Introduction to Real-Time Systems

ECE 397-1

Northwestern University

Department of Computer Science
Department of Electrical and Computer Engineering

Teachers: Robert Dick Peter Dinda

Office: L477 Tech 338, 1890 Maple Ave.

=k dickrp@ece.northwestern.edu pdinda@cs.northwestern.edu
Phone: 467—-2298 467-7859

Webpage: http://ziyang.ece.northwestern.edu/EXTERNAL/realtime

= - —

1 Hanford security network design
2 Reading assignment (18 January)

Homework index

R

12
88

Goals for lecture

- - il — —

Justify treating real-time design problem as optimization problem
Example problem to illustrate specification and design

Tractable algorithm design (NP-completeness in a nutshell)
Detail on design representations

Sensor network motivations

NesC overview

The value of formality: Optimization and costs

= - - e - -

The design of a real-time system is fundamentally a cost
optimization problem

Minimize costs under constraints while meeting functionality
requirements

— Slight abuse of notation here, functionality requirements are
actually just constraints

Why view problem in this manner?

Without having a concrete definition of the problem
— How is one to know if an answer is correct?

— More subtly, how is one to know if an answer is optimal?

Optimization

Thinking of a design problem in terms of optimization gives design
team members objective criterion by which to evaluate the impact of
a design change on quality.

 Still need to do a lot of hacking

* Know whether its taking you in a good direction

Simple example

- - il — —

Ensure that a wireless data display 300 m away from a
temperature sensor always displays the correct temperature with
a lag of, at most, 100 ms.

Wireless broadcasts reach 100 m with high probability and 200 m
with very low probability.

There are two, evenly distributed, rebroadcast nodes between
the sensor and the data display.

Functional requirements?
Constraints?

Costs?

* Richland, Washington’s Hanford Reservation plutonium finishing

facility

* July 1988 facility’s last reactor, Reactor N, put into cold standby
due the nation’s surplus of plutonium

* Was used for processing weapons-grade fissile material

Example problem

- - e e ———

* Currently holds 11.0 metric tons of plutonium-239 and 0.6 metric
tons of uranium-235

— The two fissile materials most commonly used in nuclear

weapons

* Even without refining, a small quantity of either would convert
conventional explosives into weapons capable of causing
long-term damage far beyond their blast radii

* Ongoing provisions for security required

Example problem

- - e - -

Build perimeter security network
Functional requirements?
Constraints?

Costs?

Example tasks

= - - e - -

Sense audio

Compress it

Determine whether it is unusual
Sense, compress, and stream video

Analyze information from region to determine most promising
messages to forward, given network contention

10

Example constraints

- = _— & e

Data rate

Dependencies between tasks

Price

Lifetime of battery-powered devices

= (o}

11

Hanford security network design

- — s ——

* By 18 January, working with your lab partner, provide
— A paragraph formalizing the real-time system design goals

— A paragraph giving an overview of the design you propose

* Keep it within a page. We want you thinking about this and
learning but you should focus on the lab assignment.

* Have questions? Do research. The Hanford Reservation is real.

— Post to the newsgroup if you get stuck.

12

Lab one

- - = _— e

* Subversion working for everybody?
* Access to mailing list?

* Anybody stuck on development?

13

NP-completeness

- - e e ———

Scheduling is central to real-time systems design and research
Tractable algorithm design is central to scheduling

Many (but not all) interesting and useful scheduling problems are
NP-complete

We need to understand what this means, at least at a high level

14

NP-completeness

g — —_— p——

Recall that sorting may be done in O (nlgn) time

DFS € O(|V|+|E|), BFS € O(|V]), Topological sort € O (|V|+ |E])
10000
1000 :
S
—

0 20 40 60 80 100

15

NP-completeness

—_— -— _— e -

There also exist exponential-time algorithms: O (2'¢"), O (2"), O (3")

1e+50 ¢

1e+45 ;

1e+40 ;

1e+35 |

= 1e+30 |
— 1e+25 ; 3" 2"
1e+20 F

1e+15 ;

1e+10 F
100000 F

=

0 20 40 60 80 100

1 2
2% nc.nlgn,n

16

NP-completeness

e e ———

For t(n) = 2" seconds

t(1) =2 seconds

(10) = 17 minutes

)

)

) = 35,702,052 years

£(100) = 40, 196,936, 841,331, 500,000,000 years

17

NP-completeness

- - e e ———

There is a class of problems, NP-complete, for which nobody
has found polynomial time solutions

It is possible to convert between these problems in polynomial
time

Thus, if it is possible to solve any problem in NP-complete in
polynomial time, all can be solved in polynomial time

Unproven conjecture: NP # P

18

NP-completeness

- - e e ———

 What is NP ? Nondeterministic polynomial time.

