
Garbage Collection

Today: various garbage collection strategies; basic ideas:

• Allocate until we run out of space; then try to free
stuff

• Invariant: only the PL implementation (runtime
system) knows about pointers so we can tag
everything and find all reachable data

• Unlike C, C++, asm;

• Like ruby, python, perl, java, racket, ... everything else
really

1

Reference Counting

Reference counting: a way to know whether a
record has other users

2

Reference Counting

Reference counting: a way to know whether a
record has other users

• Attach a count to every record, starting at 0

• When installing a pointer to a record increment its
count

• When replacing a pointer to a record, decrement its
count

• When a count reaches 0, decrement counts for other
records referenced by the record, then free it

3

Reference Counting

1
1

1

1

2

1
1

Top boxes are the roots

Boxes in the blue area are
allocated memory

4

Reference Counting

1
1

0

1

3

1
1

Adjust counts when a pointer is
changed...

5

Reference Counting

1
1

1

2

1
1

... freeing a record if its count
goes to 0

6

Reference Counting

1
1

0

2

1
1

Same if the pointer is a root

7

Reference Counting

1
1

2

0
1

Adjust counts after frees, too...

8

Reference Counting

1
1

2

1

... which can trigger more frees

9

Reference Counting And Cycles

1
1

1

2

1
1

An assignment can create a
cycle...

10

Reference Counting And Cycles

1
1

2

2

1
1

Adding a reference increments a
count

11

Reference Counting And Cycles

1
1

1

2

1
1

Lower-left records are
inaccessible, but not deallocated

In general, cycles break reference
counting

12

Reference counting problems

• Cycles

• Maintaining counts wastes time & space

• Need to use free lists to track available memory

13

Reference counting

But there are times when this is a good choice:

• No pauses

• Interop with non-GC languages (but see the Boehm
collector)

14

Mark & Sweep Garbage Collection Algorithm

• Color all records white

• Color records referenced by roots gray

• Repeat until there are no gray records:

Pick a gray record, r

For each white record that r points to, make it gray

Color r black

• Deallocate all white records

15

Mark & Sweep Garbage Collection

All records are marked white

16

Mark & Sweep Garbage Collection

Mark records referenced by roots
as gray

17

Mark & Sweep Garbage Collection

Need to pick a gray record

Red arrow indicates the chosen
record

18

Mark & Sweep Garbage Collection

Mark white records referenced
by chosen record as gray

19

Mark & Sweep Garbage Collection

Mark chosen record black

20

Mark & Sweep Garbage Collection

Start again: pick a gray record

21

Mark & Sweep Garbage Collection

No referenced records; mark
black

22

Mark & Sweep Garbage Collection

Start again: pick a gray record

23

Mark & Sweep Garbage Collection

Mark white records referenced
by chosen record as gray

24

Mark & Sweep Garbage Collection

Mark chosen record black

25

Mark & Sweep Garbage Collection

Start again: pick a gray record

26

Mark & Sweep Garbage Collection

No referenced white records;
mark black

27

Mark & Sweep Garbage Collection

No more gray records; deallocate
white records

Cycles do not break garbage
collection

28

Mark & Sweep Problems

• Cost of collection proportional to (entire) heap

• Bad locality

• Need to use free lists to track available memory

(But there are times when this is a good choice)

29

Two-Space Copying Collectors

A two-space copying collector compacts memory as it
collects, making allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space

Collector:

• Starts by swapping to-space and from-space

• Coloring gray ⇒ copy from from-space to
to-space

• Choosing a gray record ⇒ walk once though the new
to-space, update pointers

30

Two-Space Collection

Left = from-space
Right = to-space

31

Two-Space Collection

Mark gray = copy and leave
forward address

32

Two-Space Collection

Choose gray by walking through
to-space

33

Two-Space Collection

Mark referenced as gray

34

Two-Space Collection

Mark black = move gray-choosing
arrow

35

Two-Space Collection

Nothing to color gray; increment
the arrow

36

Two-Space Collection

Color referenced record gray

37

Two-Space Collection

Increment the gray-choosing
arrow

38

Two-Space Collection

Referenced is already copied, use
forwarding address

39

Two-Space Collection

Choosing arrow reaches the end
of to-space: done

40

Two-Space Collection

Right = from-space
Left = to-space

41

Two-Space Collection on Vectors

• Everything is a number:

Some numbers are immediate integers

Some numbers are pointers

• An allocated record in memory starts with a tag,
followed by a sequence of pointers and immediate
integers

The tag describes the shape

42

Two-Space Collection on Vectors

Use breadth-first search; as you traverse the heap, move
objects from one space to the other. Maintain a queue in
the to-space. Invariant: objects in the queue have
pointers to the from-space; objects outside the queue
have pointers to new locations of the objects, i.e., in the
to-space.

