Random Testing for Higher-Order, Stateful Programs

Casey Klein Matthew Flatt Robert Bruce Findler
Northwestern University University of Utah Northwestern University
clklein@eecs.northwestern.edu mflatt@cs.utah.edu robby@eecs.northwestern.edu
Abstract not yet written classes—as arguments to methods is a power-

d- fulform of openness that enables programmers to more eas-
ing bugs. Still, we know of no automatic technique for gener- Iy @bstract and write reusable code. The basign Pat-

ating test cases that expose bugs involving a combination Ofte_rns(Gamma e’t al. 1994) IS full of e_xamples _for exploiting
mutable state and callbacks, even though objects and methocﬁh's_ power. IBM's San Francisco project (Rubin et al. 1998)’
overriding set up exactly that combination. For such cases, Which claims to be the largest Java development effortin the
a test generator must create callbacks or subclasses that ag¥0"d: is predicated on such extensibility.

gressively exercise side-effecting operations using Goaab The flexibility of an open system incurs a commensu-
tions of generated objects. rate cost: effective testing is difficult, because the spce

This paper presents a new algorithm for randomly test- behaviors for the systems is large and complex. Automated

ing programs that use state and callbacks. Our algorithm ex-testing sho_ul_d be able_ to help; indeed, there hundreds (?f pa-
ploits a combination of contracts and environment bindings PErS containing techniques for automatically testing cbje
to guide the test-case generator toward interesting inputs oriented programs. Few of those techniques, howevergreat

Our prototype implementation for Racket (formerly PLT objects with new F’ef_‘a"ior to supply to the program under
Scheme)—which has a Java-like class system, but with first- test. The_vast majority of systems assume mst_ead that the
class classes as well as gbeta-like augmentable methods_Program is closed (i.e., that the tester is supplied with all

uncovered dozens of bugs in a well-tested and widely usedPOSsible classes), or they are even more limited, supgprtin
text-editor library only methods that operate on first-order data.

We describe our approach in a precise, formal notation, Ve have developed a new algorithm for automated test-
borrowing the techniques used to describe operational se-Nd that addresses the problem of generating objects with
mantics and type systems. The formalism enables us to pro-neW behaviors. OW approach foII_ows precedent_s In using
vide a compact and self-contained explanation of the core Programmer-supplied contracts (Findler and Felleiser2p00

of our technique without the ambiguity usually present in t© guide test generation and in building up pools of objects
pseudo-code descriptions. to use as test |nput§. By synthesmn_g and generalizingethos

) .)) precedents, we arrived at an algorithm whose core can be
Categories and Subject Descriptors D.2.5 [Testing and described by just a few simple test-generation rules.

Testing is among the most effective tools available for fin

Debugging: Testing tools; D.2.4 $oftware/Program Ver- We validated our algorithm by applying it to the imple-
ification]: Assertion checkers mentation of DrRacket (Findler et al. 2002), the program-
General Terms Verification, Reliability ming environment for Racket (Flatt and PLT June 7, 2010).

DrRacket’s text editor is implemented by a class that sup-
ports an extensible set of editable items, as well customiza
tion through method overriding. Editing, drawing, measur-
1. Introduction ing, copying, and conﬂgurmg the te_xt editor each involve a
o _ _ myriad of methods over multiple objects. Many methods ad-
Extensibility is the hallmark of object-oriented program- jyst the internal state of the editor, and many state transfo
ming. The ability to pass objects—of unknown, and possibly mations require calling multiple methods, any of which can
be overridden. Designing classes and methods that enable
extensibility while maintaining the integrity of the edit®
Permission to make digital or hard copies of all or part of thiork for personal or state is a formidable task. Our random'teSting algorithm un
classroom use is granted without fee provided that copesiair made or distributed covered upwards of 58 previously unknown bugs, more than
for profit or commercial advantage and that copies bear titiseand the full citation . L
on the first page. To copy otherwise, to republish, to posteswess or to redistribute half of which could Only be Catht by SyntheS|Z|ng new sub-

to lists, requires prior specific permission and/or a fee. classes that exercise the editor API in particular ways.
OOPSLA/SPLASH '10 October 17-21, 2010, Reno/Tahoe, Nevada, USA.
Copyright © 2010 ACM 978-1-4503-0203-6/10/10. . . $10.00

Keywords Software Testing, Random Testing, Automated
Test Generation, Racket

i nterface BoundedStackl {
voi d push(Object iten);
/Il @requires this.capacity() >= 1;
/1 @ensures !this.enmpty();

Qbj ect pop();
/[l @requires !this.enpty()

void push_n(int n, Cbject item;
/Il @requires this.capacity() >= n;

voi d add_obs(Cbserverl
int capacity();
bool ean enmpty();

0);

}

interface Cbserverl {
voi d after_push(BoundedSt ackl
bject item;
/l@requires !'s.enpty();
/'l @ensures !s.enmpty();

S!

Figure 1: Bounded Stack Contract

2. Contracts as oracles and generators

A contractis a complement to a type system and a gen-
eralization of pre-/post-condition checking. A contract o

Theadd_obs method registers an observer for the stack.
The final two methods;apaci t y andenpt y, query the
internal state of the queue, accepting no arguments, and
returning the number of available slots in the stack and
whether the stack is empty, respectively.

Finally, theObser ver | interface has a single method,
aft er _push, that is called each time theush method
is invoked. Theaf t er _push method is supplied the in-
stance of theBoundedSt ackl interface whosepush
method was invoked and the value that was pushed. Since
it is called after thepush was invoked, its pre-condition
indicates that it will receive a non-empty stack. To guar-
anteepush’s post-condition, howeveaf t er _push has
is own post-condition that guarantees that the result i als
non-empty.

The contracts tell us a lot about the behavior of any imple-
mentation of th&oundedSt ackl interface. The contracts
also indicate who is at fault when a contract violation oscur
On one hand, if the post-condition of thes h method fails,
then theBoundedSt ackl implementation is to blame. On
the other hand, if the pre-condition pbp fails, then the
client of theBoundedSt ackl method is to blame. Thus,
if we wanted to test 8oundedSt ackl implementation,
the pre-condition contract limits the space of the inténgst
inputs, implicitly giving us a test case generator, while th
post-condition contract gives us a test oracle.

