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Abstract
Testing is among the most effective tools available for find-
ing bugs. Still, we know of no automatic technique for gener-
ating test cases that expose bugs involving a combination of
mutable state and callbacks, even though objects and method
overriding set up exactly that combination. For such cases,
a test generator must create callbacks or subclasses that ag-
gressively exercise side-effecting operations using combina-
tions of generated objects.

This paper presents a new algorithm for randomly test-
ing programs that use state and callbacks. Our algorithm ex-
ploits a combination of contracts and environment bindings
to guide the test-case generator toward interesting inputs.
Our prototype implementation for Racket (formerly PLT
Scheme)—which has a Java-like class system, but with first-
class classes as well as gbeta-like augmentable methods—
uncovered dozens of bugs in a well-tested and widely used
text-editor library.

We describe our approach in a precise, formal notation,
borrowing the techniques used to describe operational se-
mantics and type systems. The formalism enables us to pro-
vide a compact and self-contained explanation of the core
of our technique without the ambiguity usually present in
pseudo-code descriptions.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Testing tools; D.2.4 [Software/Program Ver-
ification]: Assertion checkers

General Terms Verification, Reliability

Keywords Software Testing, Random Testing, Automated
Test Generation, Racket

1. Introduction
Extensibility is the hallmark of object-oriented program-
ming. The ability to pass objects—of unknown, and possibly
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not yet written classes—as arguments to methods is a power-
ful form of openness that enables programmers to more eas-
ily abstract and write reusable code. The bookDesign Pat-
terns(Gamma et al. 1994) is full of examples for exploiting
this power. IBM’s San Francisco project (Rubin et al. 1998),
which claims to be the largest Java development effort in the
world, is predicated on such extensibility.

The flexibility of an open system incurs a commensu-
rate cost: effective testing is difficult, because the spaceof
behaviors for the systems is large and complex. Automated
testing should be able to help; indeed, there hundreds of pa-
pers containing techniques for automatically testing object-
oriented programs. Few of those techniques, however, create
objects with new behavior to supply to the program under
test. The vast majority of systems assume instead that the
program is closed (i.e., that the tester is supplied with all
possible classes), or they are even more limited, supporting
only methods that operate on first-order data.

We have developed a new algorithm for automated test-
ing that addresses the problem of generating objects with
new behaviors. Our approach follows precedents in using
programmer-supplied contracts (Findler and Felleisen 2002)
to guide test generation and in building up pools of objects
to use as test inputs. By synthesizing and generalizing those
precedents, we arrived at an algorithm whose core can be
described by just a few simple test-generation rules.

We validated our algorithm by applying it to the imple-
mentation of DrRacket (Findler et al. 2002), the program-
ming environment for Racket (Flatt and PLT June 7, 2010).
DrRacket’s text editor is implemented by a class that sup-
ports an extensible set of editable items, as well customiza-
tion through method overriding. Editing, drawing, measur-
ing, copying, and configuring the text editor each involve a
myriad of methods over multiple objects. Many methods ad-
just the internal state of the editor, and many state transfor-
mations require calling multiple methods, any of which can
be overridden. Designing classes and methods that enable
extensibility while maintaining the integrity of the editor’s
state is a formidable task. Our random-testing algorithm un-
covered upwards of 58 previously unknown bugs, more than
half of which could only be caught by synthesizing new sub-
classes that exercise the editor API in particular ways.



interface BoundedStackI {
void push(Object item);
//@ requires this.capacity() >= 1;
//@ ensures !this.empty();

Object pop();
//@ requires !this.empty()

void push_n(int n, Object item);
//@ requires this.capacity() >= n;

void add_obs(ObserverI o);
int capacity();
boolean empty();

}

interface ObserverI {
void after_push(BoundedStackI s,

Object item);
//@ requires !s.empty();
//@ ensures !s.empty();

}

Figure 1: Bounded Stack Contract

2. Contracts as oracles and generators
A contract is a complement to a type system and a gen-
eralization of pre-/post-condition checking. A contract on
a function or method refines the type of each argument by
placing additional run-time checks on it. Simple checks can
be performed immediately, while other checks must be de-
layed until the argument is used. For example, if a function
receives as an argument another function or an object, then
constraints on the behavior of the function or object apply
only when the function is called or the object’s methods are
invoked. A key property of these checks in a contract system
is the proper tracking ofblame: when a contract check fails,
the responsible party can be correctly identified.

Contracts are a natural stepping stone for random test
generation. In particular, blame assignment for a contractvi-
olation determines whether the corresponding contract can
play the role of a test generator or an oracle. To see how
this works, consider figure 1. It contains a contract specifi-
cation for a stack module, written using JML notation. The
BoundedStackI interface supports six methods:push,
pop, push_n, add_obs, capacity, andempty. The
push andpop methods perform the usual addition and re-
moval of objects in the stack. Thepush method has a pre-
condition that states that there must be at least one more
place in the stack and has a post-condition stating that the
stack is not empty. Thepop method has a pre-condition that
the stack not be empty and no post-condition. Thepush_n
method provides a shorthand for filling the stack with multi-
ple copies ofitem.