* A computer that can simultaneously follow multiple paths in a
solution space exploration tree is nondeterministic. Such a
computer can solve NP problems in polynomial time.

* Nobody has been able to prove either

P £ NP

or

19

NP-completeness

- - e e ———

If we define NP-complete to be a set of problems in NP for which
any problem’s instance may be converted to an instance of another
problem in NP-complete in polynomial time, then

P C NP = NP-complete NP =&

20

Basic complexity classes

* P solvable in polynomial time by a computer (Turing Machine)
NP solvable in polynomial time by a nondeterministic computer

* NP-complete converted to other NP-complete problems in
polynomial time

21

Hard (NP-complete) scheduling problems

- - — —

Uniprocessor scheduling with hard deadlines and release times
Uniprocessor scheduling to minimize tardy tasks

Multiprocessor scheduling

— Eagsy if all tasks are identical
Multiprocessor precedence constrained scheduling
Multiprocessor preemptive scheduling

etc.

22

How to deal with hard problems

- e e ———

What should you do when you encounter an apparently hard
problem?

Is it in NP-complete?
If not, solve it

If so, then what?

23

How to deal with hard problems

- e e ———

What should you do when you encounter an apparently hard
problem?

Is it in NP-complete?
If not, solve it
If so, then what?

Despairr.

24

How to deal with hard problems

- e e ———

What should you do when you encounter an apparently hard
problem?

Is it in NP-complete?
If not, solve it
If so, then what?

Solve it!

25

How to deal with hard problems

- e e ———

What should you do when you encounter an apparently hard
problem?

Is it in NP-complete?
If not, solve it
If so, then what?

Resort to a suboptimal heuristic.
Bad, but sometimes the only choice.

26

How to deal with hard problems

- e e ———

What should you do when you encounter an apparently hard
problem?

Is it in NP-complete?
If not, solve it
If so, then what?

Develop an approximation algorithm.
Better.

27

How to deal with hard problems

- e e ———

What should you do when you encounter an apparently hard
problem?

Is it in NP-complete?
If not, solve it
If so, then what?

Determine whether all encountered problem instances are
constrained.
Wonderful when it works.

28

One example

- - = - e ——

O. Coudert, “Exact coloring of real-life graphs is easy,” Design
Automation, pp. 121-126, June 1997.

28

Terminology

= - - e - -

Book’s terminology fine, others also exist
Different groups — different terminology
Not confusing, terse definitions provided
Book on jobs, tasks: Jobs discrete, tasks groups of related jobs

Other sources: Tasks discrete, hierarchical

30

Additional terminology

- - e e ———

* Or vs. And data dependencies

e Conditionals
— Doesn’t help hard real-time unless perfect path correlation

— Can help soft real-time

31

Terminology

= - - e e ———

Scheduling, allocation, and assignment
Scheduling central but not only thing

Book treats scheduling as combination of scheduling and
assignment

More fine-grained definitions exist

32

Substantial quirks

- - il — —

1. Every processor is assigned to at most one job at any time

* O.K.

2. Every job is assigned at most one processor at any time

 Broken

3. No job scheduled before its release time

 O.K., but the whole notion of absolute release times is broken
for some useful classes of real-time systems.

4. Etc.

33

Design representations

R

Introduction
Software oriented
Hardware oriented
Graph based

Resource description

34

-

Design representations

B

Introduction
Software oriented
Hardware oriented
Graph based

Resource description

35

Specification language requirements

— —

* Specify constraints on design
* Indicate system-level building blocks

* To allow flexibility in compilation/synthesis, must be abstract

— Specify implementation details only when necessary (e.g.,
HW/SW)

