322 and

the missing pieces
of the back-end

Simone Campanoni
Robby Findler

5/11/2016

Instruction selection is part of the backend

IR
]
R Back-end
-
Instruction Register
....... |::> g .
selection allocation
_ Y, _
_ 0 J

Assembly

Example of instruction selection

(vl <- 1) _ movqg $1, %v1
(V1 <- v2) _ movq %Vv2, %v1

(v2 <- (mem vl 0)) - movq 0(%v1), %v2

From L1 to x64 assembly

Problem of our current instruction selection

~

(vl *= 4) imulg %v1, S4
(v2 <- (mem vl 0)) movq 0(%v1), %v2
. J

\ ... but x64 has
movdq 0($4,%v1), %v2

Instruction selection may depend on the context!

The problem of having multiple choices

(vl *=4) movq 0(S4,%v1), %v2
(v2 <- (mem v1 0)) >[imulg %v1, 4
(v3 <-v1) movq %v1, %v3
?
imulq %v1, 4

movq 0(%v1), %v2
movq %v1, %v3

Instruction selection: it isn't that easy

(vl *=5) imulg %v1, S5
(v2 <- (mem vl 0)) movq 0(%v1), %v2

oV1), %v2

Instruction selection as tree matching

* I[n order to take contextinto account,
instruction selectors often use pattern-matching on IR trees

e Use a tree-based IR

e Each assembly instruction defines a tile (pattern)
that can be used to cover the tree

* Used tiles (patterns) = selected assembly instructions to generate

(vl *=4) /move\
_ V2 mem
(v2 <- (mem vl 0)) T~
. vi 0
imulg %°?, S? /*\ / ~_
VAR? ? vl 4

Example: tiles and tiling

imulg * — imulq %, * —
VAR CONST VAR VAR
movq /move
VAR VAR
*
(V1 *=4) ¢ move
(v2 <-vl) 5 / \VZ / * imulq %v2, $5
(V2 *= 5) / ~—

Multiple tiles for an assembly instruction

* imulg * = Multiple tiles for an instruction
/ ™~ Multiple types of inputs
VAR CONST * movq %vl, %v2
* movqg 0(%v1l), %v2
°* movq
move move
/ N / N
VAR P mem VAR VAR
* CONST
/ ~—

VAR CONST 1, 2,4

Tiles and tiling

* Tiles capture compiler’s understanding of instruction set

* In general, for any given tree, many tilings are possible
* Each resulting in a different instruction sequence

* We can ensure pattern coverage by covering, at a minimum,
all atomic IR trees

Problem

* How to pick tiles that cover IR statement tree
with minimum execution time?

* Need a good selection of tiles
* Small tiles to make sure we can tile every tree
* Large tiles for efficiency

e Usually want to pick large tiles: fewer instructions

* Instructions # cycles:
RISC core instructions take 1 cycle,
other instructions may take more

Timing model

* |dea: associate cost with each tile
(proportional to # cycles to execute)

e Caveat: costis fictional on modern architectures
e Estimate of total execution time is sum of costs of all tiles

Total cost: 5

Global vs. local optimal solution

* We want the “lowest cost” tiling

» Take into account cost/delay
of each instruction (i.e., timing model)

* Optimum tiling:
lowest-cost tiling

* Locally Optimal tiling:
no two adjacent tiles can be combined
into one tile of lower cost

Locally optimal tilings

* A simple greedy algorithm works extremely well in practice:
Maximal munch

* Choose the largest pattern with lowest cost,
i.e., the “maximal munch”
* Algorithm:
* Start at root
* Use “biggest” match (in # of nodes)
* This is the munch
* Use cost to break ties

e Recursively apply maximal much
at each subtree of this munch

Maximal munch example

(vl *=4) PR
(v2 <-v1)
(v2 +=5)
(v3 <- (mem v1 0))
V3
move

5/ \VZ/

Example: tiles

* imulg imulq %,$

°* movqg

move Cost:1
movq 0(S$,%), % / \
imulq %, $ VAR VAR
move Cost:4
N

VAR mem

Example: tiles (2)

o -

e Jea

Maximal munch example @ggest munch!

Total cost: 7 nove

\
@iggest munch! V3 / mem
+= /mOve k __ / \
T~
5 - \VZ vl A
(vl *=4) |
(v2 <-v1) @Iggest munch!