Theadd_obsmethod registers an observer for the stack.
The final two methods,capacity andempty, query the
internal state of the queue, accepting no arguments, and
returning the number of available slots in the stack and
whether the stack is empty, respectively.

Finally, theObserverI interface has a single method,
after_push, that is called each time thepush method
is invoked. Theafter_push method is supplied the in-
stance of theBoundedStackI interface whosepush
method was invoked and the value that was pushed. Since
it is called after thepush was invoked, its pre-condition
indicates that it will receive a non-empty stack. To guar-
anteepush’s post-condition, however,after_push has
is own post-condition that guarantees that the result is also
non-empty.

The contracts tell us a lot about the behavior of any imple-
mentation of theBoundedStackI interface. The contracts
also indicate who is at fault when a contract violation occurs.
On one hand, if the post-condition of thepushmethod fails,
then theBoundedStackI implementation is to blame. On
the other hand, if the pre-condition ofpop fails, then the
client of theBoundedStackI method is to blame. Thus,
if we wanted to test aBoundedStackI implementation,
the pre-condition contract limits the space of the interesting
inputs, implicitly giving us a test case generator, while the
post-condition contract gives us a test oracle.

In general, the blame assignment from a contract viola-
tion directly corresponds to the contract’s role of as a test
case generator or as a test oracle. If the program being tested
would be blamed for a contract violation, the contact is a test
oracle. If the test harness we generate is blamed for a con-
tract violation, the failure provides information about how
to generate test inputs. As another example, if we test clients
of a BoundedStackI implementation, then the roles of
the oracle and generator are reversed, again matching blame
assignment.

The correspondence between blame, test-case generators,
and oracles generalizes to higher-order interactions between
components. For example, imagine that we are interested in
testing howBoundedStackI objects interact with their
observers. Specifically, consider the pre- and post-condition
contracts on theafter_push method. Since the test case
generator constructs new observer objects, it is not respon-
sible for their pre-conditions, but instead is responsiblefor
their post-conditions. Following the correspondence with
blame, the pre-condition is now playing the role of a test
oracle, not a test-case generator.

In general, pre-conditions and post-conditions are not a
priori tied to either oracles or test-case generators. The con-
ditions swap roles in correspondence with the number of
times the object has appeared as an input. In our stack ex-
ample, the stack’s pre-conditions and post-conditions are
matched up with generators and oracles. In the case of the
observer, because the observer is an input to the stack,



the roles reverse, making pre-conditions oracles and the
post-conditions generators. Of course, observers also accept
stacks as inputs, and thus, for those stack objects, the roles
reverse one more time, making pre-conditions generators
and post-conditions oracles again.

In a manner similar to function-argument contravariance,
contracts that are in negative positions (i.e., appearing an
odd number of times to the left of a function arrow) play the
role of generators, and contracts that are in positive positions
(i.e., appearing an even number of times to the left of a
function arrow) play the role of test oracles.

3. Test-generation strategy
At a high level, our strategy for automatically testing code
can be represented as a function that accepts an environment
(mapping identifiers to types) and a type. It randomly gener-
ates a program that uses the given environment and has the
given type.

Our strategy uses two basic techniques for generating
programs. The first technique creates a value directly, ignor-
ing the environment. For base types likeint or boolean,
this means picking a random value of the given type. For
function types, this means adding the parameter of the func-
tion to the environment and then using the larger envi-
ronment to generate a function body with the type of the
codomain. For object types, we first derive a new class,
which amounts to overriding a subset of the methods in
the object’s class, where creating each overriding method is
analogous to creating a new function; once we have the new
class, we instantiate it to create an object.

The second technique involves the environment. Our
strategy might use a variable directly from the environment,
if one with the right type is available. Alternatively, it might
pick an arbitrary a function or a method in the environment,
recursively build something of the argument’s type, invoke
the function or method, bind the result to a new variable, and
recur with the extended environment (still aiming to gener-
ate a program of the desired type). Note that the latter option
is independent of the type being generated, and we are effec-
tively hoping that the result of the function or method call is
useful or that the function or method call changes the state
of some object in an interesting way.

To see our strategy in action, consider a buggy revision of
theObserverI interface andBoundedStack, which is
a buggy implementation of theBoundedStackI interface,
shown in figure 2. Imagine that the goal is to build anint,
and that the environment initially contains only theBound-
edStack class.

Initially, the test generator’s only options are to produce
anint directly or to create an objectBoundedStack and
put it into the environment. Once the test generator builds
an object, however, several other options become available.
Imagine that the generator decides to invoke thepush_n
method. To do that, it must build anint for then argument,

class BoundedStack
implements BoundedStackI {
int bound=10000;
Object[] buffer = new Object[bound];
int tos = -1;
Set<ObserverI> observers =

new HashSet<ObserverI>();

public Object pop() {
tos--;
return buffer[tos+1];

}
public void push(Object item) {

tos++;
buffer[tos]=item;
for (ObserverI o : observers)

o.after_push(this,item);
}
public void push_n(int n,

Object item) {
for (int i=0;i<n;i++)

push(item);
}
public void add_obs(ObserverI o) {

observers.add(o);
}
public int capacity() {

return bound-tos;
}
public boolean empty() {

return tos==-1;
}

}

interface ObserverI {
void after_push(BoundedStack s,

Object item);
}

Figure 2: Buggy bounded stack and observer

as well as anObject for theitem argument. For theitem
argument, the generator could use the environment and pick
the stack itself. For then argument, the generator may decide
to call thecapacity method.