— Concentrate on requirements, not implementation

— Make few assumptions about platform

36

Design representations

_— — e

* |ntroduction
e Software oriented

e Hardware oriented

Graph based

Resource description

37

-

Design representations

B

Introduction

Software oriented

— ANSI-C

— SystemC

— Other SW language-based, e.g., Ada

Hardware oriented
Graph based

Resource description

38

ANSI-C advantages

Huge code base
Many experienced programmers
Efficient means of SW implementation

Good compilers for many SW processors

39

ANSI-C disadvantages

* Little implementation flexibility
— Strongly SW oriented

— Makes many assumptions about platform

* Little (volatile)/no built-in support for synchronization

— Especially fine-scale HW synchronization

* Doesn'’t directly support specification of timing constraints

40

SystemC

Advantages

* Support from big players

— Synopsys, Cadence, ARM, Red Hat, Ericsson, Fuijitsu,
Infineon Technologies AG, Sony Corp., STMicroelectronics,
and Texas Instruments

* Familiar for SW engineers
Disadvantages

* Extension of SW language
— Not designed for HW from the start

* Compiler available for limited number of SW processors
— New

41

Other SW language-based

Numerous competitors

Numerous languages

— ANSI-C, C++, and Java are most popular starting points
In the end, few can survive

SystemC has broad support

42

Design representations

R

Software oriented
Hardware oriented
Graph based

Resource description

43

Design representations

R

Software oriented

Hardware oriented
— VHDL
— Verilog

— Esterel
Graph based

Resource description

44

VHDL

Advantages
* Supports abstract data types
* System-level modeling supported
* Better support for test harness design
Disadvantages
* Requires extensions to easily operate at the gate-level
* Difficult to learn

e Slow to code

45

Verilog

= - = —

Advantages

* Easy to learn

* Easy for small designs
Disadvantages

* Not designed to handle large designs

* Not designed for system-level

46

Verilog vs. VHDL

March 1995, Synopsys Users Group meeting

Create a gate netlist for the fastest fully synchronous loadable
9-bit increment-by-3 decrement-by-5 up/down counter that
generated even parity, carry and borrow

5/ 9 Verilog users completed

0 /5 VHDL users competed

47

Verilog vs. VHDL

March 1995, Synopsys Users Group meeting

Create a gate netlist for the fastest fully synchronous loadable
9-bit increment-by-3 decrement-by-5 up/down counter that
generated even parity, carry and borrow

5/ 9 Verilog users completed

0 /5 VHDL users competed
Does this mean that Verilog is better?

Maybe, but maybe it only means that Verilog is easier to use for
simple designs.

48

Esterel

- - = - —

Easily allows synchronization among parallel tasks

Works at a high level of abstraction

— Doesn’t require explicit enumeration of all states and
transitions

Recently extended for specifying datapaths and flexible clocking
schemes

Amenible to theorem proving
Translation to RTL or C possible

Commercialized by Esterel Technologies

49

Design representations

Software oriented
Hardware oriented
Graph based
Resource description

50

Design representations

e Software oriented
e Hardware oriented

e Graph based
— Dataflow graph (DFG)
— Synchronous dataflow graph (SDFG)
— Control flow graph (CFG)
— Control dataflow graph (CDFG)
— Finite state machine (FSM)
— Petri net
— Periodic vs. aperiodic
— Real-time vs. best effort
— Discrete vs. continuous timing
— Example from research

* Resource description

51

V
@

4y &kb

@ &

Xkb / kb

6 kb

"y

Hard DL = 230 ms

Hard DL = 150 ms

52

Dataflow graph (DFQG)

Nodes are tasks

Edges are data dependencies
Edges have communication
quantities

Used for digital signal
processing (DSP)

Often acyclic when real-time

Soft DL = 230 ms

53

Dataflow graph (DFQG)

Nodes are tasks

Edges are data dependencies
Edges have communication
quantities

Used for digital signal
processing (DSP)

Often acyclic when real-time
Can be cyclic when best-effort

Synchronous dataflow graph (SDFGQG)

Synchronous dataflow graph (SDFGQG)

2
20

Synchronous dataflow graph (SDFGQG)

2
20

Synchronous dataflow graph (SDFGQG)

2
20

Synchronous dataflow graph (SDFGQG)

2
20

Synchronous dataflow graph (SDFGQG)

2
20

Synchronous dataflow graph (SDFGQG)

2
20

Synchronous dataflow graph (SDFGQG)

2
20

Synchronous dataflow graph (SDFGQG)

Control flow graph (CFG)

* Nodes are tasks
e Supports conditionals, loops

No communication quantities
SW background
Often cyclic

63

Control dataflow graph (CDFG)

