
Register Allocation, ii
Graph coloring

1



Graph Coloring

Idea: reduce register allocation to graph coloring

• Create an interference graph for each program where:

nodes are variables

edges connect variables that cannot be in the same
register

• Color the nodes in the graph such that connected
nodes have different colors

• Each color represents a register; after coloring, read

variable → register assignment from graph

2



Function with three variables, a, b, and c:

f(x) = x^2 + x + 5

(:f
1 0
(a <- rdi)
(b <- rdi)
(b *= b)
(c <- 5)
(rax <- b)
(rax += c)
(rax += a)
(return))

3



Function with three variables, a, b, and c:

f(x) = x^2 + x + 5

a b c
(:f
1 0
(a <- rdi)
(b <- rdi)
(b *= b)
(c <- 5)
(rax <- b)
(rax += c)
(rax += a)
(return))

Black bars show the live ranges of the variables

4



c

b

a

5



c

b

a

6



Three variables, and we needed three registers because
we need three colors to color the graph

7



Different implementation of same function

(:f
1 0
(a <- rdi)
(b <- rdi)
(b *= b)
(c <- 5)
(rax <- b)
(rax += c)
(rax += a)
(return))

(:f
1 0
(a <- rdi)
(b <- rdi)
(b *= b)
(rax <- b)
(c <- 5)
(rax += c)
(rax += a)
(return))

8



Different implementation of same function

a b c
(:f
1 0
(a <- rdi)
(b <- rdi)
(b *= b)
(c <- 5)
(rax <- b)
(rax += c)
(rax += a)
(return))

a b c
(:f
1 0
(a <- rdi)
(b <- rdi)
(b *= b)
(rax <- b)
(c <- 5)
(rax += c)
(rax += a)
(return))

Less overlap in the live ranges of the variables; now we
need fewer colors

9



c

b

a

10



c

b

a

11



Three variables, but we needed only two registers
because we need only two colors to color the graph

This makes sense because the live ranges of b and c
didn’t overlap, so they can share a register

12



NB: Those graphs are not accurate: they leave out the
constraints imposed by the calling convention. We return
to this later.

13



Graph coloring algorithm:

• Repeatedly select a node and remove it from the
graph, putting it onto a stack

• When the graph is empty, rebuild it, putting a new
color on each node as it comes back into the graph,
making sure no adjacent nodes have the same color

• Order the colors; pick the smallest color that isn’t a
neighbor, use that one

• If there are not enough colors, the algorithm fails
(spilling comes in here)

14



e

d

c

b

a

15



e

d

c

b

a

a

16



e

d

c

b

a

b

a

17



e

d

c

b

a

c

b

a

18



e

d

c

b

a

d

c

b

a

19



e

d

c

b

a

e

d

c

b

a

20



e

d

c

b

a

d

c

b

a

21



e

d

c

b

a

d

c

b

a

22



e

d

c

b

a

c

b

a

23



e

d

c

b

a

c

b

a

24



e

d

c

b

a

b

a

25



e

d

c

b

a

b

a

26



e

d

c

b

a

a

27



e

d

c

b

a

a

28



e

d

c

b

a

29



e

d

c

b

a

30



With that ordering, we needed three colors, which is the
best possible (because there was a connected subgraph
of size 3)

But not all orderings work out so well

31



e

d

c

b

a

32



e

d

c

b

a

d

33



e

d

c

b

a

c

d

34



e

d

c

b

a

b

c

d

35



e

d

c

b

a

a

b

c

d

36



e

d

c

b

a

e

a

b

c

d

37



e

d

c

b

a

a

b

c

d

38



e

d

c

b

a

a

b

c

d

39



e

d

c

b

a

b

c

d

40



e

d

c

b

a

b

c

d

41



e

d

c

b

a

c

d

42



e

d

c

b

a

c

d

43



e

d

c

b

a

d

44



e

d

c

b

a

d

45



e

d

c

b

a

46



e

d

c

b

a

47



Heuristic: Remove the node with the most edges
that’s smaller than the number of colors (registers) you
want to use

48


