EECS 321
Programming Languages

Winter 2012

Instructor: Robby Findler

Course Details

http://www.eecs.northwestern.edu/~robby/
courses/321-2012-winter/

(or google “findler” and follow the links)

Programming Language Concepts

This course teaches concepts in two ways:

By implementing interpreters

© new concept = new interpreter

By using Racket and variants

© we don’t assume that you already know Racket

Interpreters vs Compilers

An interpreter takes a program and produces a result

© DrRacket
© x86 processor

© desktop calculator
© bash

© Algebra student

Interpreters vs Compilers

An interpreter takes a program and produces a result

© DrRacket
© x86 processor

© desktop calculator
© bash

© Algebra student

A compiler takes a program and produces a program

© DrRacket

© x86 processor
© gcc

© javac

Interpreters vs Compilers

An interpreter takes a program and produces a result

© DrRacket

o x86 processor Good for understanding
© desktop calculator program behavior, easy
© bash to implement

© Algebra student

A compiler takes a program and produces a program

© DrRacket
© x86 processor Good for speed, more
° gec complex (come back

o javac next quarter)

Interpreters vs Compilers

An interpreter takes a program and produces a result

© DrRacket

o x86 processor Good for understanding
© desktop calculator program behavior, easy
© bash to implement

© Algebra student

A compiler takes a program and produces a program

© DrRacket

© x86 processor Good for speed, more
° gec complex (come back
o javac next quarter)

So, what’s a program!?

A Grammar for Algebra Programs

A grammar of Algebra in BNF (Backus-Naur Form):

{prog) == <(defn)* {expr)
(defn) == (id)(Kid)) = <{expr)
(expr) = ({expr) *+ {expr))
((expr) - {expr))
(id)({expr))
(id)
(num)
id) = avariable name: f, X, Y, Z, ...

(num) a humber: |, 42, 17, ...

A Grammar for Algebra Programs

A grammar of Algebra in BNF (Backus-Naur Form):

{prog) == <(defn)* {expr)
(defn) == (id)(Kid)) = <{expr)
(expr) = ({expr) *+ {expr))
((expr) - {expr))
(id)({expr))
(id)
(num)
id) = avariable name: f, X, Y, Z, ...

(num) a humber: |, 42, 17, ...

Each meta-variable, such as {prog), defines a set

Using a BNF Grammar

idy := avariable name: f, X, y, Z, ...

(num) = anumber: 1,42, 17, ..
The set (id) is the set of all variable names

The set {num) is the set of all numbers

10

Using a BNF Grammar

idy := avariable name: f, X, y, Z, ...
(num) == anumber: |,42, 17, ..

The set (id) is the set of all variable names

The set {<num) is the set of all numbers

To make an example member of (numj), simply pick an
element from the set

11

Using a BNF Grammar

idy := avariable name: f, X, y, Z, ...
(num) == anumber: |,42, 17, ..

The set (id) is the set of all variable names

The set {num) is the set of all numbers

To make an example member of (numj), simply pick an
element from the set

2 € (num)

298 € (hum)

12

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)({expr))

Cid)

(num)

The set (expr) is defined in terms of other sets

13

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)({expr))

Cid)

(num)

To make an example {expr):
© choose one case in the grammar
© pick an example for each meta-variable

© combine the examples with literal text

14

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)({expr))

Cid)

To make an example {expr):
© choose one case in the grammar
© pick an example for each meta-variable

© combine the examples with literal text

{(num) «

15

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)({expr))

Cid)

To make an example {expr):
© choose one case in the grammar
© pick an example for each meta-variable

7 € {num)

© combine the examples with literal text

{(num) «

16

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)({expr))

Cid)

To make an example {expr):
© choose one case in the grammar
© pick an example for each meta-variable
7 € {num)
© combine the examples with literal text

7 € {expr)

{(num) «

17

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)(<expr?) .
Cid)

(num)

To make an example {expr):
© choose one case in the grammar
© pick an example for each meta-variable

© combine the examples with literal text

18

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)(<expr?) .
Cid)

(num)

To make an example {expr):
© choose one case in the grammar
© pick an example for each meta-variable

feid

© combine the examples with literal text

19

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)(<expr?) .
Cid)