Assuming that the generator makes at least these deci-
sions, it produces a program like the following, which trig-
gers the first bug, an array bounds error.

BoundedStackI s = new BoundedStack();
s.push_n(s.capacity(),s);



e ::= λx. e
 e(e)
 x
 let x = e in e
 die(msg)
 if (e) { e } else { e }
 true
 false
 integer

τ ::= x:τ,e  x:τ,e
 Int
 Bool

Figure 3: Grammar

To fix this bug, thecapacity method should return
bound-tos-1. This bug is relatively easy to find. Our
algorithm finds it 1 in 12 tries, or about once every three
quarters of a second on a 3 GHz iMac.

To discover the bug in the revision of theObserverI
interface, the generator must decide to call theadd_obs
method, which would trigger the decision to create an imple-
mentation of theObserverI interface. In the body of the
generatedObserverI’s after_push method, the gen-
erator must invoke the stack’spopmethod. Finally, the gen-
erator would have to decide to push something onto the ob-
served stack. Putting all of that together, the generator would
produce code something like the following:

class Observer
implements ObserverI {
public void after_push(BoundedStack s,

Object item) {
s.pop();

}
}

BoundedStackI s = new BoundedStack();
s.add_obs(new Observer());
s.push("item");

This code signals an error blaming theBoundedStack’s
push method for failing to establish its post-condition. The
fix is to restore the pre- and post-condition contracts in the
ObserverI interface, properly shifting the blame to the
observer.

While this second bug requires the generator to make
several fortuitous choices, our experiments suggest that it
does so about 1 in 250 tries, i.e., about once every one and
a half minutes on the same machine. To find this bug, the
generator must construct and evaluate larger programs than
were required to find the first bug; consequently, it performs
fewer tests per second.

4. Formal model
This section makes the intuitive description in section 3 pre-
cise via a formal model. Central to our model are judgments
of the form

Γ ⊢ τ ⇒ e

This judgment is derivable when our technique could gener-
ate the expressione of type τ from an environmentΓ. For
a givenΓ andτ, derivations for many differente are typi-
cally possible, corresponding to the many different expres-
sions that a random generator might produce.

4.1 Language

Figure 3 shows a simple functional language that we use for
our formal model. This language does not include an object
system or state, which we omit to simplify the formal pre-
sentation. Section 5 discusses the generalization to objects
and state. For now, it is enough thatλ produces a particu-
larly simple form of an object—one with a single method,
where its fields are implicit in its environment.1

Beyondλ, our formal language contains application ex-
pressions, variables,let expression to bind temporary vari-
ables,die expressions that terminate the program with a
fixed message,if expressions (analogous to ...?...:... expres-
sions in Java and C), integers, and the booleanstrue and
false.

We omit the operational semantics for this language, as it
is standard (Felleisen et al. 2009, Ch. 4).

4.2 Types

The type system for the simple functional language layers
contracts on top of a standard type system. Base types are
eitherInt or Bool. Function types combine a standard arrow
type with pre-condition and post-condition expressions of
type Bool. The domain portionx1:τ1,e1 of an arrow type
consists of the domain’s typeτ1 as well as a boolean-valued
pre-condition expressione1. The variablex1 is bound to the
input to the function and is visible ine1 but not inτ1. The
codomain portionx2:τ2,e2 of the arrow type is similar, with
τ2 being the codomain type ande2 the post-condition. Both
variablesx1 andx2 are bound in the post-condition, and the
variablex1 is bound in the typeτ2. For example, assuming
a few more numeric operations, the type

d:Int,d ≥ 0 → r:Int,abs(d*d-r) ≤ 0.01

describes thesqrt function.
To capture the various constraints about free variables,

and to make sure that the expressions embedded in types are
well-formed, we define the judgment

Γ ⊢ τ

1 While this point of view may lead you astray for other aspectsof relating
functional and object-oriented languages, it works well for the purposes of
our random test case generation algorithm.



Γ  e : τ

Γ+{x1:τ1}  e : τ2 Γ  x1:τ1,e1  x2:τ2,e2

Γ  λx1. e : x1:τ1,e1  x2:τ2,e2

Γ  e : x1:τ1,e1  x2:τ2,e2 Γ  e' : τ1

Γ  e(e') : τ2

Γ(x) = τ

Γ  x : τ

Γ  (λx. e2)(e1) : τ

Γ  let x = e1 in e2 : τ

Γ  integer : Int

Γ  e1 : Bool Γ  e2 : τ Γ  e3 : τ

Γ  if (e1) { e2 } else { e3 } : τ Γ  true : Bool Γ  false : Bool

Γ  τ

Γ  die(tag) : τ

 ∅

 Γ Γ  τ

 Γ+{x:τ}

Γ  Bool Γ  Int

Γ  τ1 Γ+{x1:τ1}  τ2 Γ+{x1:τ1}  e1 : Bool Γ+{x1:τ1, x2:τ2}  e2 : Bool

Γ  x1:τ1,e1  x2:τ2,e2

Γ  τ

 Γ

Figure 4: Typing rules

Γ  τ ⇒  e

Γ(x) = τ

Γ  τ ⇒  x
[Var]

