

Mailbox

Misc.

Scheduling

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000

0

25

50

75

100

125

150

175

200

225

250

275

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800

227

Agent example

Broadcast

Price advertisement

Sale

Key
Money
Commodity 1
Commodity 2
Commodity 3
Commodity 4

Agent 6

Agent 2

Agent 1

Agent 3

Agent 4Agent 5

228

Experimental results

¡¢¡¢¡£¢£¤¢¤¢¤¤¢¤¢¤¤¢¤¢¤¤¢¤¢¤¥¢¥¥¢¥¥¢¥¥¢¥ ¦¢¦¢¦§¢§¢§¨¢¨¢¨¨¢¨¢¨¨¢¨¢¨©¢©¢©©¢©¢©©¢©¢© ª¢ªª¢ª«¢«
«¢«¬¢¬¬¢¬­¢­­¢­®¢®®¢®®¢®¯¢¯¯¢¯¯¢¯
°¢°°¢°±¢±±¢±²¢²²¢²³¢³³¢³

(b)(a)

Sleep
Synchronization
Task control

Semaphore

Application
Floating−point
Initialization
Input/output
Interrupt

Memory
Mailbox

Misc.
Scheduling

E
ne

rg
y

(m
J)

T
im

e
(m

s)

1 2 3321
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000

229

Experimental results

´µ´µ´¶µ¶·µ·µ··µ·µ··µ·µ··µ·µ··µ·µ··µ·µ··µ·µ··µ·µ·
¸µ¸¸µ¸¸µ¸¸µ¸¸µ¸
¸µ¸¸µ¸¸µ¸

¹µ¹µ¹ºµº»µ»µ»»µ»µ»»µ»µ»»µ»µ»»µ»µ»»µ»µ»»µ»µ»»µ»µ»»µ»µ»»µ»µ»»µ»µ»
¼µ¼¼µ¼¼µ¼¼µ¼¼µ¼
¼µ¼¼µ¼¼µ¼¼µ¼¼µ¼
¼µ¼½µ½µ½¾µ¾

¿µ¿µ¿ÀµÀÁµÁµÁÂµÂÃµÃµÃÃµÃµÃÄµÄÄµÄ
ÅµÅµÅÅµÅµÅÆµÆÆµÆ
ÇµÇµÇÇµÇµÇÈµÈÈµÈÉµÉµÉÉµÉµÉÊµÊÊµÊ
ËµËµËËµËµËËµËµËÌµÌÌµÌÌµÌÍµÍµÍÍµÍµÍÎµÎÎµÎ

(a) (b)

Sleep
Synchronization
Task control

Semaphore

Application
Floating−point
Initialization
Input/output
Interrupt

Memory
Mailbox

Misc.
Scheduling

tuned
mail

non−buf

buf

Agent Ethernet

E
ne

rg
y

(m
J)

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

230

Optimization effects
TCP example:

• 20.5% energy reduction

• 0.2% power reduction

• RTOS directly accounted for 1% of system energy

ABS example:

• 63% energy reduction

• 63% power reduction

• RTOS directly accounted for 50% of system energy

Mailbox example: RTOS directly accounted for 99% of system energy

Semaphore example: RTOS directly accounted for 98.7% of system
energy

231

Partial semaphore hierarchical results

Function Energy/invocation (uJ) Energy (%) Time (mS) Calls
realstart init tvecs 0.41 0.00 0.00 1

6.41 mJ total init timer liteled 1.31 0.00 0.00 1
2.02 % 5.51 mJ total

1.74 %
startup do main 887.44 0.28 2.18 1

0.90 mJ total save data 1.56 0.00 0.00 1
0.28 % init data 1.31 0.00 0.00 1

init bss 0.88 0.00 0.00 1
cache on 2.72 0.00 0.01 1

Task1 win unf trap 1.90 1.20 9.73 1999
155.18 mJ total OSDisableInt 0.29 0.09 0.78 1000

