
322 Compilers: Assignment 1a
Test Cases for a Tiger Parser

Design (at least) 25 passing and 5 failing test cases for parsing Tiger expressions. For each passing test
case, hand in two files, one called file.tig containing a tiger program that should parse along with file.sxp
showing how it parses (according to the left-hand column below). For each failing test case, hand in one
file called file.tig containing input the parser should reject and a file.sxp file containing #illegal.

Submit a single zip file containing your test cases in a directory called 1a.

Parsed Tiger expressions:

exp ← (biop exp exp)
/ (:= lvalue exp)
/ lvalue
/ num
/ str
/ nil
/ ()
/ (new id (id exp) · · ·)
/ (new-array id exp exp)
/ (let (dec · · ·) exp)
/ (begin exp exp exp · · ·)
/ (when exp exp)
/ (while exp exp)
/ (if exp exp exp)
/ (for (id exp exp) exp)
/ (break)

dec ← (var id exp)
/ (var id id exp)
/ (type id ty)

biop ← relop / + / - / * / /
relop ← eqop / <= / >= / < / >
eqop ← = / <>
lvalue ← id

/ (dot lvalue id)
/ (aref lvalue exp)

ty ← id
/ (record (id id) · · ·)
/ (array id)

num ← a series of digits
str ← a string, in any valid PLT

Scheme string notation; see
http://docs.plt-scheme.org
for details, e.g., "abc" or
"two\nlines"

id ← a series of letters, numbers, and
underscores that begins with a
letter

Use (call-with-input-file "file.sxp" read) in
PLT Scheme to be sure your exps are well-formed.

Changes to Tiger from the text:

• omit function declarations

• omit function calls from expressions

• change the two-arm’d if to: when exp do exp

• Add a new keyword before record creation
and array creation, e.g.,

let type t = {x:int,y:int}
in new t {x=1,y=2} end

• ignore the \ˆc escapes in strings

• the “f” escapes in strings should only con-
tain newlines, tab characters, return charac-
ters and spaces, i.e., ASCII codes 9, 10, 13,
and 32.

• let expressions with no expressions in the
body should be parsed as if they had ()
in the body; with two or more expressions
should be parsed with a begin expression in
the body.

• The expression
if 1 then 2 else 3 + if 4 then 5 else 6

is illegal, but adding parens should make it
parse, i.e:
if 1 then 2 else 3+(if 4 then 5 else 6)

(if 1 then 2 else 3)+(if 4 then 5 else 6)

Also, other expression forms that do not
have a closing token (i.e., while, when, etc)
followed by an infix operator (i.e., +, =, :=,
etc) require parentheses.

• Similar to the above, expression forms that
do not have a closing token (i.e., if, etc)
must be parenthesized if they follow an in-
fix operator (i.e., +, =, :=, etc)

http://docs.plt-scheme.org