Γ  Bool ⇒  true
[True]

Γ  Bool ⇒  false
[False]

Γ  Int ⇒  integer
[Number]

Γ(f) = x1:τ1,e1  x2:τ2,e2 Γ  τ1 ⇒  e' Γ+{x2:τ2}  τ3 ⇒  e3

Γ  τ3 ⇒  let x1 = e'
in let x2 = if (e1) { f(x1) } else { die(gen) }

in if (e2) { e3 } else { die(prog) }

[Call]

Γ+{x1:τ1}  τ2 ⇒  e'

Γ  x1:τ1,e1  x2:τ2,e2 ⇒  λx1. if (e1) { let x2 = e'
in if (e2) { x2 } else { die(gen) } }

else { die(prog) }

[Fn]

Figure 5: Test case generation rules

as shown in figure 4. It determines when a typeτ is well-
formed, given an environmentΓ that maps variables to their
types, and it refers to the typing rules for expressions em-
bedded in types. Similarly, the judgment

⊢ Γ

holds whenΓ contains only well-formed types.
The remaining rules in figure 4 give types to expressions,

and are standard, except that they useΓ ⊢ τ judgments to
ensure that programs have only well-formed types.

4.3 Generating programs

The core system is given in figure 5. The rules are divided
into two groups. The upper two rules use the environment
to generate new expressions. The upper-left rule[Var] sim-
ply says that if the environment contains a variable bound
to the type to be synthesized, then the generator’s result can
be a reference to that variable. The upper-right rule[Call]
optimistically generates a call to some function in the envi-
ronment to see if that will help with generation. Specifically,

it says that iff is bound to a function of typex1:τ1,e1 →
x2:τ2,e2, and if generating a value of typeτ1 succeeds, then
the generator can try to produce aτ3 (the original goal) using
an environment that contains a binding ofx2 to some value
of typeτ2.

Since the[Call] rule generates a call to a function in
the environment, it must verify that the pre-condition holds,
so it produces anif expression that tests the pre-condition.
When it fails, we know that the generator produced a bad
test case, and thus the else branch of theif blames the
generator. Dually, when the called function returns, we test
the function’s post-condition to see if the call reveals bug. If
so, the test case aborts, blaming the function.

The remaining rules generate expressions directly, with-
out using the environment. The[True], [False], and[Num-
ber] rules generate base values. The final rule[Fn] generates
a function by adding the parameter to the function to the
environment and generating a body expression of the range
type. Of course, the function may not live up to its post-



Γ+{d1:Int}  Int ⇒  2
[Base]

Γ  Increasing ⇒  
λd1. let r1 = 2

in if (d1 ≤ r1) { r1 }
else { die(gen) }

[Fn]
Γ+{g:Doubling}  Int ⇒  2

[Base]
Γ+{g:Doubling, r2:Int}  Int ⇒  r2

[Var]

Γ+{g:Doubling}  Int ⇒  let d2 = 2
in let r2 = g(d2)

in if (2*d2 ≤ r2) { r2 }
else { die(prog) }

[Call]

Γ  Int ⇒  let g = f(λd1. let r1 = 2
in if (d1 ≤ r1) { r1 }

else { die(gen) })
in let d2 = 2

in let r2 = g(d2)
in if (2*d2 ≤ r2) { r2 }

else { die(prog) }

[Call]

Shorthands
Increasing = d1:Int  r1:Int,d1 ≤ r1

Doubling = d2:Int  r2:Int,2*d2 ≤ r2

Γ = {f:Increasing Doubling}

Figure 6: Example derivation

condition. In that case, the generated expression is bad, and
the test case will abort while blaming the generator to indi-
cate a test-generation failure. If the pre-condition fails, how-
ever, then the program being tested supplied a bad input to
the function, and so the test case also aborts—but this time
blaming the program to indicate a bug.

4.4 An example

To get a better feel for how the rules work, consider the ex-
ample derivation in figure 6. The derivation uses a number
of shorthands to avoid clutter. Specifically, if any of the pre-
or post-conditions are justtrue, then they are omitted; sim-
ilarly any if expressions that would have been generated to
test such pre- or post-conditions are also omitted. In addi-
tion, the three shorthands in the box are used throughout.

The derivation starts by trying to generate anInt using
an environment that contains a single functionf. The func-
tion f accepts a monotonic function, specified via the type
Increasing. It returns another function that promises to re-
turn something larger thantwice its input, as specified via
the typeDoubling.

The first step of the derivation uses the[Call] rule, pick-
ing f from the environment. The left-hand derivation sub-tree
generates the argument to pass tof, and the right-hand sub-
tree uses the larger environment to generate the original goal,
an expression of typeInt.

First, consider the generation off’s argument. It must gen-
erate something of the typeIncreasing, since that is the
type of f’s argument. To do so, this derivation uses the[Fn]
rule, which extends the environment with something of the
input type and generates a function body. In this case, the
derivation uses the[Base] rule to generate the result of the
function, namely the number 2. Once the body of the func-
tion is generated, it can be packaged into theλ-expression
by the[Fn] rule, along with a check ofIncreasing’s post-
condition.

