
Dynamic Property Caches
A Step towards Faster JavaScript Proxy Objects

Manuel Serrano

Inria/Université Côte d’Azur

Sophia Antipolis, France

Manuel.Serrano@inria.fr

Robert Bruce Findler

Northwestern University

Evanston, Illinois, USA

robby@cs.northwestern.edu

Abstract
Inline caches and hidden classes are two essential compo-

nents for closing the performance gap between static lan-

guages such as Java, Scheme, or ML and dynamic languages

such as JavaScript or Python. They rely on the observation

that for a particular object access located at a particular point

of the program, the shapes, usually referred to as the hidden
classes, of accessed objects are likely to be the same. Taking

benefit of that invariant, they replace the expensive lookup

the semantics of these languages normally demand with one

test, the inline cache, and a memory read indexed by an offset

computed during the last cache miss. These optimizations

are essential but they are not general enough to cope with

JavaScript’s proxies. In particular, when the property name

is itself unknown statically, inline cache-based optimizations

always take a slow path.

In this paper, we show how to generalize inline caches

to cope with an unknown property name. The paper first

discusses the general principle of the extension and then

presents the experimental results we collected using a modi-

fied version of the Hop JavaScript compiler, demonstrating

how the optimization is crucial for improving the perfor-

mance of proxy objects (as they naturally use dynamic prop-

erty names extensively). The evaluation report shows that

the modified Hop outperforms all other implementations of

the language, including the most efficient commercial ones,

by a factor ranging from 2× to 100×. Even better, our opti-

mizations are applicable to existing compilers as they require

only straightforward changes to runtime data structures; no

complex analyses are required.

CCS Concepts • Software and its engineering→ Poly-
morphism; Compilers; Runtime environments; Object
oriented languages; Classes and objects.

Keywords JavaScript, Hidden Classes, Inline Caches

Publication rights licensed to ACM. ACM acknowledges that this contribu-

tion was authored or co-authored by an employee, contractor or affiliate of

a national government. As such, the Government retains a nonexclusive,

royalty-free right to publish or reproduce this article, or to allow others to

do so, for Government purposes only.

CC ’20, February 22–23, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-7120-9/20/02. . . $15.00

https://doi.org/10.1145/3377555.3377888

ACM Reference Format:
Manuel Serrano and Robert Bruce Findler. 2020. Dynamic Property

Caches : A Step towards Faster JavaScript Proxy Objects. In Proceed-
ings of the 29th International Conference on Compiler Construction
(CC ’20), February 22–23, 2020, San Diego, CA, USA. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3377555.3377888

1 Introduction
JavaScript object properties are referred to by their names,

which are strings. The canonical syntactic form for property

read and property write is obj[prop], where both obj and

prop are expressions. When the string forming the property

name is syntactically well formed as an identifier, the access

can be abbreviated obj.prop (where prop is not an evaluated

expression when using the dot notation). The semantics of

object accesses is precisely defined in the language specifi-

cation [ECMA International 2011] in an algorithmic manner.

For evaluating an expression obj[prop] the following steps

are executed:

1. evaluate obj and convert it into an object if needed;

2. evaluate prop and convert it into a string if needed;

3. look up the property in the object and, if not found,

repeat the search along the object’s prototype chain.

4. produce undefined if the property’s value is not found.

These steps also apply to array accesses. For instance, as-

suming that a is an array, evaluating the expression a[10]

requires converting the number 10 into the string "10" and

then looking for a property of that name in a (and possibly

its prototype chain). For the sake of portability, the string

conversion is precisely defined. For instance, the specifica-

tion gives the number of decimal digits that must be taken

into account for the number conversion.

All fast JavaScript implementations work hard to avoid

executing the steps in the semantics literally. For instance,

when accessing an array they avoid the number-to-string

conversion as much as possible and for accessing an object

they use the well known technique of hidden classes and in-
line caches to eliminate the lookup in the object and its proto-

type chain [Chambers and Ungar 1989; Chambers et al. 1989;

Deutsch and Schiffman 1984]. Many descriptions of these

techniques are available [Artoul 2015; Bruni 2017; Deutsch

and Schiffman 1984; Google 2018; Thompson 2015] so there

is no need for yet another comprehensive description here.

For completeness sake, however, we include an excerpt of



CC ’20, February 22–23, 2020, San Diego, CA, USA Manuel Serrano and Robert Bruce Findler

Serrano and Feeley [2019]’s description that shows the basic

technique to help present this paper’s optimization.

A property access obj.prop or obj["prop"] can be imple-

mented as follows, using C as the implementation language:

(obj->hclass == cache.hclass

? obj->elements[ cache.index ]; // cache hit
: cacheReadMiss( obj, "prop", &cache )) // cache miss

On a cache miss, the cache’s hclass attribute is updated

with the object’s hidden class. The object’s hidden class

is updated each time a property is added or removed so

the condition obj->hclass == cache->hclass holds only for

objects that have exactly the same structure. Compared to

a structure field access obj->prop in C, the overhead of a

cache hit is three memory reads (obj->hclass, cache.hclass,

and cache.index) and one comparison. All fast JavaScript

implementation use similar sequences for accessing object

properties.

Various improvements to inline caching have been studied

(notably “polymorphic inline caching” [Hölzle et al. 1991;

Serrano and Feeley 2019]), but these techniques assume that

the property names themselves are invariant. This limitation

is visible in the code above, as it has a single use of "prop" in

the cache-miss code. Optimizing situations where the name

is dynamic are the subject of this study.