48.88 % OSEnableInt 0.32 0.10 0.89 1000
sparcsim terminate 0.75 0.00 0.00 1

OSSemPend win unf trap 2.48 0.78 6.33 999
31.18 mJ total OSDisableInt 0.29 0.18 1.59 1999

9.82 % OSEnableInt 0.29 0.18 1.59 1999
OSEventTaskWait 3.76 1.18 9.22 999

OSSched 19.07 6.00 47.97 999
OSSemPost OSDisableInt 0.29 0.09 0.78 1000
2.90 mJ total OSEnableInt 0.29 0.09 0.78 1000

0.91 %
OSTimeGet OSDisableInt 0.27 0.08 0.70 1000
1.43 mJ total OSEnableInt 0.29 0.09 0.78 1000

0.45 %
CPUInit BSPInit 1.09 0.00 0.00 1

0.09 mJ total exceptionHandler 4.77 0.02 0.17 15
0.03 %
printf win unf trap 2.05 0.65 5.06 1000

112.90 mJ total vfprintf 108.89 34.30 258.53 1000
35.56 %

232

Energy per invocation for µC/OS-II services

Minimum MaximumService energy (µJ) energy (µJ)
OSEventTaskRdy 18.02 20.03
OSEventTaskWait 7.98 9.05

OSEventWaitListInit 20.43 21.16
OSInit 1727.70 1823.26

OSMboxCreate 27.51 28.82
OSMboxPend 7.07 82.91
OSMboxPost 5.82 84.55
OSMemCreate 19.40 19.75
OSMemGet 6.64 8.22
OSMemInit 27.41 27.47
OSMemPut 6.38 7.91
OSQInit 20.10 20.93
OSSched 6.96 52.34

OSSemCreate 27.87 29.04
OSSemPend 6.54 73.64

etc. etc. etc.

233

Conclusions

• RTOS can significantly impact power

• RTOS power analysis can improve application software design

• Applications

– Low-power RTOS design

– Energy-efficient software architecture

– Consider RTOS effects during system design

234

Impact of modern architectural features

• Memory hierarchy

• Bus protocols ISA vs. PCI

• Pipelining

• Superscalar execution

• SIMD

• VLIW

235

Summary

• Labs

• Simulation of real-time operating systems

• Impact of modern architectural features

236

Goals for lecture

• Explain details of a real-time design problem

• Give some background on development of area

• Synthesis solution

• Current commercial status

237

Distributed real-time: Part one

• Distributed needn’t mean among cities or offices – Same IC?

• Process scaling trends

• Cross-layer design now necessary

238

Embedded system / SOC synthesis motivation

• Wireless: effects of the communication medium important

• Hard real-time: deadlines must not be violated

• Reliable: anti-lock brake controllers shouldn’t crash

• Rapidly implemented: IP use, simultaneous HW-SW

development

• High-performance: massively parallel, using ASICs

• SOC market from $1.1 billion in 1996 to $14 billion in 2000

(Dataquest), to $43 billion in 2009 (Global Information, Inc.)

239

Global µ-controller sales

Billions of
U.S. dollars

’90 ’91 ’92 ’93 ’94 ’95 ’97’96 ’98 ’99 ’00

Year

16−bit

8−bit

4−bit

17.5

15

12.5

10

7.5

5

2.5

0

Billions of
parts

’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 ’99 ’00

Year

16−bit

8−bit

4−bit

0

1

2

3

4

5

Source: Embedded Processor and Microcontroller Primer and

FAQ by Russ Hersch

240

Low-power motivation

• Embedded systems frequently battery-powered, portable

• High heat dissipation results in

– Expensive, bulky packaging

– Limited performance

• High-level trade-offs between

– Power

– Speed

– Price

– Area

241

Past embedded system synthesis work

• Early 1990s: Optimal MILP co-synthesis of small systems

[Prakash & Parker], [Bender], [Schwiegershausen & Pirsch]