Having completed the derivation of the the argument to
f, turn to the other half of the main derivation, which is the
second occurrence of the[Call] rule. This time, the deriva-

tion uses the[Call] rule to generate a call tog, the variable it
chose for the result of the call tof. Thus,g has the typeDou-
bling. This time, the premises of the[Call] are fulfilled with
a use of the rule[Base] and a use of the rule[Var]. The first
builds the argument tog, and the second builds the overall
result of the program, using the result of the call tog.

Notice that there are two non-trivial contracts embedded
in in the original type forf. One appears as the post-condition
to f’s input, and the other appears as the post-condition tof’s
result. In the final program generated by the derivation, there
are two uses ofdie, one corresponding to each contract.
The first use ofdie comes from the post-condition off’s
input; since it appears an odd number of times to the left of
the arrow, the blame lies with the test case, so we seegen.
The second use ofdie comes from the post-condition off’s
result; since it appears an even number of times to the left of
the arrow (i.e., zero times), the blame lies with the function,
so we seeprog.

Finally, if f were the functionλg.g(2)*10, then the test
case would abort with the blame assigned to the generator.
If, on the other hand,f were λg.λx.g(g(x)), then the test
case would abort with the blame assigned to the program,
detecting a bug.

4.5 A theorem

Using a formal system to define our generation strategy lets
us establish some properties. For example, a natural question
about this system is whether all generated terms indeed have
the types they should. Formally, we can express the answer
as a theorem.

Theorem. If ⊢ Γ andΓ ⊢ τ ⇒ e, thenΓ ⊢ e : τ

The proof of this theorem is a straightforward induction
on the structure of the derivation ofΓ ⊢ τ ⇒ e. If the[Var]
rule is the last rule in the derivation, then we can use the type
checking rule for variables, since the premises match. If the
[Call] rule is used, then, by induction, we have derivations
of Γ ⊢ e′ : τ1 and Γ+{x2:τ2} ⊢ e3 : τ3. Also, since⊢
Γ, we know that the expressionse1 ande2 both have type
Bool . Given that, and the rules for typing expressions, we



can construct a derivation that the right-hand side of the
[Gen] has typeτ3. In the base type cases, we know that
the generated term type checks, and the[Fn] rule follows
a similar argument to the[Call] rule.

4.6 The value of a formal model

Most of the testing literature uses algorithmic pseudocode
(or sometimes just prose) to describe its techniques. We in-
stead follow the established conventions of the type systems
and operational semantics literature and use a formal system
to describe the tests our technique can create.

We believe this shift benefits both readers and authors.
A formal model provides readers a more precise and, in our
opinion, a clearer account of our technique than we could
give with pseudocode, which easily hides subtle but impor-
tant details. Precision and clarity benefit authors too. Con-
structing a formal model helped us better understand our
own technique—even after implementing a working proto-
type. For example, consider the[Call] rule in Figure 5. The
final premise generatese3 using an environment that does
not includex1, though that result could fruitfully contribute
to e3. We devised the rule in the figure by examining the
prototype’s implementation, but only after seeing the bind-
ing structure in the rule’s precise notation did it become ob-
vious that the generated programs could make better use of
intermediate results.

5. From λ to a real language
Our prototype tool converts the rules of section 4 into a
test-generation algorithm. It also scales the test-generation
rules to handle many features of Racket, including con-
tracts (Findler and Felleisen 2002), classes (Flatt et al.
2006), richer function-calling conventions (Flatt and Barzi-
lay 2009), and the Scheme numeric tower. Finally, it ad-
dresses the practical problems of avoiding bad test cases and
dealing with non-termination.

5.1 A full-fledged programming language

Generalizing from the simple programming language in sec-
tion 4 to Racket requires a number of extensions to the rules.
The primary extension adds support for Racket’s object sys-
tem. Like Java, Racket has a class-based object system; un-
like Java, classes in Racket are first-class values, and the ob-
ject system supports a wide range of method combinations.
Like Java, subclasses may override methods; unlike Java,
subclasses may augment methods, a la gbeta (Ernst 1999;
Flatt et al. 2006).

To support Racket’s object system, we extend the type
system to allow class types and object types. A new rule,
similar to the [Fn] rule, allows the system to generate a
subclass of an existing class. Another new rule, similar to
the[Call] rule, generates a method invocation.

In addition, we generalize the[Call] rule to support
Racket’s more sophisticated function-call conventions: multi-
arity functions that support optional arguments and keyword

nonnegative real

exact nonnegative integer

real

integer

exact integer

complex

exact integer in [0, 10^9]

exact integer in [1, 10^5]

exact integer in [1, 10^4]

exact integer in [0, 10^5]

exact integer in [0, 10^4]

exact integer in [1, 10^3]

exact integer in [0, 10^3]

exact integer in [0, 256]

Figure 7: Subyping

arguments, as well as acase-lambda form that allows
dispatching on the number of arguments at a call site. Sup-
port for these function forms mostly requires beefing up the
[Call] rule (and the rule for method invocation).