In general, the blame assignment from a contract viola-
tion directly corresponds to the contract’s role of as a test
case generator or as a test oracle. If the program beinglteste

a function or method refines the type of each argument by would be blamed for a contract violation, the contact is & tes
placing additional run-time checks on it. Simple checks can oracle. If the test harness we generate is blamed for a con-

be performed immediately, while other checks must be de-

layed until the argument is used. For example, if a function

tract violation, the failure provides information aboutwho
to generate test inputs. As another example, if we testtslien

receives as an argument another function or an object, therof a BoundedSt ackl implementation, then the roles of

constraints on the behavior of the function or object apply

the oracle and generator are reversed, again matching blame

only when the function is called or the object’'s methods are assignment.
invoked. A key property of these checks in a contract system The correspondence between blame, test-case generators,

is the proper tracking dflame when a contract check fails,
the responsible party can be correctly identified.

and oracles generalizes to higher-order interactionsdsiw
components. For example, imagine that we are interested in

Contracts are a natural stepping stone for random testtesting howBoundedSt ackl objects interact with their

generation. In particular, blame assignment for a contfiact

observers. Specifically, consider the pre- and post-ciomdit

olation determines whether the corresponding contract cancontracts on thaf t er _push method. Since the test case
play the role of a test generator or an oracle. To see howgenerator constructs new observer objects, it is not respon

this works, consider figure 1. It contains a contract specifi-
cation for a stack module, written using JML notation. The
BoundedSt ackl interface supports six methodsush,
pop, push_n, add_obs, capaci ty, andenpty. The
push andpop methods perform the usual addition and re-
moval of objects in the stack. Thush method has a pre-

sible for their pre-conditions, but instead is responsible
their post-conditions. Following the correspondence with
blame, the pre-condition is now playing the role of a test
oracle, not a test-case generator.

In general, pre-conditions and post-conditions are not a
priori tied to either oracles or test-case generators. Bine ¢

condition that states that there must be at least one moreditions swap roles in correspondence with the number of
place in the stack and has a post—condition Stating that thetimes the Object has appeared as an inpu'[_ In our stack ex-

stack is not empty. Theop method has a pre-condition that
the stack not be empty and no post-condition. phsh_n
method provides a shorthand for filling the stack with multi-
ple copies of t em

ample, the stack’s pre-conditions and post-conditions are
matched up with generators and oracles. In the case of the
observer, because the observer is an input to the stack,

the roles reverse, making pre-conditions oracles and thecl ass BoundedSt ack

post-conditions generators. Of course, observers alspacc

stacks as inputs, and thus, for those stack objects, the role
reverse one more time, making pre-conditions generators

and post-conditions oracles again.

In a manner similar to function-argument contravariance,
contracts that are in negative positions (i.e., appearing a
odd number of times to the left of a function arrow) play the
role of generators, and contracts that are in positive jposit
(i.e., appearing an even number of times to the left of a
function arrow) play the role of test oracles.

3. Test-generation strategy
At a high level, our strategy for automatically testing code

can be represented as a function that accepts an environment

(mapping identifiers to types) and a type. It randomly gener-

i mpl ement' s BoundedSt ackl {
i nt bound=10000;
bj ect[] buffer = new Object[bound];
int tos = -1;
Set <Observer| > observers =
new HashSet <Cbserverl>();

public Object pop() {

tos--;
return buffer[tos+1];

}

public void push(Object itenm ({
t os++;

buffer[tos]=item
for (Cbserverl o : observers)
o.after_push(this,item;

ates a program that uses the given environment and has the }

given type.

Our strategy uses two basic techniques for generating

programs. The first technique creates a value directlyrigno
ing the environment. For base types liket orbool ean,
this means picking a random value of the given type. For

function types, this means adding the parameter of the func-

tion to the environment and then using the larger envi-
ronment to generate a function body with the type of the
codomain. For object types, we first derive a new class,
which amounts to overriding a subset of the methods in
the object’s class, where creating each overriding method i

analogous to creating a new function; once we have the new

class, we instantiate it to create an object.

The second technique involves the environment. Our
strategy might use a variable directly from the environment }

if one with the right type is available. Alternatively, it giit

public void push_n(int n,
hj ect
for (int i=0;i<n;i++)
push(item;
}

public void add_obs(Cbserverl
observers. add(0);

}

public int capacity() {
return bound-tos;

}

public bool ean enpty() {
return tos==-1;

}

item {

0) {

pick an arbitrary a function or a method in the environment, i nt er f ace Cbserver!| {

recursively build something of the argument’s type, invoke

the function or method, bind the result to a new variable, and
recur with the extended environment (still aiming to gener- }

ate a program of the desired type). Note that the latter nptio

is independent of the type being generated, and we are effec-

tively hoping that the result of the function or method call i

useful or that the function or method call changes the state

of some object in an interesting way.

To see our strategy in action, consider a buggy revision of

the Cbser ver | interface andBoundedSt ack, which is
a buggy implementation of tiBoundedSt ackl interface,
shown in figure 2. Imagine that the goal is to buildiant ,
and that the environment initially contains only tBeund-
edSt ack class.

voi d after_ push(BoundedSt ack s,
hject item;

Figure 2: Buggy bounded stack and observer

aswell as aitbj ect forthei t emargument. For thet em
argument, the generator could use the environment and pick
the stack itself. For the argument, the generator may decide
to call thecapaci t y method.