(v2 +=5)
(v3 <- (mem v1 0))

Maximal munch

* Maximal munch does not necessarily produce
the optimum selection of instructions

* But:
* it is easy to implement

* it tends to work “well”
for current instruction-set architectures

... but it we want the optimum?

Finding optimum tiling

e Goal: find minimum total cost tiling of tree

 Algorithm:
* For every node, find minimum total cost tiling
of that node and sub-tree
* Lemma:
* Once minimum cost tiling of all children of a node is known,
* We can find minimum cost tiling of the node by trying out
all possible tiles matching the node

* Therefore: start from leaves, work upward to top node

Optimum selection

* To achieve optimum instruction selection:
Dynamic programming

* In contrast to maximal munch,
the trees are matched bottom-up

* But
* Significantly more complex to implement
* More time and memory consuming than maximal munch

Dynamic programming

* First pass: tiling
* Working bottom up

* Given the optimum tilings of all subtrees,
generate optimum tiling of the current tree

e Consider all tiles for the root of the current tree
e Sum cost of best subtree tiles and each tile
 Choose tile with minimum total cost

* Second pass: code generation
* Generates the code using the obtained tiles

Dynamic programming example

Total cost: 5

(vl *=4)
(v2 <-v1) lea (5+%v1*4), %v2
(v2 +=5) subq %v2, %v1

Y) o
(V3 <- (mem v1 0)) movq 0(%v1), %v3

Maximal munch example @ggest munch!

Total cost: 7 nove

\
@iggest munch! V3 / mem
+= /mOve k __ / \
T~
5 - \VZ vl A
(vl *=4) |
(v2 <-v1) @Iggest munch!

(v2 +=5)
(v3 <- (mem v1 0))

Value of instruction selection

* The simpler the target ISA is,
the less important obtaining the optimum is
e Reduced Instruction Set Computing (RISC) ARM

* The more complex the target ISA is,
the bigger is the gap between the solution found by

a simple (e.g., maximal munch) instruction selection and ,»’ >
the optimum one (e.g., dynamic programming) < lntel

* Complex Instruction Set Computing (CISC)

Instruction selection complexity

* Finding the optimum for tree: P

* Finding the optimum for DAG: NP
* Countless number of heuristics proposed

* Most (all) of programs we run are DAGs

Instruction selection is part of the backend

IR
1
a2 Back-end
4 R 4 ™
Instruction Register e .
selection allocation
N\ - g S

!

Assembly

Register allocation after instruction selection

Total cost: 5

A register allocation

(vl *=4)
(v2 <- v1)
(v2 +=5)
(v3 <- (mem v1 0))

lea (5+%v1*4), %v2
subq %v2, %v1
movq 0(%v1), %v3

Register allocation after instruction selection

A register allocation
vl -> rax

v2 -> rbx
v3 ->stack O

Temporary
register

/

Register allocation after instruction selection

(2)

vl -> rax

— v2 -> rbx
v3 ->stack O [— I
v4 ->r8

Peephole matching

Wait, | thought we found the optimum ...

Peephole matching

IR
~ N
Instruction
selection
_ Y,

.

Register
allocation

J

r

.

Peephole
matching

~\

J

J

Assembly

Peephole matching

* Basic idea: compiler can discover local improvements locally
* Look at a small set of adjacent operations
* Move a “peephole” over code & search for improvement

* Example: store followed by load

movq %r10, O(%rsp) _
Peephole matching
movq O(%rsp), %r8

movq %r10, O(%rsp)
Movq %rl10, %r8

Are we happy now
with the generated assembly?

Of course NOT!

The problem left

lea (5+%rax*4), %rbx lea (5+%rax*4), %rbx
subq %r9, %rl10

subq %rbx, %rax
movq %r10, 0(%rl11)
movq 0(%rax), %r10
movq %r10, O(%rsp)
movq %r10, %r8

subq %rbx, %rax

movq 0(%rax), %rl0
movq %rl10, O(%rsp)
movq %r10, %r8
subq %r9, %rl0
movq %rl10, 0(%rl11)

Instructicn
scheduling

Is this a better code?

Putting them all together

IR
1
34 Back-end
4 ™ 4 ™ 4 ™ 4 D
Instruction Register Peephole Instruction
selection allocation matching scheduling
C y, . y, . y, \ .)j

!

Assembly

Thank you!