43

Two-Space Collection on Vectors

• Initialize a queue with the objects pointed at by the
roots

• For each object in the queue, for each pointer in the
object

If the pointer points to an as-yet uncopied object,
copy it into queue; update the old version of the
object to record where it got copied; update the
pointers in the original object, remove it from the
queue

If the pointer points to an object already copied,
just update the pointer so it points to the new
location of the object

44

Two-Space Collection on Vectors

• Use two pointers into the to-space to maintain a
queue for a breadth-first traversal

• Inc the end pointer to add to the queue, increment the
front pointer to remove from the queue; when the
pointers come together, terminate

45

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Root 1: 7 Root 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4

46

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Root 1: 7 Root 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

47

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Root 1: 7 Root 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

48

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Root 1: 7 Root 2: 0

From: 1 75 2 0 3 2 10 3 2 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 0 0 0 0 0 0 0 0 0 0 0 0 0
Q:
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

49

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Tag 99: forwarding pointer (to to-space)

Root 1: 13 Root 2: 0

From: 1 75 2 0 3 2 10 99 13 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 2 0 0 0 0 0 0 0 0 0 0
Q: ^ ^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

50

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Tag 99: forwarding pointer (to to-space)

Root 1: 13 Root 2: 16

From: 99 16 2 0 3 2 10 99 13 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 2 1 75 0 0 0 0 0 0 0 0
Q: ^ ^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

51

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Tag 99: forwarding pointer (to to-space)

Root 1: 13 Root 2: 16

From: 99 16 99 18 3 2 10 99 13 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 18 1 75 2 0 0 0 0 0 0 0
Q: ^ ^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

52

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Tag 99: forwarding pointer (to to-space)

Root 1: 13 Root 2: 16

From: 99 16 99 18 3 2 10 99 13 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 18 1 75 2 0 0 0 0 0 0 0
Q: ^ ^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

53

Two-Space Vector Example

• 26-byte memory (13 bytes per space), 2 roots

Tag 1: one integer

Tag 2: one pointer

Tag 3: one integer, then one pointer

Tag 99: forwarding pointer (to to-space)

Root 1: 13 Root 2: 16

From: 99 16 99 18 3 2 10 99 13 2 3 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 3 2 18 1 75 2 16 0 0 0 0 0 0
Q: ^^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

54

Further reading

Uniprocessor Garbage Collection Techniques, by Wilson

ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps

55

Mark and sweep implementation, with linear-time allocator

(define (init-allocator)
 (for ([i (in-range 0 (heap-size))])

 (heap-set! i 'free)))

(define (gc:flat? loc)
 (equal? (heap-ref loc) 'flat))

(define (gc:deref loc)
 (cond

 [(equal? (heap-ref loc) 'flat)
(heap-ref (+ loc 1))]

 [else
(error 'gc:deref

"non-flat @ ~s"
loc)]))

56

Mark and sweep implementation, with linear-time allocator

(define (gc:cons? loc)
 (equal? (heap-ref loc) 'pair))

(define (gc:first pr-ptr)
 (if (equal? (heap-ref pr-ptr) 'pair)

(heap-ref (+ pr-ptr 1))
(error 'first "non pair @ ~s" pr-ptr)))

(define (gc:rest pr-ptr)
 (if (equal? (heap-ref pr-ptr) 'pair)

(heap-ref (+ pr-ptr 2))
(error 'rest "non pair @ ~s" pr-ptr)))

57

Mark and sweep implementation, with linear-time allocator

(define (gc:set-first! pr-ptr new)
 (if (equal? (heap-ref pr-ptr) 'pair)

(heap-set! (+ pr-ptr 1) new)
(error 'set-first! "non pair")))

(define (gc:set-rest! pr-ptr new)
 (if (equal? (heap-ref pr-ptr) 'pair)

(heap-set! (+ pr-ptr 2) new)
(error 'set-first! "non pair")))

58

Mark and sweep implementation, with linear-time allocator

(define (gc:closure-code-ptr loc)
 (if (gc:closure? loc)

(heap-ref (+ loc 1))
(error 'gc:closure-code "non closure")))

(define (gc:closure-env-ref loc i)
 (if (gc:closure? loc)

(heap-ref (+ loc 3 i))
(error 'closure-env-ref "non closure")))

(define (gc:closure? loc)
 (equal? (heap-ref loc) 'proc))

59

Mark and sweep implementation, with linear-time allocator

(define (gc:alloc-flat fv)
 (define ptr (alloc 2 #f #f))
 (heap-set! ptr 'flat)
 (heap-set! (+ ptr 1) fv)
 ptr)

(define (gc:cons hd tl)
 (define ptr (alloc 3 hd tl))
 (heap-set! ptr 'pair)
 (heap-set! (+ ptr 1) hd)
 (heap-set! (+ ptr 2) tl)
 ptr)

60

Mark and sweep implementation, with linear-time allocator

(define (gc:closure code-ptr free-vars)
 (define fv-count (vector-length free-vars))
 (define next (alloc (+ fv-count 3)