Dynamic property names are not as common as static ones,

so the optimization we propose in this paper is not as critical

as the inline cache optimization. That said, dynamic property

names are used by the for..in construct (a construct that

dates to the first version of JavaScript) and, more importantly,

they are used extensively with proxy objects (introduced in

ECMAScript 6 [ECMA International 2015]). While both are

important, improving the performance of proxy object is the

main motivation for this work.

A proxy object [Van Cutsem and Miller 2010, 2013] encap-

sulates another object and interposes on the primitive oper-

ations it supports: property reads and writes, function calls,

property deletion, etc. Proxy objects serve several purposes

including security enforcement [Keil et al. 2015], higher order

contracts [Strickland et al. 2012a], and gradual typing [Ras-

togi et al. 2015]. Unfortunately, the design of proxies makes

it difficult to implement them efficiently, that is, with per-

formance comparable to those of plain objects. We have

conducted a performance evaluation that shows that the per-

formance penalty imposed by proxies on current, efficient

commercial JavaScript implementations is a slowdown of

about one or two orders of magnitude, which disqualifies

proxies from extensive use.

In this paper, we propose several optimizations that reduce

the slowdown significantly. In general, the optimizations we

offer in this paper are not sophisticated; their value is that

we have identified a set of optimizations that are both easy

to implement and are effective.

We have implemented all of them in Hop, an ahead-of-

time JavaScript compiler [Serrano 2018]. With these modifi-

cations, Hop outperforms all other implementations when

proxies are used. On average it reduces the slowdown to at

most 10x. This is probably not enough yet for extensive use

of proxy objects but this is a first step in the direction of

increasing proxy usability and likely makes the difference in

some applications.

The paper is organized as follows. In Section 2, we first

present the string implementation, a central subsystem in the

implementation of dynamic property accesses. In Section 3,

we show how we optimize dynamic property accesses. In

Section 4 we present how we accommodate the inline cache

implementation to minimize the performance penalty of

proxy objects. In Section 5 we present the evaluation report.

In Section 6 we present the related work and we conclude in

Section 7.

2 Strings
JavaScript has two kinds of strings, objects created with the

String constructor and string values. The String constructor
is actually mostly used as a container for the builtin string

methods. It is seldom used in actual programs. In contrast,

string values are ubiquitous, in particular because they are

used to name object properties. In the rest of this section we

focus on string values.

2.1 String Values
JavaScript string values are sequences of 16-bit unsigned

integers. They are neither UCS-2 nor UTF-16 strings as the

charAtmethod does not interpret characters according to the

UCS-2 code points and because there is no interpretation of

characters whose encoding spans over two code units. The

length property of a string value is specified not to give the

number of UTF-16 characters composing that string, but the

number of 16-bit unsigned integers it contains. Giving up on

UTF-16 strings enables a linear access to string characters so

it might be sufficient for a JavaScript implementation to sup-

port strings as specified with UTF-16 code units. However,

for fast interfacing with the operating system and for com-

pactness, it might be sensible to distinguish between strings

that can be encoded as 8-bit unsigned integers and those that

require 16-bit wide integers. This is what Hop does: ASCII

strings are encoded as sequences of 8-bit integers and all

other strings are encoded using the UTF-8 schema, which

enables a fast interface with the operating system and with

foreign languages like Python that also use UTF-8 strings.

Most other implementations also use the same dichotomy

between 8-bit and 16-bit encoding but generally they use

16-bit integers for non-ASCII strings.

JavaScript string values are constructed when string liter-

als appear in the program text, by String methods such as



Dynamic Property Caches CC ’20, February 22–23, 2020, San Diego, CA, USA

charAt, by regular expression matching, and by concatena-

tion (which is used extensively in JavaScript programs). The

Mozilla Developer Network page dedicated to strings [Mozilla

2019b] even suggests using the ‘+’ operator to split long lit-

erals. As a consequence, fast JavaScript implementations use

ropes as the underlying data structure for strings to support

fast concatenation [Boehm et al. 1995; Wikipedia 2019].

rope

- weight: uint32_t
- left: rope*
- right: rope*

ASCII UTF-8

- utfidx: uint32_t
- utflen: uint32_t

Figure 1. The Hop class hierarchy for JavaScript string val-

ues. The left and right pointers for ASCII strings point only

to other ASCII strings. The left and right pointers of UTF-8

strings point to arbitrary string ropes.

The Hop base class for ropes consists of: a weight, a left

pointer (which is a sequence of characters if the node is a

leaf and a node otherwise), and a right pointer that might be

null. A subclass is used to represent ASCII strings. Another

subclass is used to represent UTF-8 strings (see Figure 1); the

UTF-8 subclass has extra fields to support various unicode

optimizations not explained here.

2.2 Property Names
String values are used to name object properties and the prop-

erty lookup along an object prototype chain compares string

values. To optimize this operation, we modified Hop to store

string values used to name properties in a global table and im-

plement the property name comparison as a pointer-equality

test. More precisely, each string is augmented with an addi-

tional name field that points to its corresponding unique name.

In the evaluation of obj[prop], as described in Section 1, af-

ter prop is converted into a string value, its associated name

is retrieved and used in the operations that follow. The name

retrieval is implemented as follows:

1 rope *stringToName( rope *prop ) {

2 if( prop->name ) {

3 return prop->name;

4 } else {

5 long hash = stringHash( prop );

6 rope *name = globalNameTableGet( hash, prop );

7 if( !name ) name = globalNameTablePut( hash, prop );

8 prop->name = name;

9 return name;

10 }

11 }

In spite of its apparent complexity, this function is gen-

erally extremely fast. The test if( prop->name ) succeeds

most of the time because, first, string literals are statically

allocated as names, i.e., their name field points to themselves,

so any property name that is explicitly mentioned in the

source code does not require any runtime allocation. Second,

as soon as a string is used in any property operation, its

associated name is allocated once and for all (if it does not

already exist) and stored in the string for future use.

