Reference Counting

Reference counting: a way to know whether a
record has other users

Reference Counting

Reference counting: a way to know whether a
record has other users

* Attatch a count to every record, starting at 0

* When installing a pointer to a record increment its
count

* When replacing a pointer to a record, decrement its
count

* When a count is decremented to 0, decrement counts
for other records referenced by the record, then free
it

Reference Counting

Top boxes are the roots

Boxes in the blue area are

allocated memory

Reference Counting

Adjust counts when a pointer is
changed...

Reference Counting

... freeing a record if its count
goes to 0

Reference Counting

Same if the pointer is a root

Reference Counting

Adjust counts after frees, too...

Reference Counting

... which can trigger more frees

Reference Counting And Cycles

An assignment can create a
cycle...

Reference Counting And Cycles

Adding a reference increments a
count

10

Reference Counting And Cycles

Lower-left records are
inaccessible, but not deallocated

1 In general, cycles break reference
counting

11

Reference counting problems

* Cycles
* Maintaining counts wastes time
* Need to use free lists to track available memory

(But there are times when this is a good choice)

12

Mark & Sweep Garbage Collection Algorithm

* Color all records white
* Color records referenced by roots gray
* Repeat until there are no gray records:

© Pick a gray record, r

© For each white record that r points to, make it
gray
© Color r black

* Deallocate all white records

13

Mark & Sweep Garbage Collection

All records are marked white

14

Mark & Sweep Garbage Collection

Mark records referenced by roots
as gray

15

Mark & Sweep Garbage Collection

Need to pick a gray record

Red arrow indicates the chosen

record

16

Mark & Sweep Garbage Collection

Mark white records referenced
by chosen record as gray

17

Mark & Sweep Garbage Collection

Mark chosen record black

18

Mark & Sweep Garbage Collection

Start again: pick a gray record

19

Mark & Sweep Garbage Collection

No referenced records; mark
black

20

Mark & Sweep Garbage Collection

Start again: pick a gray record

21

Mark & Sweep Garbage Collection

Mark white records referenced
by chosen record as gray

22

Mark & Sweep Garbage Collection

Mark chosen record black

23

Mark & Sweep Garbage Collection

Start again: pick a gray record

24

Mark & Sweep Garbage Collection

No referenced white records;
mark black

25

Mark & Sweep Garbage Collection

No more gray records; deallocate
white records

@ Cycles do not break garbage
collection

26

Mark & Sweep Problems

* Cost of collection proportional to (entire) heap
* Bad locality
* Need to use free lists to track available memory

(But there are times when this is a good choice)

27

Two-Space Copying Collectors

A two-space copying collector compacts memory as it
collects, making allocation easier.

Allocator:

* Partitions memory into to-space and from-space
* Allocates only in to-space

Collector:

» Starts by swapping to-space and from-space

* Coloring gray = copy from from=-space to
to-space

* Choosing a gray record = walk once though the new
to-space, update pointers

28

Two-Space Collection

Left = from-space
Right = to-space

29

Two-Space Collection

Mark gray = copy and leave
forward address

30

Two-Space Collection

Choose gray by walking through
to-space

31

Two-Space Collection

Mark referenced as gray

32

Two-Space Collection

Mark black = move gray-choosing

arrow

33

Two-Space Collection

Nothing to color gray; increment
the arrow

34

Two-Space Collection

Color referenced record gray

35

Two-Space Collection

Increment the gray-choosing
arrow

36

Two-Space Collection

Referenced is already copied, use
forwarding address

A

37

Two-Space Collection

Choosing arrow reaches the end
of to-space: done

38

Two-Space Collection

Right = from-space
Left = to-space

39

Two-Space Collection on Vectors

* Everything is a number:
© Some numbers are immediate integers
© Some numbers are pointers

* An allocated record in memory starts with a tag,
followed by a sequence of pointers and immediate

integers

© The tag describes the shape

40

Two-Space Vector Example

* 26-byte memory (|3 bytes per space), 2 roots
© Tag |:one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Root |: 7 Root 2: 0
From: 1 75 2 0 3 210 3 2 2 3 1

4

41

Two-Space Vector Example

* 26-byte memory (|3 bytes per space), 2 roots
© Tag |:one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Root |: 7 Root 2: 0

From: 1 75 2 0 3 210 3 2 2 3 1 4
Addr;: 00 01 02 03 04 05 06 07 08 09 10 11 12

42

Two-Space Vector Example

* 26-byte memory (|3 bytes per space), 2 roots
© Tag |:one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Root |: 7 Root 2: 0

From: 1 75 2 0 3 210 3 2 2 3 1 4
Addr;: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

43

Two-Space Vector Example

* 26-byte memory (|3 bytes per space), 2 roots
© Tag |:one integer
© Tag 2: one pointer

© Tag 3: one integer, then one pointer

Root |: 7 Root 2: 0

From: 1 75 2 0 3 210 3 2 2 3 1 4
Addr;: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

To 0 O O O O O O 0 O O o o o

A

44

Two-Space Vector Example

* 26-byte memory (|3 bytes per space), 2 roots
© Tag |:one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

© Tag 99: forwarding pointer (to to space)

