
Introduction to Real-Time Systems

ECE 397-1

Northwestern University

Department of Computer Science

Department of Electrical and Computer Engineering

Teachers: Robert Dick Peter Dinda
Office: L477 Tech 338, 1890 Maple Ave.
Email: dickrp@ece.northwestern.edu pdinda@cs.northwestern.edu
Phone: 467–2298 467-7859
Webpage: http://ziyang.ece.northwestern.edu/EXTERNAL/realtime

1

Homework index

1 Hanford security network design 12

2 Reading assignment (18 January) 88

2

Goals for lecture

• Justify treating real-time design problem as optimization problem

• Example problem to illustrate specification and design

• Tractable algorithm design (NP-completeness in a nutshell)

• Detail on design representations

• Sensor network motivations

• NesC overview

3

The value of formality: Optimization and costs

• The design of a real-time system is fundamentally a cost

optimization problem

• Minimize costs under constraints while meeting functionality

requirements

– Slight abuse of notation here, functionality requirements are

actually just constraints

• Why view problem in this manner?

• Without having a concrete definition of the problem

– How is one to know if an answer is correct?

– More subtly, how is one to know if an answer is optimal?

4

Optimization

Thinking of a design problem in terms of optimization gives design

team members objective criterion by which to evaluate the impact of

a design change on quality.

• Still need to do a lot of hacking

• Know whether its taking you in a good direction

5

Simple example

• Ensure that a wireless data display 300 m away from a

temperature sensor always displays the correct temperature with

a lag of, at most, 100 ms.

• Wireless broadcasts reach 100 m with high probability and 200 m

with very low probability.

• There are two, evenly distributed, rebroadcast nodes between

the sensor and the data display.

• Functional requirements?

• Constraints?

• Costs?

6

Example problem

• Richland, Washington’s Hanford Reservation plutonium finishing

facility

• July 1988 facility’s last reactor, Reactor N, put into cold standby

due the nation’s surplus of plutonium

• Was used for processing weapons-grade fissile material

7

Example problem

• Currently holds 11.0 metric tons of plutonium-239 and 0.6 metric

tons of uranium-235

– The two fissile materials most commonly used in nuclear

weapons

• Even without refining, a small quantity of either would convert

conventional explosives into weapons capable of causing

long-term damage far beyond their blast radii

• Ongoing provisions for security required

8

Example problem

• Build perimeter security network

• Functional requirements?

• Constraints?

• Costs?

9

Example tasks

• Sense audio

• Compress it

• Determine whether it is unusual

• Sense, compress, and stream video

• Analyze information from region to determine most promising

messages to forward, given network contention

10

Example constraints

• Data rate

• Dependencies between tasks

• Price

• Lifetime of battery-powered devices

• Etc.

11

Hanford security network design

• By 18 January, working with your lab partner, provide

– A paragraph formalizing the real-time system design goals

– A paragraph giving an overview of the design you propose

• Keep it within a page. We want you thinking about this and

learning but you should focus on the lab assignment.

• Have questions? Do research. The Hanford Reservation is real.

– Post to the newsgroup if you get stuck.

12

Lab one

• Subversion working for everybody?

• Access to mailing list?

• Anybody stuck on development?

13

NP-completeness

• Scheduling is central to real-time systems design and research

• Tractable algorithm design is central to scheduling

• Many (but not all) interesting and useful scheduling problems are

NP-complete

• We need to understand what this means, at least at a high level

14

NP-completeness

Recall that sorting may be done in O(n lgn) time

DFS ∈ O(|V |+ |E|), BFS ∈ O(|V |), Topological sort ∈ O(|V |+ |E|)

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100

PSfrag replacements

n2

n lgn

n

n

f(
n)

15

NP-completeness

There also exist exponential-time algorithms: O
(

2lgn), O(2n), O(3n)