3 Dynamic Properties
As presented in the introduction, techniques for implement-

ing efficient object accesses are well understood and de-

ployed in popular compilers. However, they demand that

the property name is constant, and thus do not apply when

the property name is a dynamic value. In this section, we

present the two techniques we have developed to mitigate

that problem. The first one applies to array accesses and the

second one to regular object accesses.

3.1 Array Property Names
JavaScript arrays are complex to implement efficiently as

they support many dynamic operations. They can be dy-

namically extended or shrunk, they can be sparse, and more

importantly, accessing arrays elements obeys the same se-

mantics as object accesses. That is, the index has to be con-

verted into a string value to look it up in the array and, if

the index does not have a value, the array’s prototype chain

must be consulted.

JavaScript arrays are used so extensively that all imple-

mentations try their best to implement them efficiently by

using as much as possible flat sequences of values indexed by

small integers [Serrano 2018]. Unfortunately, these efficient

techniques are not always applicable. A typical pattern that

defeats these optimization is the for..in loop. Consider this

example:

for( let i in a ) { s += i + "␣is␣" + a[i] + "␣"; }

Let us assume that a is an array. The semantics tells us that

the local variable i must be successively bound to all prop-

erty names of the array elements, i.e., all the indexes of the
elements that the array contains, but where the indices are

represented as strings. Thus, in the expression i + " is "

+ a[i] + " " the variable i must be a string value. Because

of the first argument to +, this string is used to form the

global result and because of the third (a[i]), it is also used

to access the array. The semantics thus defeats the simple-

minded strategy that represents an array as a linear sequence

of memory, for two reasons:

1. Since the array indices are not stored in the object itself,

the strings representing the indices must be allocated

at runtime.

2. Because imust be a string, the conversion to an integer

would naturally be handled at runtime. Beyond the

cost of parsing the string, the conversion to an integer

may even fail as an array may have properties that are

not its indicies (e.g., its length).



CC ’20, February 22–23, 2020, San Diego, CA, USA Manuel Serrano and Robert Bruce Findler

Problem #1 is similar to the problem of boxing numbers.

The compiler folklore tells us that it can be mostly solved by

pre-allocating small indexes [Serpette and Serrano 2002]. To

avoid the string parsing of problem #2, the second solution

is to store, inside the string itself, the corresponding index.

☞ Contribution #1: We extend the class hierarchy of Figure 1

with an additional class for indexes (see Figure 2). In addition

to the string itself, instances of that subclass also store the

corresponding integer index.
1
Additionally, to avoid dynamic

memory allocation for indices, Hop pre-allocates the first

𝑁 array indices, where 𝑁 is a global parameter of the sys-

tem. If needed, the array of pre-allocated indices is extended

dynamically.

rope

- weight: uint32_t
- left: rope*
- right: rope*

ASCII UTF-8

- utfidx: uint32_t
- utflen: uint32_t

INDEX

- value: uint32_t

- name: rope*

Figure 2. String indices are instances of a dedicated class to

avoid expansive string parsing.

This simple framework is memory efficient as indexes

are pre-allocated in a memory area that do not even need

to be scanned by the garbage collector. It enables optimal

conversions from number to string and vice versa. As an

index is also a regular rope, strings operations such as con-

catenation do not need any modification and preserve their

efficiency. We compare the performance of this encoding to

those used in other systems in Section 5.3 (Figure 10). We

show that it enables Hop to be 3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster3× to 5× faster than all other

tested systems when proxied arrays are used (see Figure 4).

3.2 Dynamic Property Accesses
When compiling an expression obj[prop], the inline cache

technique applies only if prop is a constant. A naive attempt

to improve the cache would simply convert the given prop-

erty name and compare it:

(( obj->hclass == cache.hclass

&& stringToName( prop ) == cache.prop )

? obj->elements[ cache.index ]; // cache hit
: cacheReadMiss( obj, prop, &cache )) // cache miss

but this is ineffective because prop is likely to change fre-

quently when it is not a literal string. For instance, consider

the for..in loop from Section 3.1. Inside the loop, the value

of i changes at each iteration and thus the naive extension

1
Examining the source code of other engines [Google 2019; Mozilla-central

2019] suggests that they also store the index inside the string, but our

performance analysis suggests that the situation is subtle; we explore it in

Section 5.3.

will always miss the cache. The solution we propose is the

following:

☞ Contribution #2: When the property name is dynamic, the
cache is attached to the string value itself, instead of to the
program location.

This requires a minor modification to the implementation

of string values as they must have extra slots to store the

read and write cache. In practice the right property and one

of the rcache or pcache can be merged as property names are

always normalized ropes, for which only the left property

is used. In Section 5.2 we evaluate the impact of adding extra

fields to the string base implementation. We show that for

most tests, the negative impact is invisible. In the worst cases,

we have found that it increases memory allocation by 8% and

it degrades performance by less than 3% (see Figure 8). Note

that regular strings do not need to carry caches. Only strings

representing property names do. So, it might be doable to

use a more complex class hierarchy than this of Figure 3

where cache attributes are declared only in the subclasses

used for property names.

rope

- weight: uint32_t
- left: rope*
- right_or_wcache: void*

- utfidx: uint32_t
- utflen: uint32_t

- value: uint32_t

- rcache: pcache*
- name: rope*

ASCII

INDEX

UTF-8

Figure 3. The complete class hierarchy for JavaScript string

values with the additional attributes for handling string hash-

ing and string caches. Note that the write cache wcache and

the rope right-and-side part are merged.

