
Grid Enabled Relational Database Middleware
Informational Document

Global Grid Forum
Frascati, Italy, 7-10 October, 2001

Wolfgang Hoschek
wolfgang.hoschek@cern.ch
CERN - European Organization for Nuclear Research
1211 Geneva 23

Gavin McCance
g.mccance@physics.gla.ac.uk
Department of Physics and Astronomy
University of Glasgow, Scotland

Introduction
In DataGrid projects many small and large applications, spread over multiple loosely
coupled organizations, work together to provide access to and mangement of massive
amounts of distributed data. Many of these applications, such as a replica catalog, service
registry, run catalog tools, cluster configuration management tools, job schedulers,
logging and performance monitors need to take advantage of reliable and performant
database technology to maintain metadata. This technology should involve little
complexity, deliver high performance and encourage interoperability. Although a wealth
of strong database technology exists, complexity is typically substantial, interoperability
weak, and performance not always satisfactory. Until these points are addressed more
thoroughly, DataGrid applications will continue to use dozens of varying proprietary
approaches towards metadata storage and retrieval.

The Spitfire project of the Data Management Work Package (http://cern.ch/grid-data-
management) within the European Data Grid Project tries to address these issues. It
provides a set of grid enabled middleware services for access to relational databases. The
key idea is to decouple client and RDBMS by having a mediator in between them,
enabling ease-of-use, interoperability, performance and plugability. Custom coded clients
(Java, C/C++, Perl et al), browsers (netscape, iexplorer et al) and command line tools can
read and write over HTTP(S) into any RDBMS (MySQL, Oracle, DB/2, Postgres et al).
Currently Spitfire consists of the SQLDatabaseService and the jwget tool for client side
command line usage. In the near future the ServiceIndex and a fine grained authorisation
mechanism will be added. This work is embedded into the overall Data Management
Architecture, available at http://cern.ch/grid-data-management/docs/DataGrid-02-D2.2-
0103-1_2.pdf.

The SQLDatabaseService is a grid enabled front end for reading and writing from/to a
relational database. The architecture can be summarised as follows:

 XML/HTTP(S) JDBC
Client <--> SQLDatabaseService <--> RDBMS

Client and middleware service communicate relational data in canonical XML format
over GSI enabled HTTP(S). Canonical XML defines a 1:1 mapping from relational tables
to XML format and vice versa (see below). Client, middleware service and RDBMS can

run on the very same box but can also run on three different boxes (and architectures)
separated by the LAN or WAN. The middleware is implemented as a Java servlet and
designed to be callable from command line tools (jwget, wget, curl et al) and custom
client applications, for example using the xerces XML parser (Java, C/C++, Perl) and
httpclient (Java), libwww (C/C++), libwww-perl (Perl) or httplib (Python). However, the
middleware is also designed to be used by browsers as clients: Resultsets are delivered in
nicely formatted HTML tables (instead of XML) if indicated by a request parameter.

The HTTPS configuration is fully GSI compatible by using CoG, the Java port of the
Globus toolkit developed at Argonne National Laboratories (http://www.globus.org/cog).

Effort has been invested into providing high performance and low latency: Java servlets
are highly efficient and scalable solutions. To minimize the number of connection setups
and tear-downs, persistent HTTP(S) 1.1 connections are used (but not required). For
similar reasons, the services use thread and JDBC connection pooling, and advanced
caching. The net effect is that requests and responses are passed through layers with very
little delay.

Interoperability
Industry standards foster cross-organisational interoperability and reuse. In addition, one
gains a large variety of mature, easy to use and performant open source implementations
to build upon.

With HTTP command line clients, GUI browsers, client programming language APIs and
server frameworks available for virtually every language and architecture, HTTP and its
SSL based secure variant HTTPS have been firmly established as the industry standard
protocol for interoperable networking (and not just as vehicle to deliver HTML). Once
SOAP (in practice a small formalism on top of HTTP) has reached similar ubiquity, it
may be interesting to support it too.