240 Kb

false

30 Kb Wl e Supports conditionals, loops
¢ 7 Kb

2 * Supports communication

quantities

387 Kb — 15
J— * Used by some high-level

false ¢ synthesis algorithms

64

— L -

Finite state machine (FSM)

— T e -

e el

65

Finite st.ate machine (FSM)

1@,(1 ‘CO
A

0

1| O 1
@ 0O

66

Finite st.ate machine (FSM)

16?‘ 1 @CO
A

0

1| O 1

1 T 10

Finite state machine (FSM)

- — s ——

input * Normally used at lower levels
0o 1 * Difficult to represent independent
00 10 00 behavior
— State explosion
I LY * No built-in representation for data flow
10 00 Of — Extensions have been proposed
11 10 00 * Extensions represent SW, e.g.,

current next co-design finite state machines (CFSMs)

68

Petri net

= - - e e ———

Graph composed of places, transitions, and arcs

Tokens are produced and consumed

Useful model for asynchronous and stochastic processes
Places can have priorities

Not well-suited for representing dataflow systems

Timing analysis quite difficult

Large flat graphs difficult to understand

Real-time use: Specification and formal timing verification

69

Petri net

- — — — — = i, -

19 1 -@

thinking think waiting serve
processes processes EHLET busy
service servers

34

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

70

Petri net

- — — — — = i, -

1P 1 -@

thinking think waiting serve
processes processes EHLET busy
service servers

34

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

71

Petri net

- - — — — S i o — -

10 | -@

thinking think waiting serve
processes processes EHLET busy
service servers

O‘

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

72

Petri net

- - — — — S i o — -

101 @

thinking think waiting serve
processes processes EHLET busy
service servers

O‘

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

73

Petri net

- — — — — = i, -

101 -9

thinking think waiting serve
processes processes EHLET busy
service servers

O‘

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

74

Petri net

- — — — — = i, -

101 -9

thinking think waiting serve
processes processes EHLET busy
service servers

O‘

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

75

Petri net

- - — — — S i o — -

10 1 -@

thinking think waiting serve
processes processes EHLET busy
service servers

O‘

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

76

Petri net

- - — — — S i o — -

1 -©

thinking think waiting
processes processes EHLET busy
service servers
L O
available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

77

— @

serve

Petri net

- — — — — = i, -

10 1 -@

thinking think waiting serve
processes processes EHLET busy
service servers

34

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

78

Petri net

- — — — — = i, -

@101 -@

thinking think waiting serve
processes processes EHLET busy
service servers

34

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

78

Petri net

— — = i, -

EQ —0® 1 -@

thinking think waiting serve
processes processes EHLET busy
service servers

34

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

80

Petri net

- — — — — = i, -

-1 @& 1 -@

thinking think waiting serve
processes processes EHLET busy
service servers

34

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

81

Petri net

- — — — — = i, -

1P 1 -@

thinking think waiting serve
processes processes EHLET busy
service servers

34

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

82

Petri net

- — — — — = i, -

19 1 -@

thinking think waiting serve
processes processes EHLET busy
service servers

34

available
servers

M/D/3/2: Markov arrival, deterministic service delay,

From A. Zimmermann’s token game demonstration.

83

- - = —

NesC

A—

View as a ANSI C with additional layer

Specify interfaces between components

Centers on commands and events

Commands

Provided by interface, do things

Non-blocking, split-phase (response from events)

Call down

E.g., transmit data

84

NesC

Events
* Provided by interface
* Used to signal command completion
* Interrupt tasks

* Require concurrency control (atomic blocks)

85

NesC

Tasks: Interrupted only by events, no normal preemption
Asynchronous code: can be reached by interrupt handlers
Synchronous code: can be reached only from tasks

Not the only option

86

Summary

- - = - e ——

Justify treating real-time design problem as optimization problem
Example problem to illustrate specification and design

Tractable algorithm design (NP-completeness in a nutshell)
Detail on design representations

Sensor network motivations

NesC overview

87

Reading assignment (18 January)

- — s ——

* M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman &
Company, NY, 1979.

— Chapter 1
— Chapter A5: Sequencing and scheduling

 J.W.S. Liu, Real-Time Systems. Prentice-Hall, Englewood Cliffs,
NJ, 2000.
— Chapter 3

— Chapter 4

88

