
Administrative Stuff

• Use the new version of PLAI from planet. It will

download the first time you run a program with the

“7”, like this:

#lang planet plai/plai:1:7

• This lets you ignore passing test cases (put this at the

top of your file):

(print-only-errors #t)

1

Random Testing in 395

2

Test Cases So Far

Each test relates a particular input to a particular

output.

(test (bound-ids

(with 'x (id 'y) (id 'x)))

'(x))

(test (binding-ids

(with 'x (id 'y) (id 'x)))

'(x))

3

Property-based Testing

But we can only write so many tests by hand.

To find additional bugs, we can automate testing.

We start with what we hope is a fact about our program.

For example,

“If bound-ids says 'x is bound,
then binding-ids says 'x is binding.”

4

Property Violation

If we can find some WAE for which the property doesn’t

hold ...

(define a-WAE ...)

(bound-ids a-WAE) ; ⇒ '(x)
(binding-ids a-WAE) ; ⇒ '()

... we’ve found a bug.

5

Property Testing

We can test this property in the usual style.

; bound=>binding? : WAE -> boolean

(define (bound=>binding? e) ...)

(test (bound=>binding? (id 'x))

true)

(test (bound=>binding?

(with 'x (num 0) (id 'x)))

true)

But the expected result is always true.

6

Automated Property Testing

Write a program to generate test inputs!

7

Random WAEs

; random-WAE: -> WAE

(define (random-WAE)

 (case (random 5)

 [(0) (num (random-nat))]

 [(1) (id (random-symbol))]

 [(2) (add (random-WAE) (random-WAE))]

 [(3) (sub (random-WAE) (random-WAE))]

 [(4) (with (random-symbol)

(random-WAE)

(random-WAE))]))

8

Random WAEs

; random-nat: -> nat

(define (random-nat)

 (case (random 2)

 [(0) 0]

 [(1) (add1 (random-nat))]))

; random-symbol: -> symbol

(define (random-symbol)

 (random-elem '(x y z a b c)))

; random-elem: (listof X) -> X

(define (random-elem xs)

 (list-ref xs (random (length xs))))

9

Generation Strategy

To build a WAE,

1/5 of the time, build a number

1/5 of the time, build a symbol

3/5 of the time, first build two more WAEs

10

Expected Progress

On average, we “reduce” the problem from

Generate 1 WAE.

to

Generate 1.2 WAEs.

since 1.2 = (2/5)*0 + (3/5)*2

11

Height Bound

Limit WAE size by bounding tree height.

; random-WAE/b: nat -> WAE

(define (random-WAE/b h)

 (case (random (if (zero? h) 2 5))

 [(0) (num (random-nat))]

 [(1) (id (random-symbol))]

 [(2) (add (random-WAE/b (sub1 h))

(random-WAE/b (sub1 h)))]

 [(3) (sub (random-WAE/b (sub1 h))

(random-WAE/b (sub1 h)))]

 [(4) (with (random-symbol)

(random-WAE/b (sub1 h))

(random-WAE/b (sub1 h)))]))

(Or adjust weights.)
12

Property Implementation

; bound=>binding: WAE -> boolean

(define (bound=>binding e)

 (sublist? (bound-ids e) (binding-ids e)))

; sublist?: (listof X) (listof X) -> boolean

; Expects xs and ys to be sorted and have no dups.

(define (sublist? xs ys)

 (cond [(null? xs) #t]

[(null? ys) #f]

[(equal? (car xs) (car ys))

(sublist? (cdr xs) (cdr ys))]

[else (sublist? xs (cdr ys))]))

13

Running Tests

; test-bound=>binding: nat nat -> (or 'passed WAE)

(define (test-bound=>binding size attempts)

 (if (zero? attempts)

'passed

(let ([test-input (random-WAE/b size)])

 (if (bound=>binding test-input)

(test-bound=>binding

size

(sub1 attempts))

test-input))))

(test-bound=>binding 5 1000)

14

HW2 Test Results

We ran random tests on your HW2 submissions.

Received 99 submissions

Tested 6 properties

Found a bug in 53 out of those 99 submissions

15

Interpreter Properties

• Does not crash

• Produces same result as another implementation

• Type checker accurately predicts result (later)

• Program equivalences hold

16

With Elimination Example

For example, we should be able to replace a with with

a new function.

{with {x {+ 7 2}}

 {+ x x}}

{deffun {f x}

 {+ x x}}

{f {+ 7 2}}

17

With Elimination Rule, an Attempt

In general,

{...

{with {an-id a-wae}

another-wae}

...}

18

With Elimination Rule, an Attempt

In general,

{...

{with {an-id a-wae}

another-wae}

...}

{deffun {new-id an-id}

 another-wae}

{...

{new-id a-wae}

...}

19

With Elimination Rule, an Attempt

In general,
Different free variables!

{...

{with {an-id a-wae}

another-wae}

...}

{deffun {new-id an-id}

 another-wae}

{...

{new-id a-wae}

...}

20

Rule Example

{with {x {+ 2 7}}

 {with {y {+ x x}}

 {+ x y}}}

{deffun {f y}

 {+ x y}}

{with {x {+ 2 7}}

 {f {+ x x}}}

21

Rule Example

{with {x {+ 2 7}}

 {with {y {+ x x}}

 {+ x y}}}

{deffun {f y}

 {+ x y}}

{with {x {+ 2 7}}

 {f {+ x x}}}

bound

free

22

With Elimination, Fixed

Pass free variables of another-wae as arguments.

{...

{with {an-id a-wae}

 another-wae}

...}

{deffun {new-id an-id

id1 ...}

 another-wae}

{...

{new-id a-wae

id1 ...}

...}

where

(equal?

(free-ids another-wae)

(list id1 ...))

23

Rule Example

x becomes a parameter of f

{with {x {+ 2 7}}

 {with {y {+ x x}}

 {+ x y}}}

{deffun {f y x}

 {+ x y}}

{with {x {+ 2 7}}

 {f {+ x x} x}}

24