Similarly, with XML parsers now being widespread, performant, easy to use and
available for virtually every programming language, XML has been established as the
industry standard to represent flexible interoperable data.

With mature open source and commercial implementations available from the low to high
end, relational database systems are established as the storage backbone of IT industry.
Although SQL implementations vary slightly among vendors, SQL is comfortably
standardized for the vast majority of applications. The JDBC interface defines an
implementation independent mechanism to communicate with a RDBMS. It is a
thoroughly accepted industry standard and optimized drivers exists for every serious
RDBMS. Note that the JDBC interface is a Java API and does not specify a network
protocol. This design decision allows for high performance driver implementations
specially geared towards any given RDBMS, taking full advantage of its capabilities. On
the other hand this design decision also excludes JDBC as a standard grid protocol. A
network protocol such as GSI enabled HTTP(S) can fill this gap.

Client and middleware services communicate relational data in canonical XML format
over HTTP(S). Canonical XML defines a 1:1 mapping from relational tables to XML
format and vice versa: A relational table corresponds to a XML ROWSET element, a row
corresponds to a nested XML ROW element, and a column is mapped to a nested element
with the same name, filled with the value of the row’s column. Let us introduce canonical
XML by example.
Assume we have a relational table with Logical File Name (LFN) and Physical File
Name (PFN) columns:

LFN PFN
lfn://cms.org/file1 ftp://host1.cern.ch/myfile1
lfn://whatever.org/file2 ftp://host3.anl.gov/data/file.tar.gz

The corresponding canonical XML representation of the table looks as follows:

<ROWSET>
 <ROW>
 <lfn> lfn://cms.org/file1 </lfn>
 <pfn> ftp://host1.cern.ch/myfile1 </pfn>
 </ROW>
 <ROW>
 <lfn> lfn://whatever.org/file2 </lfn>
 <pfn> ftp://host3.anl.gov/data/file.tar.gz </pfn>
 </ROW>
</ROWSET>

Whitespaces are ignored. There is a straightforward 1:1 mapping between relational
tables and XML format. For further details consult http://hep-proj-
spitfire.web.cern.ch/hep-proj-spitfire/share/spitfire/doc/xsql/readme.html.

Example Use Cases

Example 1: Logical File Name to Physical File Name Lookup
Say we have an efficient and highly available file sharing system where a file can be
replicated on many hosts. To keep track of the files we have a catalog table holding all
physical locations of any logical file (1:N mapping). We would like to provide clients
with a function that looks up and returns all physical file names for a given logical file
name. A client should not be concerned how results are being computed so that we can
change the implementation at some later point in time without breaking the clients
(maybe we use SQL database or a flat file, or an LDAP database). We need a function
such as

PhysicalFileName[] getPhysicalFileNames(LogicalFileName)

This can be implemented at the sqldb server side by writing a small text file that contains
one or more SQL template statements with substitution variables as necessary. Here we

use a simple SELECT FROM WHERE statement with variables {@table} and {@lfn},
embedded into a <xsql:query> command.

<?xml version="1.0"?>
<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
 select pfn from {@table} where lfn="{@lfn}"
</xsql:query>

The SQL statement is extended with XML syntax to define xmlns:xsql as namespace.
The connection tag refers to JDBC parameters in a configuration file, indicating DB
backend URL, JDBC driver and tuning options.
Next, copy the template text file somewhere into a directory readable by the middleware
server (e.g. tomcat-work/webapps/sqldb/demo/getPhysicalFileNames.xsql). The server
will automatically pick up the new function and any changes that may be applied later
(just like a webserver automatically picks up HTML files in its web path without explicit
configuration).

To get all physical files for a logical file one can use a web browser, command line client
or HTTP API to issue an HTTP request like

http://myserver.org/sqldb/demo/getPhysicalFileNames.xsql?table=repcat&l
fn=lfn://cms.org/myfile1

Here is how the result may look

<?xml version = ’1.0’?>
<ROWSET>
 <ROW num="1">
 <pfn>ftp://host1.cern.ch/myfile1</pfn>
 </ROW>
</ROWSET>

A client can parse the result with any XML parser and do further processing as necessary.
Note that the middleware serves as an effective way to shield clients from any backend
implementation details. In effect it provides an abstract function invocation interface.