The sequence of accessing a dynamic property is adapted

from the conventional inline cache sequence from Section 1:

rope *name = stringToName( prop );

if( obj->hclass == name->readcache->hclass ) {

val = obj->elements[ name->readcache->index ]; // cache hit
} else {

val = cacheReadMiss( obj, "prop", name ); // cache miss
}

We have implemented this technique in Hop and we have

evaluated its performance using two micro-benchmarks that

are presented in Section 5.3. It establishes that this idea,

although simple and easy to deploy, outperforms popular

industrial JavaScript implementations. The experimental re-

port also shows that with this modification, Hop is the only

system that imposes no significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overheadno significant performance overhead

for dynamic property names. We conjecture that is also the

main reason why Hop outperforms the other systems by a

factor of up to 10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×10× to 100×when testing more general proxy

programs (see Section 5.1).



Dynamic Property Caches CC ’20, February 22–23, 2020, San Diego, CA, USA

4 Proxy Objects
To quote Mozilla’s MDN [Mozilla 2019a], a proxy object is

used to define custom behavior for fundamental operations

(e.g., property lookup, assignment, enumeration, function

invocation, etc). It is constructed with: new Proxy(target,

handler). The argument target is the original object and

handler is the container for the functions, a.k.a, traps, to be

invoked when primitive operations are to be executed on

target. Here is MDN web site proxy example.

1 var handler = {

2 get: function(obj, prop) {

3 return prop in obj ? obj[prop] : 37;

4 }

5 };

6 var p = new Proxy({}, handler);

7 p.a = 1;

8 console.log(p.a, p.b);

Proxy are expected to slow down execution for four rea-

sons:

1. They replace property accesses that are optimized by

inline caches with more expensive function calls.

2. They require allocating at least twice as many objects

(the original object, the proxy, and, sometimes, the

handler), so they exercise the memory allocator and

the garbage collector.

3. In the client implementation of traps, target object

properties are generally accessed with dynamic prop-

erty names, as the property name is an argument to

the trap. The performance consequences of dynamic

property names are severe because the conventional

inline cache optimization does not apply.

4. Because both the target and the handler can evolve

independently from one another, the inline caching

should be able to accommodate two independent chan-

ges between two accesses to a proxy. Unfortunately,

this is not possible with the currently known tech-

niques, the inline caching optimization is effectively

defeated for all proxied objects.

Problems #1 and #2 are intrinsic to the very nature of proxy

objects. They are unlikely to be eliminated. Problem #3 is

mitigated by the technique presented Section 3.2. In the

following section we present the solution we propose for

improving problem #4.

4.1 General Implementation
Read and write property accesses are the most important op-

erations for proxy performance. Their implementations fol-

low the same principles so we present only one here, namely

the write operation. Neglecting error cases for simplicity,

the JavaScript standard semantics specify the following op-

erations:

1. check if the proxy object has been revoked.

2. get the handler’s set property.

3. if set is a function, then:

a. check if the value is compatible with the target.

b. if it is, invoke the set function with three arguments:

the target, the property, the value, and handler is the

receiver of the method.

4. if set is a proxy and if that proxy has an apply trap,

apply it as step in 3.

5. otherwise, assign the property to target.

☞ Contribution #3: We propose techniques for optimizing

proxy read and write property accesses. They are evaluated

in Section 5.1.

The number of steps and their complexity deter inlining

the proxy write sequence inside client code, but we take

advantage of the general cache miss sequence to recover the

performance. In particular, the proxy sequence is inlined in

the cacheWriteMiss function.

Previous studies of polymorphic inline caches [Hölzle et al.

1991; Serrano and Feeley 2019] show that they eliminate

almost all cache misses for non-proxy programs. But, when

a property is read from a proxy object, it always ends up

with hidden class comparison failure, as proxy objects do

not have properties themselves. This observation justifies

that cache misses should favor proxy objects over regular

objects (contrib. #3a).
Let us now detail how each semantics step is implemented:

Step 1: Hop compiles JavaScript files into an extension of the

Scheme language [Kelsey et al. 1998]. JavaScript objects are

implemented as Scheme classes, each primitive JavaScript

type being mapped to a dedicated class.Hop’s Scheme imple-

mentation allows instances to store extra information along

with the class descriptor at no cost. This is already used by

Hop to store information about each object. For instance,

one bit is used for denoting inlined arrays, another bit is

used for denoting objects that have only regular properties,

i.e., read/write/configurable properties, another bit is used to
mark sealed object, etc. We used that possibility in our exten-

sion for encoding revoked proxies. Testing proxy revocation

is then a simple bit comparison (contrib. #3b).
Step 2: Getting the set attribute of the proxy handler is a

normal property access. It can then be optimized using clas-

sical inline caches. The critical issue is where and when to

allocate the associated cache? The conventional approach,

where one cache is allocated per syntactic occurrences of

the reference to the set attribute, does not work, as every ac-

cess to any proxy object’s set attribute has the same source

location (as mentioned above, the proxy access sequence

is not inlined), namely the part of the runtime system that

implements proxies.