(vector->roots free-vars)
'()))

 (heap-set! next 'proc)
 (heap-set! (+ next 1) code-ptr)
 (heap-set! (+ next 2) fv-count)
 (for ([p (in-vector free-vars)]

[x (in-naturals)])
 (heap-set! (+ next 3 x) p))

 next)

61

Mark and sweep implementation, with linear-time allocator

; a roots is either:
; - root
; - loc
; - (listof roots)

; alloc : number[size] roots roots -> loc
(define (alloc n some-roots more-roots)
 (define next (find-free-space 0 n))
 (cond

 [next next]
 [else

(collect-garbage some-roots more-roots)
(define next (find-free-space 0 n))
(unless next (error 'alloc "no space"))
next]))

62

Mark and sweep implementation, with linear-time allocator

; find-free-space : loc number -> loc or #f
; start must point to start of object
(define (find-free-space start size)
 (cond

 [(= start (heap-size)) #f]
 [else

(case (heap-ref start)
 [(free) (if (n-free-blocks? start size)

start
(find-free-space (+ start 1) size))]

 [(flat) (find-free-space (+ start 2) size)]
 [(pair) (find-free-space (+ start 3) size)]
 [(proc)

(find-free-space
(+ start 3 (heap-ref (+ start 2)))
size)]

 [else
(error 'find-free-space "ack ~s" start)])]))

63

Mark and sweep implementation, with linear-time allocator

; n-free-blocks? : loc number -> loc or #f
(define (n-free-blocks? start size)
 (cond

 [(= size 0) #t]
 [(= start (heap-size)) #f]
 [else

(and (eq? 'free (heap-ref start))
(n-free-blocks? (+ start 1)

(- size 1)))]))

64

Mark and sweep implementation, with linear-time allocator

; collect-garbage : roots roots -> void
(define (collect-garbage some-roots more-roots)
 (mark-white! 0)
 (traverse/roots (get-root-set))
 (traverse/roots some-roots)
 (traverse/roots more-roots)
 (free-white! 0))

65

Mark and sweep implementation, with linear-time allocator

; mark-white! : loc -> void
; marks all records as white, starting with 'i'
; (linear scan of the heap (this linear scan isn’t
; really necc but we do it that way for simplicity))
(define (mark-white! i)
 (when (< i (heap-size))

 (case (heap-ref i)
 [(pair) (heap-set! i 'white-pair)

(mark-white! (+ i 3))]
 [(flat) (heap-set! i 'white-flat)

(mark-white! (+ i 2))]
 [(proc) (heap-set! i 'white-proc)

(mark-white!
(+ i 3 (heap-ref (+ i 2))))]

 [(free) (mark-white! (+ i 1))]
 [else

(error 'mark-white! "unknown tag @ ~a" i)])))

66

Mark and sweep implementation, with linear-time allocator
; free-white : loc -> void
; frees all white records, starting at 'i'
(define (free-white! i)
 (when (< i (heap-size))

 (case (heap-ref i)
 [(pair) (free-white! (+ i 3))]
 [(flat) (free-white! (+ i 2))]
 [(proc) (free-white! (+ i 3 (heap-ref (+ i 2))))]
 [(white-pair) (heap-set! i 'free)

(heap-set! (+ i 1) 'free)
(heap-set! (+ i 2) 'free)
(free-white! (+ i 3))]

 [(white-flat) (heap-set! i 'free)
(heap-set! (+ i 1) 'free)
(free-white! (+ i 2))]

 [(white-proc) (define closure-size (heap-ref (+ i 2)))
(for ([dx (in-range 0 (+ closure-size 3))])
 (heap-set! (+ i dx) 'free))
(free-white! (+ i 3 closure-size))]

 [(free) (free-white! (+ i 1))]
 [else (error 'free-white! "unknown tag ~s" (heap-ref i))])))

67

Mark and sweep implementation, with linear-time allocator

; traverse/roots : roots -> void
; traverses the heap, marking
; everything reachable from 'roots'
(define (traverse/roots thing)
 (cond

 [(list? thing)
(for-each traverse/roots thing)]

 [(root? thing)
(traverse/loc (read-root thing))]

 [(number? thing)
(traverse/loc thing)]))

68

Mark and sweep implementation, with linear-time allocator

; traverse/loc : loc -> void
; depth first search for live records
(define (traverse/loc loc)
 (case (heap-ref loc)

 [(white-pair)
(heap-set! loc 'pair)
(traverse/loc (heap-ref (+ loc 1)))
(traverse/loc (heap-ref (+ loc 2)))]

 [(white-flat)
(heap-set! loc 'flat)]

 [(white-proc)
(heap-set! loc 'proc)
(for ([i (in-range (heap-ref (+ loc 2)))])
 (traverse/loc (heap-ref (+ loc 3 i))))]

 [(pair flat proc) (void)]
 [else (error 'traverse/loc "crash ~s" loc)]))

69

