
322 Compilers

1

Why take this course?

• Understanding tools better; what does the compiler
really do?

• Computer Engineering & Architecture people: the
compiler is your lens to the world

• Phil Greenpun’s 10th rule of programming:

Any sufficiently complicated C or Fortran program
contains an ad hoc, informally-specified, bug-ridden,
slow implementation of half of Common Lisp.

2

Interpreters vs Compilers

interpreter : program → answer

compiler : program → program
// no answer!

no interpreter ⇒ programs don’t run

3

Why Compile?

Performance. That’s the only reason.

4

Why Compile?: Interpreter overhead

addl %rax,%rbx

vs

(define (interp exp)
 (type-case FAE exp

 [num (n) (num n)]
 [add (lhs rhs)

(let ([lv (interp lhs)]
[rv (interp rhs)])

 (type-case FAE-Value lv
 [numV (ln)

(type-case FAE-Value rv
 [numV (rn) (+ ln rn)]
 [else (error 'interp)])]

 [else (error 'interp)]))]
 ...))

5

Why Compile?: Automate Transformations

• Bad maintenance practices, yet profitable
transformations

For example unrolling loops; when the chip sees
straight-line code it can go faster:

It can “look ahead” and thus make good guesses about
what is going to happen next,

filling in caches early, keeping the pipeline full, etc

6

Why Compile?: Automate Transformations

• Lower-level details are exposed in destination language

For example, variables might live on the stack or in
registers; want to use registers as much as possible

7

Goalposts

Build a compiler accepting a language (L5) that has:

• Higher-order functions
• Safe, mutable arrays
• Arithmetic on (bounded) integers
• Recursive binding form
• Conditionals

and producing x86-64 assembly

8

Fib in L5

(letrec ([fib
(lambda (n)
 (if (= n 0)

0
(if (= n 1)

1
(+ (fib (- n 1))

(fib (- n 2))))))])
 (print (fib 10)))

9

Fib in L4

no more higher-order functions

((print (:fib 10))
(:fib
(n)
(if (= n 0)

0
(if (= n 1)

1
(+ (:fib (- n 1))

(:fib (- n 2)))))))

10

Fib in L3

every intermediate result has a name

((let ([fibten (:fib 10)])
(print fibten))

(:fib
(n)
(let ([niszero (= n 0)])

(if niszero
0
(let ([nisone (= n 1)])
 (if nisone

1
(let ([n1 (- n 1)])
 (let ([fn1 (:fib n1)])

 (let ([n2 (- n 2)])
(let ([fn2 (:fib n2)])
 (+ fn2

fn1)))))))))))

11

Fib in L2
no more nested expressions
(:main
0
0
(rdi <- 10)
((mem rsp -8) <- :fr)
(call :fib 1)
:fr
(rdi <- rax)
(rdi *= 2)
(rdi += 1)
(call print 1)
(return))

(:fib
1
0
(cjump rdi = 0 :zero :nonzero)
:zero
(rax <- 0)
(return)
:nonzero
(cjump rdi = 1 :one :recur)
:one
(rax <- 1)
(return)
:recur
(n <- rdi)
(rdi -= 1)
((mem rsp -8) <- :for)
(call :fib 1)
:for
(result <- rax)
(n -= 2)
(rdi <- n)
((mem rsp -8) <- :ftr)
(call :fib 1)
:ftr
(rax += result)
(return))

12

Fib in L1
no more variables (just registers)
(:main
0
0
(rdi <- 10)
((mem rsp -8) <- :fr)
(call :fib 1)
:fr
(rdi <- rax)
(rdi *= 2)
(rdi += 1)
(call print 1)
(return))

(:fib
1
2
(cjump rdi = 0 :zero :nonzero)
:zero
(rax <- 0)
(return)
:nonzero
(cjump rdi = 1 :one :recur)
:one
(rax <- 1)
(return)
:recur
((mem rsp 0) <- r12)
((mem rsp 8) <- r13)
(r12 <- rdi)
(rdi -= 1)
((mem rsp -8) <- :for)
(call :fib 1)
:for
(r13 <- rax)
(r12 -= 2)
(rdi <- r12)
((mem rsp -8) <- :ftr)
(call :fib 1)
:ftr
(rax += r13)
(r12 <- (mem rsp 0))
(r13 <- (mem rsp 8))
(return))

13

Implementation/Project overview

L5 → L4 → L3 → L2, each one step

L2 → L1, multiple steps:

• spilling

• graph coloring

• graph construction

• liveness analysis

Speed test

2 assignments per step: tests & implementation

There is no real “late” code

Use any PL you want (learn a new one!)

14

http://www.eecs.northwestern.edu/~robby/courses/322-2015-spring/

Want to pair program? Send me a note (both members),
with the promise on the web page

More admin details, including grading rubric, on website;
read it

15