Root |: 0 Root 2: 0

From: 1 75 2 0 3 21099 0 2 3 1 4
Addr;: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too. 3 2 2 0 0 0 0 0 O O O o0 o

A

45

Two-Space Vector Example

* 26-byte memory (|3 bytes per space), 2 roots

From:
Addr:

To:

© Tag |:one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

© Tag 99: forwarding pointer (to to space)

Root |: 0 Root 2: 3

99 3 2 0 3 21099 0 2 3 1 4
00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

3 2 2 17 0 O O O O O O O

A

46

Two-Space Vector Example

* 26-byte memory (|3 bytes per space), 2 roots

From:
Addr:

To:

© Tag |:one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

© Tag 99: forwarding pointer (to to space)

Root |: 0 Root 2: 3

99 399 5 3 210099 0 2 3 1 4
00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

3 2 5 17 2 0 0 O O O O O

A

47

Two-Space Vector Example

* 26-byte memory (|3 bytes per space), 2 roots
© Tag |:one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

© Tag 99: forwarding pointer (to to space)

Root |: 0 Root 2: 3

From: 99 3 99 5 3 21099 0 2 3 1 4
Addr;: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too. 3 2 5 17 2 0 0 0 0 O O0 O

A

48

Two-Space Vector Example

* 26-byte memory (|3 bytes per space), 2 roots
© Tag |:one integer
© Tag 2: one pointer
© Tag 3: one integer, then one pointer

© Tag 99: forwarding pointer (to to space)

Root |: 0 Root 2: 3

From: 99 3 99 5 3 21099 0 2 3 1 4
Addr;: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

Too. 3 2 5 17 2 3 0 0 0 O O0 O

A

49

Further reading

Uniprocessor Garbage Collection Techniques, by Wilson

ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps

50

Mark and sweep implementation, with linear-time allocator

; a roots is either:
; - root

; - loc

; - (listof roots)

; alloc : number[size] roots roots -> loc
(define (alloc n some-roots some-more-roots)
(let ([next (find-free-space 0 n)])
(cond
[next next]
[else
(collect-garbage some-roots some-more-roots)
(let ([next (find-free-space 0 n)])
(unless next (error 'alloc "out of space™))
next)])))

51

Mark and sweep implementation, with linear-time allocator

; find-free-space : loc number -> loc or #f
(define (find-free-space start size)
(cond
[(= start (heap-size)) #£f]
[(n-free-blocks? start size) start]
[else (find-free-space (+ start 1) size)]))

; n-free-blocks? : loc number -> loc or #£
(define (n-free-blocks? start size)
(cond

[(= size 0) #t]

[(= start (heap-size)) #£f]

[else

(and (eq? 'free (heap-ref start))
(n-free-blocks? (+ start 1)
(- size 1)))1]))

52

Mark and sweep implementation, with linear-time allocator

; collect-garbage : roots roots -> wvoid

(define (collect-garbage some-roots some-more-roots)
(mark-white! 0)
(traverse/something (get-root-set))
(traverse/something some-roots)
(traverse/something some-more-roots)
(free-white! 0))

53

Mark and sweep implementation, with linear-time allocator

; mark-white! : loc -> void
; marks all records as white, starting with 'i’
(define (mark-white! 1i)
(when (< i (heap-size))
(case (heap-ref i)
[(pair) (heap-set! i 'white-pair)
(mark-white! (+ 1 3))]
[(flat) (heap-set! i 'white-flat)
(mark-white! (+ 1 2))]
[(free) (mark-white! (+ i 1))]
[else (error 'mark-white!
"unknown tag ~s"
(heap-ref i))1)))

54

Mark and sweep implementation, with linear-time allocator

(define (free-white! 1i)
(when (< 1 (heap-size))
(case (heap-ref 1i)

[(pair) (free-white! (+ 1 3))]

[(Elat) (free-white! (+ 1 2))]

[(Wwhite-pair) (heap-set! i 'free)
(heap-set! (+ 1 1) 'free)
(heap-set! (+ i 2) 'free)
(free-white! (+ 1 3))]

[(white-flat) (heap-set! i 'free)
(heap-set! (+ 1 1) 'free)
(free-white! (+ 1 2))]

[(free) (free-white! (+ 1 1))]

[else (error 'free-white! "unknown tag ~s"

(heap-ref 1i))])))

55

Mark and sweep implementation, with linear-time allocator

; traverse/something : roots -> void
; traverses the heap, marking
; everything reachable from 'roots'
(define (traverse/something thing)
(cond
[(lList? thing)
(for-each traverse/something thing)]
[(root? thing)
(traverse/loc (read-root thing))]
[(number? thing)
(traverse/loc thing)]))

56

Mark and sweep implementation, with linear-time allocator

(define (traverse/loc loc)
(case (heap-ref loc)
[(white-pair)
(heap-set! loc 'pair)
(traverse/loc (heap-ref (+ loc 1)))
(traverse/loc (heap-ref (+ loc 2)))]
[(white-flat)
(heap-set! loc 'flat)
(let ([val (heap-ref (+ loc 1))])
(when (procedure? val)
(traverse/something
(procedure-roots val))))]
[(pair) (void)]
[(fElat) (void)]
[(fEree)
(error 'traverse/loc "free value reachable @ ~s"
loc)])) 57