• Mid 1990s: One CPU-One ASIC

[Ernst, Henkel & Benner], [Gupta & De Micheli]

[Barros, Rosenstiel, & Xiong], [D’Ambrosio & Hu]

• Late 1990s – present: Co-synthesis of heterogeneous

distributed embedded systems [Kuchcinski],

[Quan, Hu, & Greenwood], [Wolf]

242

Past low-power work

• Mid 1990s: VLSI power minimization design surveys

[Pedram], [Devadas & Malik]

• Mid – late 1990s: High-level power analysis and optimization

[Raghunathan, Jha, & Dey], [Chandrakasan & Brodersen]

• Late 1990s: Embedded processor energy estimation

[Li & Henkel], [Sinha & Chandrakasan]

• Late 1990s – present: Low-power hardware-software

co-synthesis

[Dave, Lakshminarayana, & Jha], [Kirrovski & Potkonjak]

243

Overview of system synthesis projects

• TGFF: Generates parametric task graphs and resource

databases

• MOGAC: Multi-chip distributed systems

• CORDS: Dynamically reconfigurable

• COWLS: Multi-chip distributed, wireless, client-server

• MOCSYN: System-on-a-chip composed of hard cores, area

optimized

244

Overview of system synthesis projects

• Synthesize embedded systems

– heterogeneous processors and communication resources

– multi-rate

– hard real-time

• Optimize

– price

– power consumption

– response time

245

Overview of system synthesis projects

• TGFF: Generates parametric task graphs and resource

databases

• MOGAC: Multi-chip distributed systems

• CORDS: Dynamically reconfigurable

• COWLS: Multi-chip distributed, wireless, client-server

• MOCSYN: System-on-a-chip composed of hard cores, area

optimized

246

Definitions

NEG

IOP

FIL

FT

DCT

Soft DL = 100 ms

Hard DL = 150 ms

3 kb

Hard DL = 230 ms

4 kb 4 kb

3 kb
6 kb

Period = 200 ms

• Specify
– task types
– data dependencies
– hard and soft task

deadlines
– periods

• Analyze performance of
each task on each resource

• Allocate resources
• Assign each task to a

resource
• Schedule the tasks on each

resource

247

Allocation

32 32

Processors resources
Communication

C1C0

K0

L0J1

J0
Number and types of:

• PEs or cores

• Commun. resources

248

Assignment

32 32

J0 K0

L0J1

C0 C1

• Assignment of tasks to

PEs

• Connection of

communication resources

to PEs

249

Schedule

32

k, l, and n need
not be scheduled

j

m

2

4

2

1

3

54

5

3

1

Time
nm

kj

l

J0 K0C0

250

Costs

Soft constraints:

• price

• power

• area

• response time

Hard constraints:

• deadline violations

• PE overload

• unschedulable tasks

• unschedulable transmis-

sions

Solutions which violate hard constraints not shown to designer –

pruned out.

251

Genetic algorithms

• Multiple solutions

• Local randomized changes to solutions

• Solutions share information with each other

• Can escape sub-optimal local minima

• Scalable

252

Cluster genetic operator constraints motivation

PE type

Solution A Solution B

PE type

assignment
Task

allocation
PE

Cut Cut

DCT FIRDIV DCT DIV FIR

X

X

Y Z X Z

253

Cluster genetic operator constraints motivation

?