Our solution is to have proxies carrying their own caches

(contrib. #3c). This, however, has its own danger, as it in-

creases the size of proxy objects. Thus, in order to avoid



CC ’20, February 22–23, 2020, San Diego, CA, USA Manuel Serrano and Robert Bruce Findler

 1

 10

 100

ba
gu

e+

ba
se

64
+

bi
na

ry
-tr

ee
+

bo
ye

r+

cr
yp

to
-a

es
+

cr
yp

to
-m

d5
+

cr
yp

to
+

cr
yp

to
-s
ha

1+

de
lta

bl
ue

+

ea
rle

y+

fa
nn

ku
ch

+

ha
sh

-m
ap

+

m
az

e+

pu
zz

le
+

qs
or

t+

ric
ha

rd
s+

sie
ve

+

sp
la
y+

ex
ec

u
ti
o
n
 t

im
e 

(i
n
 s

ec
)

Proxy performance

graal hop jsc js60 v8

Figure 4. Comparison of proxy performance. Bars represent the mean of 30 execution times for each tested system and for

each test. The bars for each implementation are in the same order as in the legend. Smaller is better; log scale.

excessive memory allocation, we allocate shared caches,

one cache per proxy allocation site in the original program

(contrib. #3d). That is, all proxies allocated from the same

location will share the same cache for their set and get

retrieval. This is generally a good strategy as all proxies

allocated on the same site are likely to share their handlers.

Step 3a: When assigning a value to a proxy object, JavaScript

imposes various constraints depending on the definition of

the property. For instance, if the property is read-only, the

assigned value must be the same as the already stored one.

Implementing these checks, in general, require us to retrieve

and inspect the property descriptor object of the target
2
.

Most objects, however, have (morally) the same property

descriptor, namely one that says that all of the properties are

read/write. Accordingly,Hop simply has a single bit recorded

with the object’s runtime representation indicating it has this

kind of descriptor. The proxy object runtime support must,

therefore, be able to access this bit and also short-circuit the

creation of the property descriptor, so the proxy check can be

replaced with a check that is a mere arithmetic comparison

(contrib. #3e).
All the other steps are compiled using standard Hopmeth-

ods and optimizations.

2
Each JavaScript object must implement the getOwnProperty-
Descriptor method that returns per-object description of the object’s

properties and information about them. Allocating it ahead of time is a

significant space cost and implementations generally create it lazily.

5 Experimental Evaluation
A 64-bit Intel Xeon E5-1650 running Linux 4.19/Debian was

used for our performance evaluation. Each test is executed 30

times and the median wall clock time with relative standard

deviation is collected.

We measure Google’s V8 6.8.275.32, JavaScriptCore 4.0

(Jsc), SpiderMonkey C60 (Js60), Oracle’s Graal 19.1.1 (Graal),
and a modified version of Hop 3.3.0. As all these systems

(except Hop) use JIT compilers, we tuned the time of each

run to be sufficiently long so that the warm-up time of the

JIT is negligible.

We have used different tests depending on the experiment.

For testing specific features in isolation, we developed dedi-

cated micro benchmarks. For testing global performance, we

use the benchmark suite used for evaluatingHop general per-
formance [Serrano and Feeley 2019]. This test suite excludes

some of the classical JavaScript benchmark tests because

Hop does not optimize the standard library functions as well

as V8, Jsc, and Js60 do. For instance, Hop uses a slow regular

engine (pcre based). As a consequence, all the benchmarks

that use regexps extensively are biased by that slow library

implementation and we have excluded them from hereto

presentation. There are similar issues for floating point num-

bers. Hop uses the Boehm’s collector [Boehm and Weiser

1988], a non-copying collector that allocates and deallocates



Dynamic Property Caches CC ’20, February 22–23, 2020, San Diego, CA, USA

 1

 10

 100

 1000

ba
gu

e+

ba
se

64
+

bi
na

ry
-tr

ee
+

bo
ye

r+

cr
yp

to
-a

es
+

cr
yp

to
-m

d5
+

cr
yp

to
+

cr
yp

to
-s
ha

1+

de
lta

bl
ue

+

ea
rle

y+

fa
nn

ku
ch

+

ha
sh

-m
ap

+

m
az

e+

pu
zz

le
+

qs
or

t+

ric
ha

rd
s+

sie
ve

+

sp
la
y+

p
ro

xy
/p

la
in

Proxy impact

graal hop jsc js60 v8

Figure 5. Impact of using proxies on performance. Each bar represents the ratio between the original test and the proxied

version. Smaller is better; log scale.

slowly. Using floating point intensive benchmarks would

measure these mismatches, and not the proxy access.

5.1 Performance of Proxy Objects
The main objective of the optimizations presented in this

paper is to improve proxies performance so that they can

be used in more situations. In this section we compare their

performance with Hop and with the other JavaScript imple-

mentations.

Proxies are relatively new to JavaScript and no standard

performance test is available, so we created our own for

the experiment. We reused mid-size programs coming from

different classical JavaScript benchmark suites (Octane, Sun-

spider, Jetstream, Shootout, and some other tests used in

previous JavaScript evaluation reports) that we modified so

that each object or array creation is replaced with an equiv-

alent proxy creation that simply executes the corresponding

action to its target object.

These modifications applied to the test correspond to the

worse-case situation, as all objects and arrays are trapped by

proxies. This over-emphasizes the impact of proxy objects,

as needed for this experiment, and it correspond to a upper

bound for slowdown factors due to proxy accesses in real-life

programs.