Finally, we add many new rules like the ones for base
types, to handle generation of expressions satisfying the
contracts that commonly appear in the Racket codebase.

5.2 Subtyping

Racket inherits Scheme’s sophisticated number system, in-
cluding complex numbers, exact rationals, and IEEE float-
ing point numbers. The library that we tested required only
some of the many different number types in Racket; figure 7
shows the precise ones that we used and their subtyping re-
lationships. The library we tested also used many other more
conventional subtyping relationships, such as the contravari-
ant relationship for function types, the class inheritancehier-
archy, and the normal relationships between pairs, lists, and
other compound types.

Adding subtyping to the system amounts to changing
the [Var] rule so that it allows picking a type out of the
environment that is a subtype of the desired type.



5.3 An algorithmic version of the rules

The rules in section 4 admit a wide range of possible pro-
grams, and they allow multiple derivations for most combi-
nations of a particular type and an environment. To build an
algorithm for generating a program, we use three techniques:
randomness to choose a rule when multiple rules (or multiple
instances of a given rule) apply, a depth bound to limit the
size of derivations, and continuation-passing style to support
backtracking when some part of a generation fails.

Our top-level generator function has the signature

generate : type env depth
(expression -> X)
(-> X)

-> X

The first two arguments match the rules. The third argument
specifies a depth bound; when it reaches zero, the generator
fails. The final two arguments are success and failure contin-
uations. When the generator succeeds, it invokes the success
continuation with the expression that it built. When the gen-
erator fails, it invokes the failure continuation. Using con-
tinuations in this manner make it easy to implement back-
tracking.2 For example, the generator may attempt to use the
[Call] rule and perhaps even succeed to build one of the argu-
ments to the function or method, but then fail to build a later
argument. In that case, the failure continuation will abortthe
entire attempt to use[Call] rule and try something else.

Our algorithm gives priority to the[Call] rule, special-
ized to imperative methods and functions. It will, with 80%
chance, pick an imperative-looking method or function from
the environment and use the[Call] rule to invoke that method
or function. We use a simple test to determine if a method or
function is imperative: its name ends with! or begins with
set- (these being standard conventions in the Racket code-
base) or it produces a result of typevoid. For the remain-
ing 20% of the time, the generator chooses equally among
the other three rules or a use of the[Call] rule that invokes
a function or method that can produce a subtype of the goal
type. (This second sort of use of the[Call] rule is what would
have triggered the derivation shown in section 4.4.)

The depth bound is important for controlling the size of
generated expressions. For example, suppose that the goal
type is integer and that the environment contains an impera-
tive function on integers. Choosing to call this function dou-
bles the size of the generation problem—we now need to
construct two integers: one as an argument to the imper-
ative function, and one to satisfy the initial goal. Choos-
ing to double the problem size 80% of the time can easily
produce an expression whose representation consumes hun-
dreds of megabytes of memory. To avoid such a distribution,

2 In our experience, backtracking does not substantially increase the gener-
ator’s running time. For example, in generating a batch of programs with
average length 120 LOC, our algorithm invokes 150 failure continuations
per program on average.

we decrement the depth bound each time we apply a rule that
can increase the number of goals; if the bound reaches zero,
we avoid such rules.

5.4 Trying harder to avoid failure

The rules contain two expression templates that signal errors
assigning blame to the generated program. In both cases, an
if expression guards the failure. In our prototype, we use that
conditional to make a few additional attempts to try to satisfy
the pre-condition.

The failure that blames the generator in the[Fn] case
matches the generator’s failure when our prototype tries
to construct the result of a method. Our generator often
constructs methods to override other methods. In that case,
the generated expression can avoid signaling blame directly,
and instead try to make a call to asupermethod. Of course,
thesuper call may also fail and blame the generator if the
pre-condition of the method fails, but that kind of failure is
much less likely.

A failure in the[Call] rule is also easily avoided in prac-
tice. Specifically, the generator creates a backup expression
that it puts in place of the expression that blames the gen-
erated program. When the depth is too low to generate a
backup expression, the generator aborts the entire call at-
tempt.

5.5 Non-terminating programs

When overriding a methods that involves callbacks, the test
generator can easily produce an infinite loop. For example,
with the bounded stack example from section 3, overrid-
ing theafter_push to invoke the stack’spush method
would produce a program that loops forever. To avoid infi-
nite loops, the generator adds a counter to every generated
method and function; each time the method or function is
called, the counter decrements. If the counter reaches zero,
the program aborts with a message indicating why, and we
discard the test case.

6. Evaluation
To evaluate our random-testing technique, we applied it to
the implementation of DrRacket’s editor class. The editor
implementation is more flexible and open than a typical
text editor. As with a conventional editor, it supports linear
sequences of text, but it abstracts over the objects that can
appear in an editor, insisting only that they be derived from
the snip% class. Beyond simple string snips, images and
even nested editors can appear inside an editor. (DrRacket
uses nested editors to allow, for example, embedded XML
code inside a Racket program).