Assuming that the generator makes at least these deci-

Initially, the test generator’s only options are to produce sjons, it produces a program like the following, which trig-
ani nt directly or to create an objeBoundedSt ack and gers the first bug, an array bounds error.

put it into the environment. Once the test generator builds

an object, however, several other options become available BoundedSt ackl s = new BoundedSt ack() ;
Imagine that the generator decides to invoke plush_n s.push_n(s.capacity(),s);

method. To do that, it must build amt for then argument,

en= Ax.e TI= XiT,e — XiT,e 4. Formal model
| e(e) | Int This section makes the intuitive description in section&-pr
| x) | Bool cise via a formal model. Central to our model are judgments
[letx=eine of the form
| die(msg)
|if (e){e}else{e} I'tt=e
| true This judgment is derivable when our technique could gener-
} _fatlse ate the expressioa of type T from an environment. For
integer

a givenI' andt, derivations for many differera are typi-
cally possible, corresponding to the many different expres
sions that a random generator might produce.

Figure 3: Grammar

4.1 Language

Figure 3 shows a simple functional language that we use for

our formal model. This language does not include an object
To fix this bug, thecapacity method should return system or state, which we omit to simplify the formal pre-
bound-tos-1. This bug is relatively easy to find. Our sentation. Section 5 discusses the generalization to tsbjec
algorithm finds it 1 in 12 tries, or about once every three and state. For now, it is enough thatproduces a particu-
quarters of a second on a 3 GHz iMac. larly simple form of an object—one with a single method,

To discover the bug in the revision of ti@ser ver | where its fields are implicit in its environmeht.

interface, the generator must decide to call #ukl_obs Beyond, our formal language contains application ex-
method, which would trigger the decision to create animple- pressions, variableset expression to bind temporary vari-
mentation of theCbser ver | interface. In the body of the ables,die expressions that terminate the program with a
generatedbser ver | ’s af t er _push method, the gen- fixed messagef expressions (analogous t@... ... expres-
erator must invoke the stack¥p method. Finally, the gen- sions in Java and C), integers, and the booldans and
erator would have to decide to push something onto the ob-fg|se.
served stack. Putting all of that together, the generataitavo We omit the operational semantics for this language, as it

produce code something like the following:

cl ass Qbserver
i mpl enents Cbserverl {
public void after_push(BoundedSt ack s,
ohject item {
s. pop() ;

}

BoundedSt ackl s = new BoundedSt ack();
s. add_obs(new Cbserver());
s. push("itenl);

This code signals an error blaming tBeundedSt ack’s
push method for failing to establish its post-condition. The
fix is to restore the pre- and post-condition contracts in the

is standard (Felleisen et al. 2009, Ch. 4).

4.2 Types

The type system for the simple functional language layers
contracts on top of a standard type system. Base types are
eitherInt orBool. Function types combine a standard arrow
type with pre-condition and post-condition expressions of
type Bool. The domain portion;: 71,61 of an arrow type
consists of the domain’s typr as well as a boolean-valued
pre-condition expressiog . The variablex; is bound to the
input to the function and is visible iy but not inty. The
codomain portiornx,: 7,6 of the arrow type is similar, with

T, being the codomain type amg the post-condition. Both
variablesxq andx, are bound in the post-condition, and the
variablex, is bound in the type,. For example, assuming

a few more numeric operations, the type

d:Int,d > 0 — r:Int,absf*d-r) < 0.01

Qoserver | interface, properly shifting the blame to the describes theqrt function.

observer.

To capture the various constraints about free variables,

While this second bug requires the generator to make and to make sure that the expressions embedded in types are
several fortuitous choices, our experiments suggest that i well-formed, we define the judgment

does so about 1 in 250 tries, i.e., about once every one and
a half minutes on the same machine. To find this bug, the

Tkt

generator .mUSt C(.)nStrUCt.and evéluate Iarger prqgrams thanh”e this point of view may lead you astray for other aspectelating
were required to find the first bug; consequently, it performs nctional and object-oriented languages, it works wallthe purposes of

fewer tests per second.

our random test case generation algorithm.

T+{xititke:n I XiT1,e1 — X218 T e xit,e; — Xoi72,6; re':n Ix)=t Tk (Ax.e)(1): T
T AX:. € X1iT1,81 — X2T2,€ Tke@E): IT'kx:t Thkletx=eine:t
I'ke;:Bool ket T'kes:T Ikt
I' k- integer : Int Ikif(e){e.}else{es}: T I'true:Bool T kfalse:Bool THkdie(tag):t
[FT]
T Tkt
Fo F I+{x:7}
=
Tk I+{X, T} - T2 T+{x;:T:} + e, : Bool T+{X1:T1, X2:T2} F €, : Bool
I'Bool Tkint T X:T,81 — X2iT2,€2
Figure 4: Typing rules
1—‘(X) =T [Var] F(f) = X1:T1,€1 — X2.T2,€2 T l— T1 O e r+{Xz:Tz} l— T3 0 €3 [Ca”]
I't0O x I70letx, =¢'
in let x, = if (e)) { f(x)) } else { die(gen) }
rue S .
I'F Bool O true [True] inif (e2) { es } else { die(pr 0g) }
—————— [False] M+xnikF0 e
Fn
I'FBool [faise T XiiT1,€1 — XoiT2,8, O AXy. if (61) {let x, = ¢€' [Frl
[Number] inif (e;)) {x.}else{die(gen) }}

I'Int O integer

else {die(prog) }

Figure 5: Test case generation rules

as shown in figure 4. It determines when a typées well-
formed, given an environmeftthat maps variables to their

it says that iff is bound to a function of typ&,:7,,6; —
X2:T2,6, and if generating a value of typg succeeds, then

types, and it refers to the typing rules for expressions em- the generator can try to producea(the original goal) using

bedded in types. Similarly, the judgment
FT
holds wherl” contains only well-formed types.

an environment that contains a bindingxgfto some value
of type ».

Since the[Call] rule generates a call to a function in
the environment, it must verify that the pre-condition tld

The remaining rules in figure 4 give types to expressions, so it produces aif expression that tests the pre-condition.

and are standard, except that they lise T judgments to
ensure that programs have only well-formed types.