We have calibrated each test so that the slowest system

executes within 100 seconds and the Hop execution is as

close as possible to 10 seconds. The results are given in Fig-

ure 4. They show that Hop outperforms all systems for all

tests except binary-tree+ where only Graal is able to get

slightly better performance and on sieve+ where V8 is able
to perform about 40% faster. For all other tests the perfor-

mance difference between Hop and other implementations

is significant. For instance, on the traditional deltablue+ and

crypto-md5+ tests, Hop performs about 5× times faster than

all other systems. Notice that Graal is not able to run the

maze and sieve tests; in both cases, a stack overflow happens

and Graal exits.
To give a more precise comparison of all proxy implemen-

tations, we also measure proxy impact on general perfor-

mance. Figure 5 gives this It shows the execution times of

proxied tests divided by the execution times of the original

corresponding tests. Notice that this figure uses a logarith-

mic scale. This test shows that the performance gap between

Hop and other systems is even more important that one

may deduce from Figure 4. On most tests, Hop performance

is generally in between 2× to 4× slower than systems like

V8 [Serrano 2018; Serrano and Feeley 2019], but its proxy

implementation bridges that gap and even enables it to out-

perform other systems. For instance, on the Octane earley
test, the impact of introducing proxy objects is a slowdown

of 1.66 for Hop, but 11.65 for V8, 29.39 for Js60, and 36.57

for Jsc. Only Graal is able to show comparable slowdown



CC ’20, February 22–23, 2020, San Diego, CA, USA Manuel Serrano and Robert Bruce Findler

but notice that this system overall is generally significantly

slower.

Figure 5 also gives a general picture of the performance

Hop can deliver for proxy objects. For 11 out of the 16 tests,

the proxied programs are within a 10x range of their cor-

responding original ones. All programs that show patho-

logically bad performance use arrays extensively and the

slowdown seems inevitable as it mostly comes from turning

the fast memory reads and writes of the original version into

function calls in the proxy versions. Some programs, such

as qsort, also suffer from an extra problem. They use large

arrays whose indexes overflow the limit from which index

properties are stored in the table (as discussed in Section 3.1),

which causes extra memory allocations.

We have conducted another experiment that evaluates the

impact of proxy objects when not all allocation sites have

proxy wrappers. For each test, we measured the execution

times when the percentage of proxied objects varies from

100% to 10%. Figure 6 shows the result of that experiment for

crypto-aes+. The performance of all systems increases when

the percentage of proxies decreases. This confirms the results

of Figure 5. We have observed similar results for all tests

but for base64+, fannkuch+, hash-map+, and puzzle+. For
these four tests, the performance of Hop executions behaves

as it does for crypto-aes+ but Jsc, Js60, and V8 have more

chaotic executions reflected by discontinuous time curves.

We are unsure what causes those irregularities, as we do not

understand those systems’ runtime support for proxies well

enough.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

100% 50% 33% 25% 20% 16% 14% 12% 11% 10%

ex
ec

u
ti
o
n
 t

im
e 

(i
n
 s

ec
)

crypto-aes+

hop
nodejs

js60
jsc

graal

Figure 6. Execution times depending on the percentage of

proxied objects. Smaller is better; linear scale.

Figure 7 shows the impact of the proxy optimizations de-

ployed in Hop. It presents the performance of the optimiza-

tions used separately. Obviously, the two most influential

optimizations are the dynamic property names (contrib. #2)
and the proxy internal inline caches (contrib. #3c). Disabling
internal inline caches always slows down execution, by a

significant factor (up to almost two with our tests). We then

conclude that this optimization should always be applied.

The dynamic property names optimization has a different

impact. It it slightly slows down some tests and it accelerates

significantly others. We have measured the cache misses

ratio of all these tests and we have observed that all the tests

that suffer slowdowns are array intensive. Hop does not

use inline caches for accessing arrays with integer indexes

because it relies as much as possible on faster indexed mem-

ory accesses. As a consequence, for array accesses the test,

obj->hclass == name->readcache->hclass (see Section 3.2)

always fails. The performance penalty observed in Figure 7

comes exclusively from this test. For all other tests, that is

for all tests that spend a significant portion time on object

access, the dynamic property name is the most beneficial

optimization, even for tests, such as richards+, for which
some name overloading causes dynamic inline cache misses.

This experiment also shows that except for one benchmark

(crypto+), allocating caches per allocation-site instead of

per-allocated proxy (contrib. #3d) is highly beneficial.

5.2 Impact of String Caches
The techniques presented in this paper have very little impact

on the rest of the implementation of the runtime system.

The only modification that hurts performance is the need for

extra fields in the string value implementation. To measure

that impact, we compare the performance of two versions of

Hop that differ only by their representation of strings and the
dynamic property optimization described in Section 3. We

have selected tests that do not use dynamic property names

so the lack of dynamic optimization imposes no penalty. The

result are presented in Figure 8.

The differences between execution times is in the range

±3% and even close to 0% for many programs. We have

observed only three tests for which it yields to a memory

footprint increase. As only strings used as property names

need to be extended with inline caches, it might be that a

clever string encoding could eliminate the allocation of that

memory slot for non-name strings, similarly to what we did

when merging the right part of ropes and the write inline

caches.

5.3 Performance of Dynamic Property Names
In order to improve our understanding of the good Hop
proxy performance we designed various micro-benchmarks

that attempt to isolate the speed of the dynamic property

name access used by proxy objects.

The first test consists of a simple loop that accesses all of

the properties an object holds. The access to object properties

is implemented using two variants. The dynamic version is

implemented as follows:

for( let i=keys.length-1; i>=0; i-- ) { r+=a[keys[i]]; }

In the static version the expression a[keys[i]] is replaced

with a switch that branches according to all possible names

used in the program. The results are presented in Figure 9.