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 1e+35

 1e+40

 1e+45

 1e+50

 0 20 40 60 80 100

PSfrag replacements

3n 2n

2lgn

2lgn,n2,n lgn,n

n

f(
n)

16

NP-completeness

For t(n) = 2n seconds

t(1) = 2 seconds

t(10) = 17 minutes

t(20) = 12 days

t(50) = 35,702,052 years

t(100) = 40,196,936,841,331,500,000,000 years

17

NP-completeness

• There is a class of problems, NP-complete, for which nobody

has found polynomial time solutions

• It is possible to convert between these problems in polynomial

time

• Thus, if it is possible to solve any problem in NP-complete in

polynomial time, all can be solved in polynomial time

• Unproven conjecture: NP 6= P

18

NP-completeness

• What is NP? Nondeterministic polynomial time.

• A computer that can simultaneously follow multiple paths in a

solution space exploration tree is nondeterministic. Such a

computer can solve NP problems in polynomial time.

• Nobody has been able to prove either

P 6= NP

or

P = NP

19

NP-completeness

If we define NP-complete to be a set of problems in NP for which

any problem’s instance may be converted to an instance of another

problem in NP-complete in polynomial time, then

P (NP⇒ NP-complete∩P = ∅

20

Basic complexity classes

PSfrag replacements
NP-complete NP P

• P solvable in polynomial time by a computer (Turing Machine)

• NP solvable in polynomial time by a nondeterministic computer

• NP-complete converted to other NP-complete problems in

polynomial time

21

Hard (NP-complete) scheduling problems

• Uniprocessor scheduling with hard deadlines and release times

• Uniprocessor scheduling to minimize tardy tasks

• Multiprocessor scheduling

– Easy if all tasks are identical

• Multiprocessor precedence constrained scheduling

• Multiprocessor preemptive scheduling

• etc.

22

How to deal with hard problems

• What should you do when you encounter an apparently hard

problem?

• Is it in NP-complete?

• If not, solve it

• If so, then what?

23

How to deal with hard problems

• What should you do when you encounter an apparently hard

problem?

• Is it in NP-complete?

• If not, solve it

• If so, then what?

Despair.

24

How to deal with hard problems

• What should you do when you encounter an apparently hard

problem?

• Is it in NP-complete?

• If not, solve it

• If so, then what?

Solve it!

25

How to deal with hard problems

• What should you do when you encounter an apparently hard

problem?

• Is it in NP-complete?

• If not, solve it

• If so, then what?

Resort to a suboptimal heuristic.

Bad, but sometimes the only choice.

26

How to deal with hard problems

• What should you do when you encounter an apparently hard

problem?

• Is it in NP-complete?

• If not, solve it

• If so, then what?

Develop an approximation algorithm.

Better.

27

How to deal with hard problems

• What should you do when you encounter an apparently hard

problem?

• Is it in NP-complete?

• If not, solve it

• If so, then what?

Determine whether all encountered problem instances are

constrained.

Wonderful when it works.

28

One example

O. Coudert, “Exact coloring of real-life graphs is easy,” Design

Automation, pp. 121–126, June 1997.

29

Terminology

• Book’s terminology fine, others also exist

• Different groups → different terminology

• Not confusing, terse definitions provided

• Book on jobs, tasks: Jobs discrete, tasks groups of related jobs

• Other sources: Tasks discrete, hierarchical

30

Additional terminology

• Or vs. And data dependencies

• Conditionals

– Doesn’t help hard real-time unless perfect path correlation

– Can help soft real-time

31

Terminology

• Scheduling, allocation, and assignment

• Scheduling central but not only thing

• Book treats scheduling as combination of scheduling and

assignment

• More fine-grained definitions exist

32

Substantial quirks

1. Every processor is assigned to at most one job at any time

• O.K.

2. Every job is assigned at most one processor at any time

• Broken

3. No job scheduled before its release time

• O.K., but the whole notion of absolute release times is broken

for some useful classes of real-time systems.

