Register Allocation, ii
Graph coloring



Graph Coloring

Idea: reduce register allocation to graph coloring
* Create an interference graph for each program where:
© nodes are variables

© edges connect variables that cannot be in the same
register

* Color the nodes in the graph such that connected
nodes have different colors

* Each color represents a register; after coloring, read

variable — register assignment from graph



Function with three variables, a, b, and c:

f(x) = x*2 + x + 5

(: £

10

(a <- rdi)
(b <- rdi)
(b *= Db)
(c <- 5)
(rax <- b)

(rax += c)
(rax += a)
(return))



Function with three variables, a, b, and c:

f(x) = x*"2 + x + 5

a b c
(: £
10
(a <- rdi)
(b <- rdi)
(b *= Db)

(c <- 5)
(rax <- b) I
(rax += c)

(rax += a)
(return))

Black bars show the live ranges of the variables









Three variables, and we needed three registers because
we need three colors to color the graph



(: £
10
(a <- rdi)
(b <- rdi)
(b *= b)
(c <- 5)
(rax <- b)

(rax += c)
(rax += a)
(return))

Different implementation of same function

(: £

10

(a <- rdi)
(b <- rdi)
(b *= Db)
(rax <- b)
(c <- 5)

(rax += c)
(rax += a)
(return))



Different implementation of same function

a b c a b c

(:£ (:f

10 10

(a <- rdi) (a <- rdi)

(b <- rdi) (b <- rdi)

(b *= b) (b *= b) I
(c <= 5) (rax <- b)

(rax <- b) I (c <- 5) I
(rax += c) (rax += c)

(rax += a) (rax += a)
(return)) (return))

Less overlap in the live ranges of the variables; now we
need fewer colors









Three variables, but we needed only two registers
because we need only two colors to color the graph

This makes sense because the live ranges of b and ¢
didn’t overlap, so they can share a register

12



NB: Those graphs are not accurate: they leave out the
constraints imposed by the calling convention.We return
to this later.

13



Graph coloring algorithm:

* Repeatedly select a node and remove it from the
graph, putting it onto a stack

* When the graph is empty, rebuild it, putting a new
color on each node as it comes back into the graph,
making sure no adjacent nodes have the same color

* Order the colors; pick the smallest color that isn’t a
neighbor, use that one

* If there are not enough colors, the algorithm fails
(spilling comes in here)

14



15















O






22



23



24






26















With that ordering, we needed three colors, which is the

best possible (because there was a connected subgraph
of size 3)

But not all orderings work out so well

31



32









35






O






39



40



41






aa

43















Heuristic: Remove the node with the most edges
that’s smaller than the number of colors (registers) you
want to use

48