4.3 Generating programs

When it fails, we know that the generator produced a bad
test case, and thus the else branch of ithélames the
generator. Dually, when the called function returns, we tes
the function’s post-condition to see if the call reveals Hiig

The core system is given in figure 5. The rules are divided gq the test case aborts blaming the function.

into two groups. The upper two rules use the environment

to generate new expressions. The upper-left pdég] sim-

The remaining rules generate expressions directly, with-
out using the environment. THérue], [False], and[Num-

ply says that if the envirpnment contains a variable bound ber] rules generate base values. The final fElg generates
to the type to be synthesized, then the generator’s result ca 5 fnction by adding the parameter to the function to the

be a reference to that variable. The upper-right {@all]
optimistically generates a call to some function in the envi
ronment to see if that will help with generation. Specifigall

environment and generating a body expression of the range
type. Of course, the function may not live up to its post-

Base
I+{d:Int} - Int 0 2 []
I'k Increasing O
/\dl. |et = 2
inif(di<r){r}
else {die(gen) }

[Fn]

, [Base] :
T'+{g:Doubling} - Int O 2 I'+{g:Doubling, rzInt} - Int O r,

[Var]

I'+{g:Doubling}F Int O letd, =2
inletr,=g(dy)
inif (Z*dz < rz) { rz}
else {die(prog)}

[Call]

TkiIntO letg="f(Ad;. letr; =2
inif(di<r){n}
else {die(gen) })

Shorthands
Increasing = di:Int — riint,di<ny
Doubling = d;:Int — ry:Int,2*d, <,
T ={f:Increasing — Doubling}

inletd,=2
inletr,=g(dy)
inif (2*d2<r){r.}
else { die(pr og) }

[Call]

Figure 6: Example derivation

condition. In that case, the generated expression is bad, an tion uses th¢Call] rule to generate a call @ the variable it

the test case will abort while blaming the generator to indi-
cate a test-generation failure. If the pre-condition fdil®w-

chose for the result of the call foThus,g has the typ®ou-
bling. This time, the premises of thi€all] are fulfilled with

ever, then the program being tested supplied a bad input toa use of the rul§Base] and a use of the rulg/ar]. The first
the function, and so the test case also aborts—but this timebuilds the argument tg, and the second builds the overall

blaming the program to indicate a bug.

4.4 Anexample

result of the program, using the result of the calgto
Notice that there are two non-trivial contracts embedded
in in the original type fof. One appears as the post-condition

To get a better feel for how the rules work, consider the ex- {0 f's input, and the other appears as the post-conditid's to
ample derivation in figure 6. The derivation uses a number result. In the final program generated by the derivatiomgthe

of shorthands to avoid clutter. Specifically, if any of thepr
or post-conditions are justue, then they are omitted; sim-

are two uses oflie, one corresponding to each contract.
The first use ofdie comes from the post-condition &%

ilarly any if expressions that would have been generated to iNPUt; since it appears an odd number of times to the left of
test such pre- or post-conditions are also omitted. In addi- the arrow, the blame lies with the test case, so wegsse

tion, the three shorthands in the box are used throughout.

The derivation starts by trying to generate lah using
an environment that contains a single functfoithe func-
tion f accepts a monotonic function, specified via the type
Increasing. It returns another function that promises to re-
turn something larger thatwice its input, as specified via
the typeDoubling.

The first step of the derivation uses tfall] rule, pick-
ing f from the environment. The left-hand derivation sub-tree
generates the argument to pas$,tand the right-hand sub-
tree uses the larger environmentto generate the origirad| go
an expression of typkat.

First, consider the generationftf argument. It must gen-
erate something of the tygeacreasing, since that is the
type off's argument. To do so, this derivation uses [ifR]
rule, which extends the environment with something of the

The second use afie comes from the post-condition 6§
result; since it appears an even number of times to the left of
the arrow (i.e., zero times), the blame lies with the funttio
SO we se@r og.

Finally, if f were the functiomdg.g(2)*10, then the test
case would abort with the blame assigned to the generator.
If, on the other handf were Ag.Ax.g(g(x)), then the test
case would abort with the blame assigned to the program,
detecting a bug.

4.5 Atheorem

Using a formal system to define our generation strategy lets
us establish some properties. For example, a natural questi
about this system is whether all generated terms indeed have
the types they should. Formally, we can express the answer
as a theorem.

input type and generates a function body. In this case, theTheorem.If mT'andl' -7 = e, thenl' -e:t

derivation uses thiBase] rule to generate the result of the
function, namely the number 2. Once the body of the func-
tion is generated, it can be packaged into Akexpression
by the[Fn] rule, along with a check dhcreasing’s post-
condition.

Having completed the derivation of the the argument to
f, turn to the other half of the main derivation, which is the
second occurrence of tf€all] rule. This time, the deriva-

The proof of this theorem is a straightforward induction
on the structure of the derivation 6ft- T = e. If the[Var]
rule is the last rule in the derivation, then we can use the typ
checking rule for variables, since the premises matchef th
[Call] rule is used, then, by induction, we have derivations
of T F € : 71 andT+{x:7,} I e3 : 73. Also, sincet
T', we know that the expressiors ande, both have type
Bool . Given that, and the rules for typing expressions, we

can construct a derivation that the right-hand side of the
[Gen] has typets. In the base type cases, we know that
the generated term type checks, and [the] rule follows

a similar argument to thZall] rule.

complex

real

4.6 The value of a formal model \

Most of the testing literature uses algorithmic pseudocode
(or sometimes just prose) to describe its techniques. We in-
stead follow the established conventions of the type system X
and operational semantics literature and use a formalmsyste
to describe the tests our technique can create.