Dynamic Property Caches CC ’20, February 22–23, 2020, San Diego, CA, USA

 0.5

 1

 2

 4

 8

ba
gu

e+

ba
se

64
+

bi
na

ry
-tr

ee
+

bo
ye

r+

cr
yp

to
-a

es
+

cr
yp

to
-m

d5
+

cr
yp

to
+

cr
yp

to
-s
ha

1+

de
lta

bl
ue

+

ea
rle

y+

fa
nn

ku
ch

+

ha
sh

-m
ap

+

m
az

e+

pu
zz

le
+

qs
or

t+

ric
ha

rd
s+

sie
ve

+

sp
la
y+

co
m

p
ar

ed
 e

xe
cu

ti
o
n
 t

im
es

Proxy performance

hop w/o contrib. #2
hop w/o contrib. #3abd

hop w/o contrib. #3c
hop w/o contrib. #3d

Figure 7. Impact of each proxy optimization compared to the baseline compiler (all optimizations switched on). Smaller is

better; log scale.

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

ba
gu

e

ba
se

64

bi
na

ry
-tr

ee

bo
ye

r

cr
yp

to

cr
yp

to
-a

es

cr
yp

to
-m

d5

cr
yp

to
-s
ha

1

de
lta

bl
ue

ea
rle

y

fa
nn

ku
ch

ha
sh

-m
ap

m
az

e

pu
zz

le
qs

or
t

ric
ha

rd
s
sie

ve
sp

la
y

re
g
u
la

r/
ex

te
n
d
ed

 s
tr

in
g
s

mem time

Figure 8. Evaluation of the cost of extra information in

strings on non-proxied programs. For each tests, the "time"

bar shows the execution time with normal strings divided by

the time of execution time with extended strings. The "mem"

bar shows the memory consumption comparison. The closer

to 1, the smaller the impact.

With the exception of Hop, all the implementations impose

a significant cost for the dynamic version. The good per-

formance for both Hop versions establishes the benefit of

the dynamic property accesses optimization presented in

Section 3.2.

Next, we measured the performance of index property

names. We know, from examining the source code, that V8
and Js60 (like Hop) both use string representations that hold

references to the corresponding index when the string’s con-

tent is a number. That said, we still see a performance gap

 1

 10

 100

keys-static keys-dynamic

ex
ec

u
ti
o
n
 t

im
e 

(i
n
 s

ec
)

graal
hop

jsc
js60

v8

Figure 9. Comparing the raw performance of JavaScript

implementations for static and dynamic property names.

Smaller is better; log scale.

between them andHop. These experiments report on the gap,

but we do not have an explanation for the gap based on the

representations that V8 and SpiderMonkey are using. While

we cannot claim to fully understand the complete details of

other engines’ representations, the picture that these perfor-

mance results paint suggests that Hop’s representations are
the right choices.

The test foridxmeasures the performance of array indexes

used as integers. It repeats the loop r=0; for(let i in a)

r+=(+i) where a is an array and r an integer. The test forin
measures array performance of string array indexes with the

loop for(let i in a) r+=a[i]. The test forkey is similar to

forin but array indexes are first stored in a separated array

and the loop is for(let i=0; i<l; i++) r+=a[k[i]]. The test

forstr is similar to foridx, but indexes are concatenated as



CC ’20, February 22–23, 2020, San Diego, CA, USA Manuel Serrano and Robert Bruce Findler

 0.1

 1

 10

 100

foridx forin forkey forstrex
ec

u
ti
o
n
 t

im
e 

(i
n
 s

ec
)

Performance of string array indexes

graal
hop

jsc
js60

v8

Figure 10. Comparing the raw performance of JavaScript

implementations for array string array accesses. Smaller is

better; log scale.

strings. The loop is s=""; for(let i in a) s+=i. Figure 10

shows the scores for these tests. It reveals that systems come

with some trade offs. Jsc is fast for accessing arrays in the

loop but all the regular string operations on indexes are slow.

V8 is reasonably fast for using array indexes as integers but

relatively so for all other options. Js60 is very fast for access-

ing array with pre-computed string indexes but slower for

all other tests. We think that the test shows the general good

performance of our contribution #1 presented in Section 3.1.

It is the fastest for the numerical conversion (foridx) and
consistently second for forin and forkey. It is slightly slower

for forstr but for another reason. This test keeps allocating
small strings that have a very short life time. This pattern

penalizes the non-copying collector used by Hop.

6 Related Work
The essential part of the literature regarding proxies focuses

on their design [Van Cutsem and Miller 2010, 2013]. Very

little is said about their performance. A blog post from 2016

mentions that poor performance might jeopardize their adop-

tion [Karpov 2016]. Another post from Google [Lekova 2017]

acknowledges the performance problem and points out the

increase of popularity of proxy objects. It presents improve-

ments applied fromNode v8.4.0 and v9.0.0 and shows that the

performance has improved by about 50% from the first ver-

sion to the second. The optimizations they describe mostly

focus on the implementation of the construction of proxies

themselves but they do not address the problem of efficiently

implementing dynamic property access nor the efficient in-

tegration of the proxy accesses into the inline caching ma-

chinery. For our experiments, we have used V8 embedded

in Node v10.15.2. It is a much more recent version than the

ones described in the blog post and we have shown that the

techniques we present here enables Hop to be more than

twice as fast as Node when proxies are involved, despite

Node having a better baseline performance.