4. Etc.

33

Design representations

• Introduction

• Software oriented

• Hardware oriented

• Graph based

• Resource description

34

Design representations

• Introduction

• Software oriented

• Hardware oriented

• Graph based

• Resource description

35

Specification language requirements

• Specify constraints on design

• Indicate system-level building blocks

• To allow flexibility in compilation/synthesis, must be abstract

– Specify implementation details only when necessary (e.g.,

HW/SW)

– Concentrate on requirements, not implementation

– Make few assumptions about platform

36

Design representations

• Introduction

• Software oriented

• Hardware oriented

• Graph based

• Resource description

37

Design representations

• Introduction

• Software oriented

– ANSI-C

– SystemC

– Other SW language-based, e.g., Ada

• Hardware oriented

• Graph based

• Resource description

38

ANSI-C advantages

• Huge code base

• Many experienced programmers

• Efficient means of SW implementation

• Good compilers for many SW processors

39

ANSI-C disadvantages

• Little implementation flexibility

– Strongly SW oriented

– Makes many assumptions about platform

• Little (volatile)/no built-in support for synchronization

– Especially fine-scale HW synchronization

• Doesn’t directly support specification of timing constraints

40

SystemC

Advantages

• Support from big players

– Synopsys, Cadence, ARM, Red Hat, Ericsson, Fujitsu,
Infineon Technologies AG, Sony Corp., STMicroelectronics,
and Texas Instruments

• Familiar for SW engineers

Disadvantages

• Extension of SW language

– Not designed for HW from the start

• Compiler available for limited number of SW processors

– New

41

Other SW language-based

• Numerous competitors

• Numerous languages

– ANSI-C, C++, and Java are most popular starting points

• In the end, few can survive

• SystemC has broad support

42

Design representations

• Software oriented

• Hardware oriented

• Graph based

• Resource description

43

Design representations

• Software oriented

• Hardware oriented

– VHDL

– Verilog

– Esterel

• Graph based

• Resource description

44

VHDL

Advantages

• Supports abstract data types

• System-level modeling supported

• Better support for test harness design

Disadvantages

• Requires extensions to easily operate at the gate-level

• Difficult to learn

• Slow to code

45

Verilog

Advantages

• Easy to learn

• Easy for small designs

Disadvantages

• Not designed to handle large designs

• Not designed for system-level

46

Verilog vs. VHDL

• March 1995, Synopsys Users Group meeting

• Create a gate netlist for the fastest fully synchronous loadable

9-bit increment-by-3 decrement-by-5 up/down counter that

generated even parity, carry and borrow

• 5 / 9 Verilog users completed

• 0 / 5 VHDL users competed

Does this mean that Verilog is better?

Maybe, but maybe it only means that Verilog is easier to use for

simple designs.

47

Verilog vs. VHDL

• March 1995, Synopsys Users Group meeting

• Create a gate netlist for the fastest fully synchronous loadable

9-bit increment-by-3 decrement-by-5 up/down counter that

generated even parity, carry and borrow

• 5 / 9 Verilog users completed

• 0 / 5 VHDL users competed

Does this mean that Verilog is better?

Maybe, but maybe it only means that Verilog is easier to use for

simple designs.

48

Esterel

• Easily allows synchronization among parallel tasks

• Works at a high level of abstraction

– Doesn’t require explicit enumeration of all states and

transitions

• Recently extended for specifying datapaths and flexible clocking

schemes

• Amenible to theorem proving

• Translation to RTL or C possible

• Commercialized by Esterel Technologies

49

Design representations
• Software oriented

• Hardware oriented

• Graph based

• Resource description

50

Design representations
• Software oriented

• Hardware oriented

• Graph based
– Dataflow graph (DFG)
– Synchronous dataflow graph (SDFG)
– Control flow graph (CFG)
– Control dataflow graph (CDFG)
– Finite state machine (FSM)
– Petri net
– Periodic vs. aperiodic
– Real-time vs. best effort
– Discrete vs. continuous timing
– Example from research

