EECS 321
Programming Languages

Winter 2010

Instructor: Robby Findler



Course Details

http://www.eecs.northwestern.edu/~robby/
courses/321-2011-winter/

(or google “findler” and follow the links)



Programming Language Concepts

This course teaches concepts in two ways:

By implementing interpreters

O new concept = new interpreter

By using Racket and variants

© we don’t assume that you already know Racket



Interpreters vs Compilers

An interpreter takes a program and produces a result

© DrRacket
© x86 processor

© desktop calculator
© bash

© Algebra student



Interpreters vs Compilers

An interpreter takes a program and produces a result

© DrRacket
© x86 processor

© desktop calculator
© bash

© Algebra student

A compiler takes a program and produces a program

© DrRacket

© x86 processor
0 gce

© javac



Interpreters vs Compilers

An interpreter takes a program and produces a result

o DrRacket

O X86 Processor GOOd for understanding
o desktop calculator =~ Program behavior, easy
© bash to implement

© Algebra student

A compiler takes a program and produces a program

o DrRacket
o x86 processor Good for speed, more
o gece complex (come back

o javac next quarter)



Interpreters vs Compilers

An interpreter takes a program and produces a result

o DrRacket

O X86 Processor GOOd for understanding
o desktop calculator =~ Program behavior, easy
© bash to implement

© Algebra student

A compiler takes a program and produces a program

o DrRacket

o x86 processor Good for speed, more
o gece complex (come back
o javac next quarter)

So, what’s a program!?



A Grammar for Algebra Programs

A grammar of Algebra in BNF (Backus-Naur Form):

(Prog) = <defn>>z< (expr)
<defn> = <id>(<id>) = (expr)
(EXPr)y n=  ((EXPr) + (eXpr))
((©xPr) - (xpr))
(id)((expr)
(i)
(numy
<id> = avariable name: f, X, Yy, Z, ...

a humber: I, 42, |7, ...

S
-
c
3

~—
1|



A Grammar for Algebra Programs

A grammar of Algebra in BNF (Backus-Naur Form):

(Prog) = <defn>>x< (expr)
(defny .= (idy((id)) = (expr)
(EXPr)y n=  ((EXPr) + (eXpr))
((xPr) - (exPr)
(i) ((expr))
()
(numy
<id> = avariable name: f, X, y, Z, ...
(hum) = a3 number: 1,42, 17, ...

Each meta-variable, such as (P'O8), defines a set



Using a BNF Grammar

(id) == avariable name: f, X, y, Z, ...
(numy = 3 number: 1, 42, 17, ...

The set (id) is the set of all variable names

The set (NUM) js the set of all numbers



Using a BNF Grammar

(id) == avariable name: f, X, y, Z, ...
(numy = 3 number: 1, 42, 17, ...
The set (id) is the set of all variable names

The set (NUM) js the set of all numbers

To make an example member of (NUM)simply pick an
element from the set



Using a BNF Grammar

(id) == avariable name: f, X, y, Z, ...
(numy = 3 number: 1, 42, 17, ...
The set (id) is the set of all variable names

The set (NUM) js the set of all numbers

To make an example member of (NUM)simply pick an
element from the set

2 € (hum)

298 € (num)



Using a BNF Grammar

(eXPry = ((eXPr) + (expr))
<expr> (eXpr))
d)((expr)

d)

num>

/\/\/\/-\

The set (€XPr) is defined in terms of other sets



Using a BNF Grammar

(eXPry = ((eXPr) + (expr))

((xPr) - (xPr))
(id) ((xpr))
(id)
<

num>

To make an example (€XPr):

© choose one case in the grammar
© pick an example for each meta-variable

© combine the examples with literal text



Using a BNF Grammar

(eXpr)

(xPr) + (expr))
((xPr) - (exPr)
(i9)((expr)
()

(num) -

To make an example (€XPr):

© choose one case in the grammar

© pick an example for each meta-variable

© combine the examples with literal text



Using a BNF Grammar

(eXpr)

(xPr) + (expr))
((xPr) - (exPr)
(i9)((expr)
()

(num) -

To make an example (€XPr):

© choose one case in the grammar

© pick an example for each meta-variable

7 € (num)

© combine the examples with literal text



Using a BNF Grammar

(eXPry = ((eXPr) + (expr))
((xPr) - (xPr))
(id) ((xpr))
()
(num) -

To make an example (€XPr):

© choose one case in the grammar

© pick an example for each meta-variable
7 € (num)
© combine the examples with literal text

7 € (expr)



Using a BNF Grammar

(eXPry = ((eXPr) + (expr))
((xPr) - (xPr))
(€Xpr)) -

(d)(
(id)
<

num>

To make an example (€XPr):