Example 2: Adhoc SQL query
Say we would like to provide clients the means to execute arbitrary SQL queries. This
breaks encapsulation and is a potential security hazard but is sometimes useful for
privileged authorised clients. We need a function such as

ResultSet query(Query)

This can be implemented at the sqldb server side by writing a small text file that contains
a single substitution variable {@query} for the entire SQL statement.

<?xml version="1.0"?>
<xsql:query connection="demo" xmlns:xsql="urn:oracle-xsql">
 {@query}

</xsql:query>

After the text file is copied into the server path an HTTP request invokes the function for
selecting all entries of the replica catalog:

http://myserver.org/sqldb/demo/adhocquery.xsql?query=’select * from
repcat’

Here is how the result may look

<?xml version = ’1.0’?>
<ROWSET>
 <ROW num="1">
 <lfn>lfn://cms.org/file1</lfn>
 <pfn>ftp://host1.cern.ch/myfile1</pfn>
 </ROW>
 <ROW num="2">
 <lfn> lfn://whatever.org/file2 </lfn>
 <pfn> ftp://host3.anl.gov/data/file.tar.gz </pfn>
 </ROW>
</ROWSET>

Example 3: Insert data

Assume clients need to insert data into the replica catalog table without wanting to know
how the catalog is implemented. Hence, we need a function such as

insertIntoReplicaCatalog(data)

This can be implemented at the sqldb server side by writing a small text file that contains
a <xsql:insert-param> command with a substitution variable data.

<?xml version="1.0"?>
<page connection="demo" xmlns:xsql="urn:oracle-xsql">
<xsql:insert-param name="data" table=repcat"/>
</page>

After the file is copied into the server path an HTTP request invokes the function to insert
all rows specified by variable data into table repcat. Input should conform to canonical
XML format.

http://myserver.org/sqldb/demo/insertIntoReplicaCatalog.xsql?data=
"<ROWSET> <ROW> <lfn>lfn://cms.org/spitfile</lfn> <pfn>
ftp://myhost.cern.ch/myfile0</pfn> </ROW> </ROWSET>"

Implementation
The Spitfire implementation reuses existing technology where possible. To this end,
several third party components are reused, including Java, the Apache Tomcat servlet
engine (a dynamic HTTP server framework), XSQL, httpclient, COG and MySQL as the
default database backend.

For convenience the software is completely self-contained and ships as a bundle
containing all components necessary to run "out of the box". The bundle is designed to
get users up and running with minimal installation and configuration problems. A single
download and untar or rpm step will get a user operational (no extra configuration
required). The bundle contains the Spitfire core, including source and binaries, plus a
binary distribution of Java, Apache Tomcat and MySQL. Linux and Solaris flavours are
included.

The packaging is designed both for ease of use and flexibility: Once a user is comfortable
running the services and their defaults, alternative or more recent versions of Java,
MySQL or other RDBMS systems can be plugged in easily and configuration options can
be customized as necessary. For example, if a site is already running one or more of the
bundled components or equivalent substitutes in a well managed and reliable production
environment (e.g. running DB/2, Oracle or Postgres instead of MySQL) one can set
environment variables to substitute the defaults with alternative components, paths and
configuration files. A runtime auto detection mechanism automatically picks up new
choices.

Conclusions & Future Work
Many DataGrid applications need to take advantage of reliable and performant database
technology to maintain metadata. The technology should involve little complexity,
deliver high performance and encourage interoperability. The Spitfire project tries to
address this by providing grid-enabled relational database middleware with a focus on
ease-of-use, interoperability and performance.
With a stable release available and in the near future deployed on the DataGrid Month 9
Testbed, future work will focus on performance and scalability studies, a proof-of-
concept implementation of a hierachical distributed replica catalog, a fine grained
authorization mechanism and a distributed service registry application.