We believe this shift benefits both readers and authors. \ /
A formal model provides readers a more precise and, in our
opinion, a clearer account of our technique than we could
give with pseudocode, which easily hides subtle but impor-
tant details. Precision and clarity benefit authors too.-Con
structing a formal model helped us better understand our
own technique—even after implementing a working proto-
type. For example, consider tfi€all] rule in Figure 5. The

integer

nonnegative real exact intege

exact nonnegative integg

=

exact integer in [0, 10”9

final premise generates, using an environment that does exact integer in [0, 105

not includexy, though that result could fruitfully contribute / \

to e3. We devised the rule in the figure by examining the

prototype’s implementation, but only after seeing the bind exact integer in [1, 10°5] | exact integer in [0, 10"4)

ing structure in the rule’s precise notation did it become ob /

vious that the generated programs could make better use of

intermediate results. exact integer in [1, 10"4 exact integer in [0, 1073
3

5. From A to a real language /

exact integer in [1, 10"3| exact integer in [0, 256

Our prototype tool converts the rules of section 4 into a
test-generation algorithm. It also scales the test-g¢ioara
rules to _handle many fegtures of Racket, including con- Figure 7: Subyping

tracts (Findler and Felleisen 2002), classes (Flatt et al.

2006), richer function-calling conventions (Flatt and Bar

lay 2009), and the Scheme numeric tower. Finally, it ad- arguments, as well as @ase- | ambda form that allows
dresses the practical problems of avoiding bad test cases andispatching on the number of arguments at a call site. Sup-

dealing with non-termination. port for these function forms mostly requires beefing up the
) [Call] rule (and the rule for method invocation).
5.1 Afull-fledged programming language Finally, we add many new rules like the ones for base

Generalizing from the simple programming language in sec- types, to handle generation of expressions satisfying the
tion 4 to Racket requires a number of extensions to the rules.contracts that commonly appear in the Racket codebase.
The primary extension adds support for Racket’s object sys-)
tem. Like Java, Racket has a class-based object system; un®-2 Subtyping
like Java, classes in Racket are first-class values, andthe o Racket inherits Scheme’s sophisticated number system, in-
ject system supports a wide range of method combinations.cluding complex numbers, exact rationals, and IEEE float-
Like Java, subclasses may override methods; unlike Java,ng point numbers. The library that we tested required only
subclasses may augment methods, a la gbeta (Ernst 199%ome of the many different number types in Racket; figure 7
Flatt et al. 2006). shows the precise ones that we used and their subtyping re-
To support Racket’s object system, we extend the type lationships. The library we tested also used many other more
system to allow class types and object types. A new rule, conventional subtyping relationships, such as the coatiav
similar to the[Fn] rule, allows the system to generate a antrelationship for function types, the class inheritamee-
subclass of an existing class. Another new rule, similar to archy, and the normal relationships between pairs, lists, a
the[Call] rule, generates a method invocation. other compound types.
In addition, we generalize th§Call] rule to support Adding subtyping to the system amounts to changing
Racket’'s more sophisticated function-call conventiongditin ~ the [Var] rule so that it allows picking a type out of the
arity functions that support optional arguments and keylwor environment that is a subtype of the desired type.

5.3 An algorithmic version of the rules we decrement the depth bound each time we apply a rule that
can increase the number of goals; if the bound reaches zero,

The rules in section 4 admit a wide range of possible pro- !
we avoid such rules.

grams, and they allow multiple derivations for most combi-
nations of a particular type and an environment. To build an
algorithm for generating a program, we use three techniques
randomness to choose a rule when multiple rules (or multiple The rules contain two expression templates that signat®rro
instances of a given rule) apply, a depth bound to limit the assigning blame to the generated program. In both cases, an
size of derivations, and continuation-passing style tgpsup if €xpression guards the failure. In our prototype, we use that

5.4 Trying harder to avoid failure

backtracking when some part of a generation fails. conditional to make a few additional attempts to try to Sﬁﬁtls
Our top-level generator function has the signature the pre-condition.
The failure that blames the generator in /@] case
generate : type env depth matches the generator's failure when our prototype tries
(expression -> X) to construct the result of a method. Our generator often
(->X) constructs methods to override other methods. In that case,
-> X the generated expression can avoid signaling blame directl

The first two arguments match the rules. The third argument @nd instead try to make a call tsaper method. Of course,
specifies a depth bound; when it reaches zero, the generatof’€Super call may also fail and blame the generator if the
fails. The final two arguments are success and failure contin Pré-condition of the method fails, but that kind of failuge i
uations. When the generator succeeds, it invokes the siccesMuch less likely. _ _ o
continuation with the expression that it built. When the-gen A failure in the[Call] rule is also easily avoided in prac-
erator fails, it invokes the failure continuation. Usingneo tice- Specifically, the generator creates a backup exjpressi
tinuations in this manner make it easy to implement back- that it puts in place of the expression that blames the gen-
trackingd For example, the generator may attempt to use the €rated program. When the depth is too low to generate a
[Call] rule and perhaps even succeed to build one of the argu_backup expression, the generator aborts the entire call at-
ments to the function or method, but then fail to build a later ©MPL.
argument. In that case, the failure continuation will alioet
entire attempt to usgCall] rule and try something else.
Our algorithm gives priority to th¢Call] rule, special- When overriding a methods that involves callbacks, the test
ized to imperative methods and functions. It will, with 80% generator can easily produce an infinite loop. For example,
chance, pick an imperative-looking method or function from Wwith the bounded stack example from section 3, overrid-
the environmentand use tf@all] rule to invoke that method ~ ing theaf t er _push to invoke the stack’'push method
or function. We use a simple test to determine if a method or Would produce a program that loops forever. To avoid infi-
function is imperative: its name ends withor begins with ~ nite loops, the generator adds a counter to every generated
set - (these being standard conventions in the Racket code-method and function; each time the method or function is
base) or it produces a result of typei d. For the remain- called, the counter decrements. If the counter reaches zero
ing 20% of the time, the generator chooses equally amongthe program aborts with a message indicating why, and we
the other three rules or a use of §@all] rule that invokes ~ discard the test case.
a function or method that can produce a subtype of the goal
type. (This second sort of use of tf@all] rule is what would 6. Evaluation

have triggered the de_nyauon shown in sectlo_n 4.4.)) To evaluate our random-testing technique, we applied it to
The depth bound is important for controlling the size of %E]

5.5 Non-terminating programs

. e implementation of DrRacket’s editor class. The editor
generated expressions. For example, suppose that the go