© choose one case in the grammar
© pick an example for each meta-variable

© combine the examples with literal text



Using a BNF Grammar

(eXPry = ((eXPr) + (expr))
((xPr) - (xPr))
(€Xpr)) -

(d)(
(id)
<

num>

To make an example (€XPr):

© choose one case in the grammar

© pick an example for each meta-variable
f = (id)

© combine the examples with literal text



Using a BNF Grammar

(eXPry = ((eXPr) + (expr))
((xPr) - (xPr))
(€Xpr)) -

(d)(
(id)
<

num>

To make an example (€XPr):

© choose one case in the grammar

© pick an example for each meta-variable
f e (id) 7 € (expr)

© combine the examples with literal text



Using a BNF Grammar

(eXPry = ((eXPr) + (expr))
((xPr) - (xPr))
(€Xpr)) -

(d)(
(id)
<

num>

To make an example (€XPr):

© choose one case in the grammar

© pick an example for each meta-variable
f e (id) 7 € (expr)
© combine the examples with literal text

f(7) € (&PT)



Using a BNF Grammar

(eXPry = ((eXPr) + (expr))
((xPr) - (xPr))
(€Xpr)) -

(d)(
(id)
<

num>

To make an example (€XPr):

© choose one case in the grammar

© pick an example for each meta-variable
f € (id) f(7) € (eXPT)

© combine the examples with literal text



Using a BNF Grammar

(eXPry = ((eXPr) + (expr))

((xPr) - (xPr))
(id)(
(id)
<

num>

(expr)) -

To make an example (€XPr):

© choose one case in the grammar

© pick an example for each meta-variable
fe (i9) f(7) & (&Pr)
© combine the examples with literal text

f(f(7)) € (XPT)



Using a BNF Grammar

(Prog) = <defn>>i< (expr)
<defn> = <id>(<id>)=<expr>

f(x) = (x + |) € (defn)



Using a BNF Grammar

(Prog) = <defn>>i< (expr)
<defn> = <id>(<id>)=<expr>

f() = (x + 1) € (defn)
To make a (Prog) pick some number of (defn)s
(x +y) € (Prog)

f(x) = (x+ 1)
g(y) = f((y -2)) & (prog)
g(7)



Programming Language

A programming language is defined by
* a grammar for programs

* rules for evaluating any program to produce a result



Programming Language

A programming language is defined by
* a grammar for programs

* rules for evaluating any program to produce a result

For example, Algebra evaluation is defined in terms of
evaluation steps:

2+ (7-4) — (2 + 3) — 5



Programming Language

A programming language is defined by
* a grammar for programs

* rules for evaluating any program to produce a result

For example, Algebra evaluation is defined in terms of
evaluation steps:

£(x) = (x + 1)
£(10) - 10+l - 1l



Evaluation

* Evaluation — is defined by a set of pattern-matching
rules:

2+(7-4) —= (2+3)
due to the pattern rule

20\ W



Evaluation

* Evaluation — is defined by a set of pattern-matching
rules:

fx) = (x + 1)
£(10) - (10+1)

due to the pattern rule
<id>|(<id>2) = (eXpr) ...
woo (1) ((€XPT),) ... — e (8XPP)3 ..,

where (€XPr); is (€XPr) | with <id>2 replaced by (€XPr),



Rules for Evaluation

* Rule | = one pattern
e (19)1((id)2) = (&P
(id> 1((€XPr)2) eee — ees (EXPI)3 ...

where (€XPr); is (€XPr); with (id>2 replaced by (€XPr),



Rules for Evaluation

* Rule | = one pattern
v (1) ((id)y) = (expry, ..,
wee (1) ((€XPT))) ... — eee (EXPI)3 ...
where (€XPr)3 is (€XPr); with (id), replaced by (€XPr),

* Rules 2 - o special cases

vee 0+ 0) e —> e0e 0 uee e (0-0) e — e 0 e
oo (1 +0) eee = we | e oo (1 =0) vee = wee | oo
o 2+ 0) eee —> ere 2 uue oo 2-0) e = ee 2 uue

etc. etc.



Rules for Evaluation

* Rule | = one pattern
v (1) ((id)y) = (expry, ..,
e (1d)j((eXPT),) ... — e (SXPP)3 ..,
where (€XPr); js (eXpr), with (id), replaced by (€XPr),

* Rules 2 - o special cases

vee 0+ 0) e —> e0e 0 uee e (0-0) e — e 0 e

oo (1 +0) eee = we | e oo (1 =0) vee = wee | oo

o 2+ 0) eee —> ere 2 uue oo 2-0) e = ee 2 uue
etc. etc.

When the interpreter is a program instead of an Algebra student,
the rules look a little different



HW |

On the course web page:

Write an interpreter for a small language of string
manipulations

Assignment is due Friday



