
322 Compilers: Assignment 3
Translation to an intermediate langauge

Your Job

Design two new (mutually referential) AST data
structures that represent tree-exp and tree-stm.
Implement a transformation that turns your AST
into a tree-exp and implement a function (or
method) that prints your tree-exps according to the
grammar given in tree-exp-sem.pdf.

If the program indexes past the bound of an array,
the generated code should print out of bounds and
terminate. If the program accesses a field of the nil
value, then the generated code should print the mes-
sage nil dereference and terminate.

Submission Instructions

Submit a single zip file containing your test cases
in a directory called 3a and your code in a directory
called 3b. The 3b directory should contain a script
called toil that accepts a filename on the command-
line and then prints out the tree-exp corresponding
to the Tiger program in the file.

Your zip file should also contain subdirectories 1a,
1b 2a, and 2b containing either your submissions
from last time, or fixed versions of them. The re-
vised implementations will be used when we re-run
the parsing and typechecking test fests (but not the
revised test cases).

The test cases should all have type int, string, or
array of int (note that this is different from the
type checker assignment).

The test case files should be named according to
their types. Specifically, the test case filenames
should begin with int, str, or ant (for array of int).
Your program may assume that the names match up
to the types properly. Conversely, your test cases
must be named properly to be used in the test fest.
Beware: your commandline tool might be passed
relative path names, e.g.,

toil ../robbys-tests/int1.tig

To run the test fest, we will run each test case in
the evaluator and compare that result to the result
of running evalil on the output of your translator.

Tips

• Extend environments to map identifiers to the
temporaries used to store their values.

• Watch out for lvals – the might get used in an
assignment, so they better return something
suitable for the first argument of a move state-
ment.

• Have a series of code at the beginning of your
program that initializes the string values and
gets their locations in memory. Store those
in some special temporary values and then
use the temporaries where the strings actually
were in the program.

• Instead of passing around a boolean to indicate
if you are in a while loop (like you did in your
type checker), pass around a label to jump to
when you are in the body of a while loop.

• Use the allocate function to create arrays,
records and strings (local variables do not need
to be allocated).

• Insert a call to one of the printing functions
(printint for integers, printstr for strings,
and printant for arrays of integers) around
your entire program to see the results.

• Build your translator in stages, making sure
that you are running and passing all of your
test cases after each stage. Organize the stages
by the different forms in the language. Be-
fore implementing any of the actual translation
code, set it all up to so that it just signals er-
rors. Next, build up your testing harness. Then
add tests, observe that they fail (i.e., run the en-
tire test suite), fix them, and iterate. (The point
here is that if you have to make some sweep-
ing change to your code, you can be sure that
you don’t miss anything.)