Solution A Solution B

PE type PE type

assignment
Task

allocation
PE

Cut Cut

DCT FIRDIV DCT DIV FIR

X Z

X

ZYX

254

Cluster genetic operator constraints
Task

assignment
crossover

Communication
resource

connectivity
crossover

Communication
resource

connectivity
mutation

Task
assignment

mutation

Communication
resource
allocation
crossover

Solution

Cluster

Communication
resource

mutation
allocation

allocation
mutation

PE
allocation
crossover

PE

255

Locality in solution representation
CutCut

A1 A2 A3

B1 B2 B3A1 A2 A3

B1 B2 B3

C1 C2 C3

C1 C2 C3

Soln. 1

Soln. 2

A, B, and C attributes each solve sub-problems

256

Locality in solution representation
CutCut

A1 C1B1 A3 B3B2A2

A2 A3A1 B1 B2 B3C1

A1 A2 A3

B1 B2 B3A1 A2 A3

B1 B2 B3

C1 C2 C3

C1 C2 C3

Soln. 1

Soln. 2

C3C2

C3C2 Soln. 1

Soln. 2

257

Information trading

90Random orientation

PE type

Power consumption

Price

PE type

Power consumption

Price

Don’t
swap

Swap

258

Ranking

P
ri

ce

Solution

3

2

3

1

Power consumption

A solution dominates another

if all its costs are lower, i.e.,

doma,b =

∀n
i=1costa,i < costb,i ∧a 6= b

A solution’s rank is the number

of other solutions which do not

dominate it, i.e.,

ranks′ = ∑n
i=1 not domsi,s′

259

Multiobjective optimization

Price

Solution

Power consumption

Linear cost

functions

Price

Solution

Power consumption

Non-linear cost

functions

Price

Solution
Inferior solution

Power consumption

Pareto-rank cost

function
∑n

i=1 wt i · cost i maxn
i=1 wt i · cost i ∑n

i=1 not domsi,s′

260

Reproduction

Solution are selected for reproduction by conducting Boltzmann trials

between parents and children.

Given a global temperature T , a solution with rank J beats a solution

with rank K with probability:

1
1+ e(K-J)/T

-5
0

5 0
5

10
0

0.2
0.4
0.6
0.8

1

K - J
T

261

MOCSYN related work

• Floorplanning block placement – Fiduccia and Mattheyses, 1982

– Stockmeyer, 1983

• Parallel recombinative simulated annealing – Mahfoud and

Goldberg, 1995

• Linear interpolating clock synthesizers – Bazes, Ashuri, and

Knoll, 1996

• Interconnect performance estimation models – Cong & Pan, 2001

262

MOCSYN algorithm overview

re−prioritization
Link

Bus
structure

Task
prioritization

Communication
assignment

Schedule

Block placement

Change task
assignment Link

prioritization

Cluster loop

Architecture loop

Initialization

selection
Clock

Results

allocation
Change core

263

Link prioritization

Estimate commun
time based on

average core sep.

Priority = −2
Slack = 2 ms

5 ms

4 ms 12 ms

1 ms

3 kb

3 kb4 kb

5 kb 5 ms 4 ms

5 ms

3 ms 2 ms

4 ms

1 ms

12 ms

Deadline = 20 ms Deadline = 20 ms

Duration

Quantity

Duration

Est. duration

264

Floorplanning block placement

5 2

1

1

Link priority

B

A D

C

Divide

1

2

1

5

DA

B C

Balanced binary tree of cores formed

Division takes into account:

• Link priorities

• Area of cores on each side of division

265

Floorplanning block placement

C
D

A

A

B

A

B
A

A
B

B

B

266

Bus formation
Highest density

Link
pri = 5

Link
pri = 7

Highest density

Merge

Link
pri = 7

Link
pri = 5

Use efficient red-black tree data structure for intersection tests

267

RMST bus length reduction

Merge

Total length = 2.1 mmTotal length = 5.6 mm

268

Bus formation
Highest density

Merge

Link
pri = 7

Link
pri = 5

Highest density

Link
pri = 12

269

Task prioritization

5 ms

4 ms 12 ms

1 ms

2 ms 3 ms

6 ms 4 ms

5 ms

4 ms 12 ms

1 ms

1 ms 3 ms

6 ms 4 ms

Deadline = 20 ms

Duration

Duration

Deadline = 20 ms

Slack = 3 ms
Priority = −3

270

Scheduling

3 copies

Period = 30 ms

Period = 20 ms
Deadline = 20 ms

Deadline = 40 ms

2 copies

System hyperperiod = 60 ms

Time

• Fast list scheduler

• Multi-rate

• Handles period < deadline

as well as period ≥ deadline

• Uses alternative

prioritization methods:

slack, EST, LFT

• Other features depend on

target

271

Cost calculation

• Price

• Average power consumption

• Area

• PE overload

• Hard deadline violation

• Soft deadline violation

• etc.