The editor classes are also extensible in the way that the
snips are positioned. Thetext% class implements an editor
that arranges the snips in lines and inserts newlines as needed
to make the content fit. Thepasteboard% class allows
snips to float in a free-form manner (which DrRacket uses



Requires Number
Bug category overriding of bugs
documentation bugs no 16
first-order bugs no 13

system dependence on
default implementation

yes 1

missing state flag-based
pre-condition

yes lots (>20)

methods that should have
been final

yes 7

state flags wrong during
object initialization

yes 1

Total: lots + 38

Figure 8: Bug summary

to display graphs and to implement a GUI-layout editor).
All of this extensibility makes the editor classes a perfect
opportunity to test our randomized-testing tool.

The results of our evaluation are summarized in figure 8.
Each row corresponds to a certain category of bugs, showing
a brief description of the bugs, whether the bugs require
overriding, and the number of bugs found in that category.
The categories are ordered by increasing complexity.

The first row contains bugs that we are embarrassed to
report. Specifically, the Racket contract system does not yet
support the language’s higher-order class system. Conse-
quently, the contracts on editor classes were written only in
the documentation; separate, hand-rolled checks are in the
implementation. To run our prototype, we wrote a parser
that builds contracts from the documentation source. If the
resulting contracts were added in a checkable way instead
of just to documentation, we believe that all of the errors in
these contracts would have been found by simply starting up
DrRacket.3

The second row in the table represents bugs that could
have been found by many existing random-testing tools.
Here is an example of a (simplified) test case for one of those
bugs:
(define sl (new style-list%))
(define bs (send sl basic-style))
(define js

(send sl find-or-create-join-style
bs bs))

(send sl new-named-style
"The Name"
js)

Finding this bug requires only that the testing tool be able to
call methods and put their results together.

3 Happily, we expect this implementation flaw to be remedied soon (Strick-
land and Felleisen 2010).

The remaining four lines correspond to bugs that, to the
best of our knowledge, can be found automatically only by
our tool.

The first of these lines represents a bug where a derived
editor class,scheme:text%, overrides theget-keymap
method from thetext% class in such a way that it never
returns#f (even though its contract allows that). Other parts
of the same subclass assume thatget-keymap never re-
turns#f, but the subclass does not prohibit future exten-
sions to theget-keymap method. To expose the bug, the
test generator created an example like the following, making
get-keymap return#f; simply creating an instance of the
derived class triggers the error.
(define t%
(class scheme:text%

(define/override (get-keymap)
#f)

(super-new)))

(new t%)
The final three lines in figure 8 concern bugs that incor-

rectly cope with the locking mechanism in thetext% class.
A text editor uses four different levels of locking:unlocked,
where any method can be called;flow locked, where methods
that can change the locations of soft line breaks are forbid-
den;write locked, where methods that change the content of
the editor are forbidden; andread locked, where nearly all of
the methods are forbidden. Each of these modes has a match-
ing boolean-valued method (that can always be called) that
exposes whether the editor is in the corresponding mode.

The most common bug in these categories concern in-
accurate method pre-conditions. For example, this program
triggers a contract violation of thedelete method’s pre-
condition:
(define t%
(class text%

(define/augment (on-insert x y)
(send this clear))

(super-new)))

(send (new t%) insert "y")
Thedelete’s method can only be called in the unlocked
state, but during the dynamic extent ofclear, the editor
is write locked. The bug is that theclear method’s pre-
condition should say that it can only be called in the un-
locked state.

We found 7 bugs where methods that were public should
have been final. For example, thein-edit-sequence?
method queries some internal state of an object. If it is
overridden to return a bogus version of the state, then this
program will fail.
(define t%
(class text%

(define/override (in-edit-sequence?)



#f)
(super-new)))

(send (new t%) undo)
This program fails because the contract for theundomethod
callsend-edit-sequence, whose contract is phrased in
terms of the overridden method,in-edit-sequence?.
Since that method is now returning bogus values, the con-
tract fails when it should not.

Five of the other bugs in this category are similar to
this one, where the overridden method fails to accurately
report some internal state of the object. The remaining bug,
however, required theparagraph-start-position
method to be overridden. That method’s job is to return the
position in thetext% object where a paragraph begins, i.e.,
a position just after a newline in the editor. When it fails to
do so, it causes the line-breaking algorithm to fail internally
with an array-indexing error.

Finally, the remaining bug was that thetext% state vari-
ables were not initialized properly during the dynamic extent
of the call to the constructor. The object should have been
completely locked during this time and, once the constructor
finished, it should have been unlocked. Discovering this bug
requires the test case generator to override a method that is
called during the dynamic extent of the constructor, like the
default-style-namemethod is in this case:
(define t%

(class text%
(define/override (default-style-name)

(send this line-paragraph 1)
"Standard")

(super-new)))

(new t%)
The other editor class,pasteboard%, does not suffer from
this bug, because it does not invoke any overridable methods
during its initialization.

7. Related Work
The test generation literature is vast. To narrow the discus-
sion, we restrict our attention to techniques that test imper-
ative object-oriented programs using a sequence of method
and constructor calls. This distinction excludes tools such as
DART (Godefroid et al. 2005), CUTE (Sen and Agha 2006),
and EXE (Cadar et al. 2006), which test a program by gen-
erating its top-level input, since our focus is unit-level tests
of stateful, reusable components.