L . ' _ plementation is more flexible and open than a typical
type is integer and that the environment contains an IMPEra-yayt editor. As with a conventional editor, it supports hne
tive function on integers. Choosing to call this functiorueo

. . sequences of text, but it abstracts over the objects that can
bles the size qf the generation problem—we now ”?ed to appear in an editor, insisting only that they be derived from
co_nstruct t.WO integers: one as an afg_‘”T‘_e”t to the 'MPETthe sni p%class. Beyond simple string snips, images and
ative function, and one to satisfy the initial goal. Choos- even nested editors can appear inside an editor. (DrRacket

ing to double the problem size 80% of the time can easily uses nested editors to allow, for example, embedded XML
produce an expression whose representation consumes huq:'ode inside a Racket program)

dreds of megabytes of memory. To avoid such a distribution, The editor classes are also extensible in the way that the

5 : : o snips are positioned. Theext %class implements an editor
In our experience, backtracking does not substantialljemme the gener- 1ot arranges the snips in lines and inserts newlines agdeed

ator’s running time. For example, in generating a batch ofylams with . o

average length 120 LOC, our algorithm invokes 150 failuraticoiations to _make the qontent fit. Thpast eboar d Yoclass allows

per program on average. ships to float in a free-form manner (which DrRacket uses

Requires | Number
Bug category overriding of bugs
documentation bugs no 16
first-order bugs no 13
system dependence on yes 1
default implementation
missing state flag-based yes lots (>20)
pre-condition
methods that should have yes 7
been final
state flags wrong during yes 1
object initialization

Total: lots + 38

Figure 8: Bug summary

to display graphs and to implement a GUI-layout editor).
All of this extensibility makes the editor classes a perfect
opportunity to test our randomized-testing tool.

The results of our evaluation are summarized in figure 8.

The remaining four lines correspond to bugs that, to the
best of our knowledge, can be found automatically only by
our tool.

The first of these lines represents a bug where a derived
editor classschene: t ext % overrides thget - keymap
method from the ext %class in such a way that it never
returns#f (even though its contract allows that). Other parts
of the same subclass assume that - keymap never re-
turns #f , but the subclass does not prohibit future exten-
sions to theget - keynmap method. To expose the bug, the
test generator created an example like the following, ngakin
get - keynmap return#f ; simply creating an instance of the
derived class triggers the error.

(define t%
(class schene:text %
(definel/override (get-keymap)
#f)
(super-new)))

(new t9%
The final three lines in figure 8 concern bugs that incor-
rectly cope with the locking mechanism in thext %class.

Each row Corresponds to a certain Category of bugsl ShowingA text editor uses four different levels of |OCkingn|OCked

a brief description of the bugs, whether the bugs require
overriding, and the number of bugs found in that category.
The categories are ordered by increasing complexity.

The first row contains bugs that we are embarrassed to

where any method can be calléldw lockedwhere methods
that can change the locations of soft line breaks are forbid-
den;write locked where methods that change the content of
the editor are forbidden; arrdad lockegdwhere nearly all of

report_ Speciﬁca”y, the Racket contract System does not ye the methods are forbidden. Each of these modes has a match-

support the language’s higher-order class system. Conseing boolean-valued method (that can always be called) that
quently, the contracts on editor classes were written anly i €xposes whether the editor is in the corresponding mode.

the documentation; separate, hand-rolled checks are in the The most common bug in these categories concern in-
implementation. To run our prototype, we wrote a parser accurate method pre-conditions. For example, this program

that builds contracts from the documentation source. If the

triggers a contract violation of theel et e method’s pre-

resulting contracts were added in a checkable way insteadcondition:

of just to documentation, we believe that all of the errors in
these contracts would have been found by simply starting up
DrRackefl

The second row in the table represents bugs that could

have been found by many existing random-testing tools.
Here is an example of a (simplified) test case for one of those
bugs:
(define sl (new style-list%)
(define bs (send sl basic-style))
(define js
(send sl find-or-create-join-style
bs bs))

(send sl new naned-style

"The Nane"

is)
Finding this bug requires only that the testing tool be able t
call methods and put their results together.

3 Happily, we expect this implementation flaw to be remedieahgtrick-
land and Felleisen 2010).

(define t%
(class text%
(define/augnent (on-insert x vy)
(send this clear))
(super-new)))
(send (new t% insert "y")
Thedel et e’s method can only be called in the unlocked
state, but during the dynamic extent ©f ear , the editor
is write locked. The bug is that thel ear method’s pre-
condition should say that it can only be called in the un-
locked state.

We found 7 bugs where methods that were public should
have been final. For example, tha- edi t - sequence?
method queries some internal state of an object. If it is
overridden to return a bogus version of the state, then this
program will fail.

(define t%

(class text%

(define/override (in-edit-sequence?)

#f) first-order contracts to guide symbolic execution and detec

(super-new))) bugs. Crash 'n’ Check (Csallner and Smaragdakis 2005)
and its successor DSD-Crasher (Csallner and Smaragdakis
(send (new t% undo) 2006) use a constraint solver to extract concrete tests from

This program fails because the contract fordinelo method warnings produced by ESC/Java (Flanagan et al. 2002).
callsend- edi t - sequence, whose contractis phrasedin eToc (Tonella 2004) evolves test sequences using a ge-

terms of the overridden methodn- edi t - sequence?. netic algorithm based on coverage. JCrasher (Csallner and
Since that method is now returning bogus values, the con- Smaragdakis 2004) and Randoop (Pacheco et al. 2007) con-
tract fails when it should not. struct sequences at random. Others, such as Evacon (Inkum-