• Resource description

51

Dataflow graph (DFG)

NEG

IOP

FIL

FT

DCT

3 kb

4 kb 4 kb

6 kb
3 kb

Hard DL = 150 ms

Hard DL = 230 ms

• Nodes are tasks

• Edges are data dependencies

• Edges have communication

quantities

• Used for digital signal

processing (DSP)

• Often acyclic when real-time

• Can be cyclic when best-effort

52

Dataflow graph (DFG)

5 kb
NEG

IOP

FIL

FT

DCT

3 kb

4 kb 4 kb

6 kb
3 kb

Soft DL = 150 ms

Soft DL = 230 ms

• Nodes are tasks

• Edges are data dependencies

• Edges have communication

quantities

• Used for digital signal

processing (DSP)

• Often acyclic when real-time

• Can be cyclic when best-effort

53

Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C

54

Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C

55

Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C

56

Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C

57

Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C

58

Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C

59

Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C

60

Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C

61

Synchronous dataflow graph (SDFG)

2
2

1
3

6

2
A

B

C

62

Control flow graph (CFG)

PSfrag replacements
false

false

false

true

true

true

if i < 2

if k = 3

k = k−1

j = j +5

• Nodes are tasks

• Supports conditionals, loops

• No communication quantities

• SW background

• Often cyclic

63

Control dataflow graph (CDFG)

PSfrag replacements
false

false

false

true

true

true

if i < 2

if k = 3

240 Kb

30 Kb

387 Kb

27 Kb

k = k−1

j = j +5

• Supports conditionals, loops

• Supports communication

quantities

• Used by some high-level

synthesis algorithms

64

Finite state machine (FSM)

65

Finite state machine (FSM)

1 1 0

1
0

1 0

0

66

Finite state machine (FSM)

1 1 0

1
0

1 0

0

00 01

1011

67

Finite state machine (FSM)

input

0 1

00 10 00

01 01 00

10 00 01

11 10 00

current next

• Normally used at lower levels

• Difficult to represent independent

behavior

– State explosion

• No built-in representation for data flow

– Extensions have been proposed

• Extensions represent SW, e.g.,

co-design finite state machines (CFSMs)

68

Petri net

• Graph composed of places, transitions, and arcs

• Tokens are produced and consumed

• Useful model for asynchronous and stochastic processes

• Places can have priorities

• Not well-suited for representing dataflow systems

• Timing analysis quite difficult

• Large flat graphs difficult to understand

• Real-time use: Specification and formal timing verification

69

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

70

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

71

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

72

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

73

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

74

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

75

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

76

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

77

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

78

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

79

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

80

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

81

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

82

Petri net

busy
servers

available
servers

enter
service

waiting
processes

thinking
processes servethink

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

83

NesC

• View as a ANSI C with additional layer

• Specify interfaces between components

• Centers on commands and events

• Commands

– Provided by interface, do things

– Non-blocking, split-phase (response from events)

– Call down

– E.g., transmit data

84

NesC

Events

• Provided by interface

• Used to signal command completion

• Interrupt tasks

• Require concurrency control (atomic blocks)

85

NesC

• Tasks: Interrupted only by events, no normal preemption

• Asynchronous code: can be reached by interrupt handlers

• Synchronous code: can be reached only from tasks

• Not the only option

86

Summary

• Justify treating real-time design problem as optimization problem

• Example problem to illustrate specification and design

• Tractable algorithm design (NP-completeness in a nutshell)

• Detail on design representations

• Sensor network motivations

• NesC overview

87

Reading assignment (18 January)

• M. R. Garey and D. S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman &

Company, NY, 1979.

– Chapter 1

– Chapter A5: Sequencing and scheduling

• J. W. S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,

NJ, 2000.

– Chapter 3

– Chapter 4

88