Even within this restricted class, testing techniques vary
widely. Rostra (Xie et al. 2004) and JPF (Visser et al. 2006)
perform bounded exhaustive testing, using state matching
to avoid generating redundant sequences. Symstra (Xie et
al. 2004), and PEX (Tillmann and Halleux 2008) choose
sequences based on symbolic execution and constraint solv-
ing. A recent refinement of Pex (Barnett et al. 2009) uses

first-order contracts to guide symbolic execution and detect
bugs. Crash ’n’ Check (Csallner and Smaragdakis 2005)
and its successor DSD-Crasher (Csallner and Smaragdakis
2006) use a constraint solver to extract concrete tests from
warnings produced by ESC/Java (Flanagan et al. 2002).
eToc (Tonella 2004) evolves test sequences using a ge-
netic algorithm based on coverage. JCrasher (Csallner and
Smaragdakis 2004) and Randoop (Pacheco et al. 2007) con-
struct sequences at random. Others, such as Evacon (Inkum-
sah and Xie 2009) and MSeqGen (Thummalapenta et al.
2009), combine several techniques.

Our technique builds on the generation strategies em-
ployed in JCrasher and Randoop. The generation rules in fig-
ure 5, which allow tests to construct arguments by combin-
ing values in the environment, can be seen as an extension
of the parameter-graph JCrasher uses to select method ar-
guments. Following Randoop, our generation algorithm of-
fers two improvements over JCrasher. First, our rules give
names to (some) intermediate results, allowing generation
of sequences like the following:
BoundedStack s = new BoundedStack();
s.push_n(s.capacity());

As Pacheco et al. note, JCrasher’s algorithm cannot pro-
duce aBoundedStack in this configuration because the
objects it constructs as method arguments flow only to the
corresponding call sites, without contributing to any other
expression. Second, JCrasher’s algorithm never chooses to
call a method returningvoid, in order to reduce the size of
its search space; our algorithm, on the other hand, deliber-
ately generates calls to methods with side-effects (identified
heuristically according to their name and result type). This is
crucial for generating the methods of a class whose objects
are used as callbacks.

Unlike our algorithm, which promises to generate an ex-
pression of a requested type, Randoop generates sequences
that result in a value of a random type. Its algorithm gener-
ates a sequence by iteratively appending a call to a method
chosen at random, without regard for its result type. For
many classes, this strategy works well, due to Randoop’s
feedback-directed heuristics, but because it does not seeka
result of any particular type, its sequences cannot be used as
method bodies, as those require a result of a specified type.

To the best of our knowledge, none of the aforemen-
tioned tools generate tests for open classes such asBound-
edStack, where a method takes an instance of an ab-
stract class of which implementations do not exist or rep-
resent only a small portion of possible use cases. JSCon-
Test (Heidegger and Thiemann 2010), a contract-driven ran-
dom test generator for JavaScript, offers some support for
testing open classes in the form of higher-order functions,
but the functions it constructs as test inputs do not have
side-effects and do not make use of their arguments (except
to check their contracts). Kiasan/KUnit (Deng et al. 2007),
another contract-driven tool supporting open classes, con-



structs more sophisticated inputs using symbolic execution
and constraint solving, but the mock objects it constructs
as inputs have no side-effects except the ones prescribed by
their contracts. This restriction hides the stack observerbug,
where a loose contract is precisely the problem.

QuickCheck (Claessen and Hughes 2000), a random test-
ing library for Haskell, provides flexible support for testing
higher-order functions. Given user-defined specificationsof
a program’s types, QuickCheck automatically derives gen-
erators for functions that consume and produce those types.
Although targeted at pure functional programs, QuickCheck
works with imperative programs too (Claessen and Hughes
2002). The approach Claessen and Hughes describe is likely
to reveal the stack observer bug, but finding the off-by-one
error is more difficult. QuickCheck is less automated than
the above tools, and its effectiveness depends substantially
on user configuration. For example, QuickCheck is unlikely
to find the off-by-one error unless the user has the insight
that thecapacity method produces interesting arguments
to the stack’s other operations.

8. Conclusion
Testing open object-oriented systems is difficult because un-
known classes may drive them in surprising ways. We de-
scribe a new algorithm for testing such systems which works
by randomly constructing new subclasses based on the con-
tracts specified for their interface. Our experience shows that
our technique works well, finding dozens of bugs in Dr-
Racket, and is easy to implement.

Still, our experience suggests some improvements. First,
the test cases produced by our prototype are often unneces-
sarily large. The algorithm described in section 5.3 takes as
input a bound on the depth of program derivations to con-
sider, and the test programs it produces tend to grow expo-
nentially with this bound. Often, a derivation of depth 5 is
necessary to uncover a bug, but typically only one particu-
lar branch of the derivation actually requires this depth. We
speculate that using a different strategy for limiting the size
of the generated terms (e.g., randomly divving up a bound
between subderivations to limit the tree’s size instead of its
depth) would enable us to find the same bugs, but without
generating such large programs. Second, as discussed in sec-
tion 4.6, our prototype would likely be more effective if the
programs it produced reused more intermediate results.
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