Five of the other bugs in this category are similar to sah and Xie 2009) and MSegGen (Thummalapenta et al.
this one, where the overridden method fails to accurately 2009), combine several techniques.
report some internal state of the object. The remaining bug, Our technique builds on the generation strategies em-
however, required the@ar agr aph-start - position ployed in JCrasher and Randoop. The generation rules in fig-
method to be overridden. That method'’s job is to return the ure 5, which allow tests to construct arguments by combin-
position in thet ext %object where a paragraph begins, i.e., ing values in the environment, can be seen as an extension
a position just after a newline in the editor. When it fails to of the parameter-graph JCrasher uses to select method ar-
do so, it causes the line-breaking algorithm to fail intégna guments. Following Randoop, our generation algorithm of-
with an array-indexing error. fers two improvements over JCrasher. First, our rules give
Finally, the remaining bug was that thext %state vari- names to (some) intermediate results, allowing generation
ables were notinitialized properly during the dynamic exte of sequences like the following:
of the call to the constructor. The object should have been BoundedStack s = new BoundedSt ack();
completely locked during this time and, once the constiucto s. push_n(s. capacity());
finished, it should have been unlocked. Discovering this bug As Pacheco et al. note, JCrasher’s algorithm cannot pro-
requires the test case generator to override a method that isluce aBoundedSt ack in this configuration because the
called during the dynamic extent of the constructor, like th objects it constructs as method arguments flow only to the

def aul t - st yl e- nane method is in this case: corresponding call sites, without contributing to any othe
(define t% expression. Second, JCrasher’s algorithm never chooses to
(class text% call a method returningoi d, in order to reduce the size of
(define/override (default-style-nane) its search space; our algorithm, on the other hand, deliber-
(send this |ine-paragraph 1) ately generates calls to methods with side-effects (ifledti
" St andar d") heuristically according to their name and result type) sThi
(super-new))) crucial for generating the methods of a class whose objects
are used as callbacks.
(new t9% Unlike our algorithm, which promises to generate an ex-

The other editor claspast eboar d% does not sufferfrom pression of a requested type, Randoop generates sequences
this bug, because it does not invoke any overridable methodsthat result in a value of a random type. Its algorithm gener-

during its initialization. ates a sequence by iteratively appending a call to a method
chosen at random, without regard for its result type. For
7 Related Work many classes, this strategy works well, due to Randoop’s

R _ . feedback-directed heuristics, but because it does notaseek
T_he test gene_ratlon I|teratl_Jre is vast. '_ro narrow the Qrscus result of any particular type, its sequences cannot be used a
sion, we restrict our attention to techniques that test impe method bodies, as those require a result of a specified type.

ative object-oriented programs using a sequence of method To the best of our knowledge, none of the aforemen-
and constructor calls. This distinction excludes toolhsag tioned tools generate tests for open classes suBo@sd-

DART (Godefroid et al. 2005), CUTE (Sen and Agha 2006), edSt ack, where a method takes an instance of an ab-
and EXE (Cadar et al. 2006), which test a program by gen- stract class of which implementations do not exist or rep-
erating its top-level input, since our focus is unit-levests resent only a small portion of possible use cases. JSCon-
of stateful, reusable components. Test (Heidegger and Thiemann 2010), a contract-driven ran-
Even within this restricted class, testing techniques vary dom test generator for \]avaSCript' offers some Support for
widely. Rostra (Xie et al. 2004) and JPF (Visser et al. 2006) testing open classes in the form of higher-order functions,
perform bounded exhaustive testing, using state matchingput the functions it constructs as test inputs do not have
to avoid generating redundant sequences. Symstra (Xie ekjde-effects and do not make use of their arguments (except
al. 2004), and PEX (Tillmann and Halleux 2008) choose to check their contracts). Kiasan/KUnit (Deng et al. 2007),

sequences based on symbolic execution and constraint solvanother contract-driven tool supporting open classes; con
ing. A recent refinement of Pex (Barnett et al. 2009) uses

structs more sophisticated inputs using symbolic exenutio Koen Claessen and John Hughes. Testing Monadic Code with
and constraint solving, but the mock objects it constructs QuickCheck. InProc. ACM SIGPLAN Haskell Wksgpp. 47—

as inputs have no side-effects except the ones prescribed by 59, 2002.

their contracts. This restriction hides the stack obseugr Koen Claessen and John Hughes. QuickCheck: A Lightweighit To

QuickCheck (Claessen and Hughes 2000), a random test- COnf- Functional Programmingpp. 268-279, 2000.
ing library for Haskell, provides flexible support for tesgi Cristoph Csallner and Yannis Smaragdakis. JCrasher: Aw-Aut

higher-order functions. Given user-defined specificatimfns matic Robusiness Tester for Jaoftware — Practice & Ex-
perience34(11), pp. 1025-1050, 2004.

a program’s types, QuickCheck automatically derives gen- h) p , daki h
erators for functions that consume and produce those types.cr'StF’IO Csa ner and Yannis Sma}rag akis. DSD-CrasheryA H
. . brid Analysis Tool for Bug Finding. IfProc. Intl. Symp. Soft.
Although targeted at pure functional programs, QuickCheck ; :
S . Testing and Analysjpp. 245-254, 2006.

works with imperative programs too (Claessen and Hughes _ . . . -
2002). The approach Claessen and Hughes describe is IikelyCrIStOIOh Csallner and Yannis Smaragdakis. Check '’ Cras-

) S bining Static Checking and Testing. Proc. Intl. Conf. Soft.
to reveal the stack observer bug, but finding the off-by-one Eng., pp. 422-431, 2005.
error is more dlffICU|t.. chkC_heck is less automated thgn Xianghua Deng, Robby, and John Hatcliff. Kiasan/KUnit: éut
the above tO_OIS, a_nd its effectiveness d_epends S_Ubsm_m'al matic Test Case Generation and Analysis Feedback for Open
on user configuration. For example, QuickCheck is unlikely opject-Oriented Systems. Rroc. Testing: Academia & Indus-

to find the off-by-one error unless the user has the insight try Conference — Practice & Research Techniques. 3-12,
that thecapaci t y method produces interesting arguments 2007.

to the stack’s other operations. Erik Ernst. gbeta — a Language with Virtual Attributes, Btoc
Structure, and Propagating, Dynamic Inheritance. PhDediss
8. Conclusion tation, Department of Computer Science, University of Aith

Denmark, 1999.