272

Clock selection quality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 p
ro

po
rti

on
 o

f m
ax

im
um

 in
te

rn
al

 fr
eq

ue
nc

ie
s

External frequency (MHz)

8X frequency multiplication

No frequency multiplication

273

MOCSYN feature comparisons experiments

Worst-case Best-case Single
Example MOCSYN commun. commun. bus

price ($) price ($) price ($) price ($)

.
15 216 n.a. n.a. n.a.
16 138 n.a. n.a. 177
17 283 n.a. n.a. n.a.
18 253 n.a. n.a. 253
19 211 n.a. n.a. n.a.
.

Better 38 44 28
Worse 3 1 9

17 processors, 34 core types, five task graphs, 10 tasks each, 21 task types

from networking and telecomm examples.

274

MOCSYN multiobjective experiments

Average Soft DLExample Price ($) power (mW) viol. prop. Area (mm2)

91 120 0.60 3.0
automotive- 91 120 0.61 2.0

industrial 110 113 0.88 4.0
110 115 0.60 4.0

networking 61 72 0.94 38.4
223 246 2.31 9.9
223 246 2.76 6.0
233 255 3.47 4.5
236 247 2.29 9.9
236 249 2.60 8.0

telecomm 242 221 2.67 3.0
242 230 2.44 25.9
242 237 1.72 6.0
272 226 2.22 192.1
272 226 2.34 9.4
353 258 1.23 4.0
134 281 1.40 34.1consumer 134 281 1.50 21.6

office 64 370 0.23 36.8
automation 66 55 0.00 7.2

275

MOGAC run on Hou’s examples

Yen’s System MOGAC
Example Price ($)

CPU
Time (s)

Price ($)
CPU

Time (s)
Tuned CPU

Time (s)

Hou 1 & 2
(unclustered)

170 10,205 170 5.7 2.8

Hou 3 & 4
(unclustered)

210 11,550 170 8.0 1.6

Hou 1 & 2
(clustered)

170 16.0 170 5.1 0.7

Hou 3 & 4
(clustered)

170 3.3 170 2.2 0.6

Robust to increase in problem complexity.

2 task graphs each example, 3 PE types

Unclustered: 10 tasks per task graph Clustered: approx. 4 tasks per task graph

276

MOGAC run on Prakash & Parker’s examples

Example
Prakash &

Parker’s System
MOGAC

〈Perform〉 Price ($)
CPU

Time (s)
Price ($)

CPU
Time (s)

Tuned CPU
Time (s)

Prakash &
Parker 1 〈4〉 7 28 7 3.3 0.2

Prakash &
Parker 1 〈7〉 5 37 5 2.1 0.1

Prakash &
Parker 2 〈8〉 7 4,511 7 2.1 0.2

Prakash &
Parker 2 〈15〉 5 385,012 5 2.3 0.1

Quickly gets optimal when getting optimal is tractable.

3 PE types, Example 1 has 4 tasks, Example 2 has 9 tasks

277

MOGAC run Yen’s large random examples

Yen’s System MOGAC

Example Price ($)
CPU

Time (s)
Price ($)

CPU

Time (s)

Tuned CPU

Time (s)

Random 1 281 10,252 75 6.4 0.2

Random 2 637 21,979 81 7.8 0.2

Handles large problem specifications.