(num)

To make an example {expr):
© choose one case in the grammar
© pick an example for each meta-variable
f € (d) 7 € {expr)

© combine the examples with literal text

20

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)(<expr?) .
Cid)

(num)

To make an example {expr):
© choose one case in the grammar
© pick an example for each meta-variable
f € (d) 7 € {expr)
© combine the examples with literal text

f(7) € {expr)

21

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)(<expr?) .
Cid)

(num)

To make an example {expr):
© choose one case in the grammar
© pick an example for each meta-variable

f € (id) £(7) € (expr)

© combine the examples with literal text

22

Using a BNF Grammar

(expr) == ({expr) *+ {expnr))
(Cexpr) - (expr))
(id)(<expr?) .
Cid)

(num)

To make an example {expr):
© choose one case in the grammar
© pick an example for each meta-variable
f € <id) f(7) € {expr)
© combine the examples with literal text

£(£(7)) € (expr)

23

Using a BNF Grammar

(prog) == <(defn)* {(expr)
(defn) = (id)((id)) = <(expr)

f(x) = (X + 1) € (defn)

24

Using a BNF Grammar

(prog) == <(defn)* {(expr)
(defn) = (id)((id)) = <(expr)

f(x) = (X + 1) € (defn)

To make a {prog) pick some number of {(defn)s
(X +y) € {prog)
f(x) = (x + 1)

g(y) = f((y -2)) € <prog
g(7)

25

Programming Language

A programming language is defined by
* a grammar for programs

* rules for evaluating any program to produce a result

26

Programming Language

A programming language is defined by

* a grammar for programs

* rules for evaluating any program to produce a result

For example, Algebra evaluation is defined in terms of
evaluation steps:

2+ (7-4)) — (2 + 3) — 5

27

Programming Language

A programming language is defined by

* a grammar for programs

* rules for evaluating any program to produce a result

For example, Algebra evaluation is defined in terms of
evaluation steps:

f(x) = (x + 1)
£(10) - (10+1) - 1l

28

Evaluation

* Evaluation — is defined by a set of pattern-matching
rules:

2+7-4) - (@2+3)
due to the pattern rule

e 74 e = w3

29

Evaluation

* Evaluation — is defined by a set of pattern-matching
rules:

f(x) = (x + 1)
f(10) — (10+ 1)
due to the pattern rule
ese id) 1(CidD2) = (€XPI)| eee

eoe <id>|(<expr>2) eoe — eoe <expr>3 ooe

where {(expr)3 is {expr)| with (id)2 replaced by {expr)2

30

Rules for Evaluation

* Rule I - one pattern

eoe (i) 1(Kid)2) = (€XPI)| eee
ese Cid) 1({€XPI)2) oee — ese {EXPI)3 eee

where {(expr)3 is {expr)| with (id)2 replaced by {expr)2

31

Rules for Evaluation

* Rule | - one pattern
eee Cid) 1 (Cid)2) = (EXPIr)| eee
eee id) 1 ({EXPI)2) eee — eee (EXPI)3 eee
where {(expr)3 is {expr)| with (id)2 replaced by {expr)2

* Rules 2 - x special cases

e 0+ 0) cee = 20 0. vee (0-0) eee = e 0.
e (1 #0) cee = aea | e oo (1 20) v = eue | uue
e 2F0) e = a2 . e 2-0) vee = ere 2 ue

etc. etc.

32

Rules for Evaluation

* Rule | - one pattern
eee Cid) 1 (Cid)2) = (EXPIr)| eee
eee id) 1 ({EXPI)2) eee — eee (EXPI)3 eee
where {(expr)3 is {expr)| with (id)2 replaced by {expr)2

* Rules 2 - x special cases

e 0+ 0) cee = 20 0. vee (0-0) eee = e 0.

e (1 #0) cee = aea | e oo (1 20) v = eue | uue

e 2F0) e = a2 . e 2-0) vee = ere 2 ue
etc. etc.

When the interpreter is a program instead of an Algebra student,
the rules look a little different

33

HW |

On the course web page:

Finger exercises in Racket

Assignment is due Friday

34