Testing open object-oriented systems is difficult because u Matthias Felleisen, Robert Bruce Findler, and MatthewtFBe-

known classes may drive them in surprising ways. We de- . ..o Engineering with PLT ReddIT Press, 2009.

scribe a new algorlthm_for testing such systems which works Robert Bruce Findler, John Clements, Cormac Flanagan it
by randomly constructing new subclasses based on the con- Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias

tracts specified for their interface. Our experience shbwas t Felleisen. DrScheme: A programming environment for Scheme
our technique works well, finding dozens of bugs in Dr- J. Functional Programmin@(12), pp. 159-182, 2002.
Racket, and is easy to implement. Robert Bruce Findler and Matthias Felleisen. Contractsifgher-

Still, our experience suggests some improvements. First, Order Functions. liProc. ACM Intl. Conf. Functional Program-
the test cases produced by our prototype are often unneces- ming pp. 48-59, 2002.
sarily large. The algorithm described in section 5.3 talees @ Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
input a bound on the depth of program derivations to con- Nelson, James B. Saxe, and Raymie Stata. Extended Static
sider, and the test programs it produces tend to grow expo- Checking for Java. IRroc. ACM Conf. Programming Language
nentially with this bound. Often, a derivation of depth 5 is Design and Implementatiopp. 234-245, 2002.
necessary to uncover a bug, but typically only one particu- Matthew Flatt and Eli Barzilay. Keyword and Optional Argunte

lar branch of the derivation actually requires this depte. W in PLT Scheme. IiProc. Scheme and Functional Programming
speculate that using a different strategy for limiting tiees pp. 94-102, 2009.

Of the generated terms (eg, randomly dlvv|ng up a bound Matthew Flatt, Robert Bruce Findler, and Matthias Felleise
between subderivations to limit the tree’s size insteadsof i Scheme with Classes, Mixins, and Traits (invited tutoria)

Proc. Asian Symp. Programming Languages and Systpms
270-289, 2006.
atthew Flatt and PLT. Reference: Racket. June 7, 2010.
http://ww.racket-1ang.org/tri1/
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlisside
Design Patterns. Addison-Wesley Publishing Company, 1994

depth) would enable us to find the same bugs, but without
generating such large programs. Second, as discussed in seq,
tion 4.6, our prototype would likely be more effective if the
programs it produced reused more intermediate results.

Blbllography Patrice Godefroid, Nils Karlund, and Koushik Sen. DART: Di-
Mike Barnett, Manuel Fahndrich, Peli de Halleux, Francesco rected Automated Random Testing. Proc. ACM Conf. Pro-
gozzo, and Nikolai Tillmann. Exploiting the Synergy betwee gramming Language Design and Implementatign 213-223,
Automated-Test-Generation and Programming-by-Conttact 2005.
Proc. Intl. Conf. Soft. Eng.: Companion Voluppp. 401-402, Phillip Heidegger and Peter Thiemann. JSConTest - Contract
2009. Driven Testing of JavaScript Code. Rroc. Intl. Conf. Objects,
Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David ill,G Models, Components, Patternp. 154—172, 2010.

and Dawson R. Engler. EXE: Automatically Generating Inputs
of Death. InProc. ACM Conf. Computer and Communications
Security pp. 322—-335, 2006.

http://www.racket-lang.org/tr1/

Kobi Inkumsah and Tao Xie. Improving Structural Testing of Nikolai Tillmann and Jonathan de Halleux. Pex — White BoxtTes

Object-Oriented Programs via Integrated Evolutionarytifigs Generation for .NET. IfProc. Intl. Conf. Tests and Proofpp.
and Symbolic Execution. IRroc. IEEE/ACM Intl. Conf. Auto- 134-153, 2008.
mated Soft. Eng.pp. 297-306, 2009. Paolo Tonella. Evolutionary Testing of ClassesPhoc. Intl. Symp.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Soft. Testing and Analysigp. 119-128, 2004.
Thomas Ball. Feedback-Directed Random Test Generation. In Willem Visser, Corina S. Pasareanu, and Radek Pelaneklrifest
Proc. Intl. Conf. Soft. Eng.pp. 75-84, 2007. Generation for Java Containers using State Matchingprtr.
B.S. Rubin, A. R. Christ, and K. A. Bohrer. Java and the IBM San Intl. Symp. Soft. Testing and Analygip. 37-48, 2006.
Franscisco projectBM Systems Journa87(3), pp. 365-371, Tao Xie, Darko Marinov, and David Notkin. Rostra: A Framelwvor
1998. for Detecting Redundant Object-Oriented Unit TestsPtoc.
Koushik Sen and Gul Agha. CUTE and jJCUTE: Unit Testing and IEEE Intl. Conf. Automated Soft. Engop. 196-205, 2004.
Explicit Path Model-Checking Tools. IRroc. Intl. Conf. Com- Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin.

puter Aided Verificationpp. 419-423, 2006. Symstra: A Framework for Generating Object-Oriented Unit

T. Stephen Strickland and Matthias Felleisen. Contracts$-iicst- Tests using Symbolic Execution. Rroc. Intl. Conf. Tools and
Class Classes. IRroc. Dynamic Languages Symposjupp. Algorithms for the Construction and Analysis of Systepps
97-112, 2010. 365-381, 2004.

Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonattan
Halleux, and Wolfram Schulte. MSeqGen: Object-Oriented
Unit-Test Generation via Mining Source Code.Rmoc. Joint
Euro. Soft. Eng. Conf. and ACM Symp. Foundations of Soft. Eng
, pp. 193-202, 2009.

	1 Introduction
	2 Contracts as oracles and generators
	3 Test-generation strategy
	4 Formal model
	4.1 Language
	4.2 Types
	4.3 Generating programs
	4.4 An example
	4.5 A theorem
	4.6 The value of a formal model

	5 From to a real language
	5.1 A full-fledged programming language
	5.2 Subtyping
	5.3 An algorithmic version of the rules
	5.4 Trying harder to avoid failure
	5.5 Non-terminating programs

	6 Evaluation
	7 Related Work
	8 Conclusion