No communication links: communication costs = 0

Random 1: 6 task graphs, approx. 20 tasks each, 8 PE types

Random 2: 8 task graphs, approx. 20 tasks each, 12 PE types

278

MOCSYN contributions, conclusions
First core-based system-on-chip synthesis algorithm

• Novel problem formulation

• Multiobjective (price, power, area, response time, etc.)

• New clocking solution

• New bus topology generation algorithm

Important for system-on-chip synthesis to do

• Clock selection

• Block placement

• Generalized bus topology generation

279

Research contributions

• TGFF: Used by a number of researchers in published work

• MOGAC: Real-time distributed embedded system synthesis

– First true multiobjective (price, power, etc.) system synthesis

– Solution quality ≥ past work, often in orders of magnitude less time

• CORDS: First reconfigurable systems synthesis, schedule reordering

• COWLS: First wireless client-server systems synthesis, task migration

280

EEMBC-based embedded benchmarks

Automotive-Industrial

hard DL: 0.9 ms
soft DL: 0.3 ms

hard DL: 0.5 ms
soft DL: 0.1 ms

hard DL: 0.9 ms
soft DL: 0.2 ms

4000

4000

4000

4000

8000

4000

4000

4000

15000

4000

4000

4000

4000

1000

15000

15000

15000
1000

4000

1000

4000

hard DL: 0.3 ms

period: 0.9 msperiod: 0.9 msperiod: 0.45 msperiod: 0.9 ms

Src

CAN

FP

CAN

Pulse

Sink

Sink

IDCT

IIR

Src

FFT

Matrix

IFFT

Angle

Road

Src

FIR

Table

Sink

Tooth

Cache

Ptr

Src

Sink

Processors
• AMD ElanSC520 133 MHz
• AMD K6-2 450 MHz
• AMD K6-2E 400MHz/ACR
• AMD K6-2E+ 500MHz/ACR
• AMD K6-IIIE+ 550MHz/ACR
• Analog Devices 21065L 60 MHz
• IBM PowerPC 405GP 266 MHz
• IBM PowerPC 750CX 500 MHz
• IDT32334 100 MHz
• IDT79RC32364 100 MHz
• IDT79RC32V334 150 MHz
• IDT79RC64575 250 MHz
• Imsys Cjip 40 MHz
• Motorola MPC555 40 MHz
• NEC VR5432 167 MHz
• ST20C2 50 MHz
• TI TMS320C6203 300MHz

281

Recently started and future work

• Market-based energy allocation in low-power wireless mobile
networks

– paper under review

• Evolutionary algorithms for multi-dimensional optimization

– future work

• Task and processor characterization

– EEMBC-based resource database completed will publicly
release

• Tightly coupling low-level, high-level design automation
algorithms

– recently started work in this area

282

MOGAC run on Yen’s second large random

example

100

150

200

250

300

350

100 150 200 250 300

P
o
w

e
r

(m
W

)

Price ($)

price = $153
power = 254 mW

power = 157 mW
price = $158

283

Counter-division only clock selection
100 MHz

50 MHz

80 MHz
Max Freq.

/1 /1 /1

Reference = 50 MHz
Quality = 0.707

Actual Freq. 50 MHz

100 MHz

80 MHz

/1/1 /2

Reference = 80 MHz
Quality = 0.867

284

Counter-division only clock selection

50 MHz

100 MHz

Max Freq.

Actual Freq.

Reference = 100 MHz
Quality = 0.875

/2 /1 /2

80 MHz

100 MHz

50 MHz

80 MHz

/2/2 /3

Reference = 150 MHz
Quality = 0.896

285

Bus formation inner kernel

l is number of communicating core pairs
For each bus, i, intersecting with highest density point: O

(

l2)

For each bus, j: O
(

l3)

Tentatively merge i and j O
(

l4)

Evaluate the density, new dens, of congest O
(

l3)

Evaluate new maximum contention estimate, cont est O
(

l4)

If new dens decreased for any tentative merge:
Merge the pair with greatest new dens decrease O

(

l2)

Break ties by selecting merge with least cont est increase.

286