Bauman et al. [2017] present an optimization of Racket’s

chaperones [Strickland et al. 2012b] (a feature of Racket that

is similar in spirit to JavaScript proxy objects, but predates

them) to improve the performance of gradual typing. While

Racket’s chaperones and JavaScript proxies are similar in

spirit, the semantic details differ, and the details required for

good performance do not carry over from one system to an-

other. More precisely, Racket’s impersonators are read-only

and Racket’s structures (Racket’s structures correspond to

JavaScript objects) have a statically-known structure, com-

pletely avoiding the hassle of an efficient implementation

of the prototype chain lookup. Additionally, the relevant

main contribution of Bauman et al. [2017]’s work consists

of adapting the techniques of hidden classes, something that

JavaScript implementations take for granted and is insuffi-

cient to deliver decent performance for proxies.

Safe TypeScript is a sound variation of TypeScript [Mi-

crosoft 2013]. Rastogi et al. [2015] report an overhead of

2.4-72× slowdown with respect to unsound TypeScript. Type

safe safety is implemented using JavaScript proxies and V8
is the platform they used for their experiment. The optimiza-

tions we present here should have a significant benefit to

their system.

7 Conclusion
Efficient proxies are critical for unlocking a host of impor-

tant services that programming languages and their libraries

provide. The one attracting the most ink in the programming

languages literature is clearly gradual typing [Greenman et al.

2019], but the blogosphere is alive with interesting uses, in-

cluding debugging async functions [Gimeno 2018], implicit

defaults for subtypes [Barrasso 2019], debugging imperative

code (when the buggy modification is long gone from the

stack) [Rauschmeyer 2018], revocation of resources [Opia

2018] and more.

This paper takes a first step towards efficient proxies in

JavaScript, describing some key optimizations and showing

that the performance can be significantly improved at negli-

gible cost. Better yet, adding these optimizations to Hop was

straightforward (once we uncovered their value) and is likely

to be straightforward in any other performant JavaScript im-

plementation.

The performance boost that these optimizations give is

significant, too. Simply adding proxies to the standardOctane

benchmark suite shows a 100× slowdown (or sometimes even

more) for modern implementations. The optimizations we

propose in this paper allow Hop to reduce the slowdown to

10× or even less in many tests. It enables Hop to generally

take over other JavaScript implementations, despite having

a weaker baseline performance.

References
R. Artoul. 2015. Javascript Hidden Classes and Inline Caching in V8. http://

richardartoul.github.io/jekyll/update/2015/04/26/hidden-classes.html.



Dynamic Property Caches CC ’20, February 22–23, 2020, San Diego, CA, USA

T. Barrasso. 2019. A practical guide to Javascript Proxy.

https://blog.bitsrc.io/a-practical-guide-to-es6-proxy-229079c3c2f0.

S. Bauman, C-F. Bolz-Tereick, J. Siek, and S. Tobin-Hochstadt. 2017. Sound

Gradual Typing: Only Mostly Dead. Proc. ACM Program. Lang. 1, OOP-
SLA, Article 54 (Oct. 2017), 24 pages. https://doi.org/10.1145/3133878

H.J. Boehm and M. Weiser. 1988. Garbage Collection in an Uncooperative

Environment. Software — Practice and Experience 18, 9 (Sept. 1988),

807–820.

H-J. Boehm, R. Atkinson, and M. Plass. 1995. Ropes: an Alternative to

Strings. Software: Practice and Experience 25, 12 (Dec. 1995), 1315–1331.
C. Bruni. 2017. Fast Properties in V8. https://v8project.blogspot.fr/2017/08/

fast-properties.html.
C. Chambers and D. Ungar. 1989. Customization: Optimizing Compiler

Technology for SELF, A Dynamically-Typed Object-Oriented Program-

ming Language. In Conference Proceedings on Programming Language
Design and Implementation (PLDI ’89). ACM, USA, 146–161.

C. Chambers, D. Ungar, and E. Lee. 1989. An Efficient Implementation of

SELF a Dynamically-typed Object-oriented Language Based on Proto-

types. In Conference Proceedings on Object-oriented Programming Systems,
Languages and Applications (OOPSLA ’89). ACM, USA, 49–70.

P. Deutsch andA. Schiffman. 1984. Efficient Implementation of the Smalltalk-

80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL ’84). ACM, USA, 297–302.

ECMA International. 2011. Standard ECMA-262 - ECMAScript Language
Specification (5.1 ed.). http://www.ecma-international.org/publications/
standards/Ecma-262.htm

ECMA International. 2015. Standard ECMA-262 - ECMAScript Language
Specification (6.0 ed.). http://www.ecma-international.org/ecma-262/6.0/

A. Gimeno. 2018. How to use JavaScript Proxies for Fun and

Profit. https://medium.com/dailyjs/how-to-use-javascript-proxies-for-

fun-and-profit-365579d4a9f8.

Google. 2018. V8 JavaScript Engine. http://developers.google.com/v8.
Google. 2019. name.h. https://github.com/v8/v8/blob/

4b9b23521e6fd42373ebbcb20ebe03bf445494f9/src/objects/name.h#L99-
L104.

B. Greenman, A. Takikawa, M. New, D. Feltey, R. Findler, J. Vitek, and M.

Felleisen. 2019. How to Evaluate the Performance of Gradual Type

Systems. Journal of Functional Programming 29 (2019).

U. Hölzle, C. Chambers, and D. Ungar. 1991. Optimizing Dynamically-

Typed Object-Oriented Languages With Polymorphic Inline Caches. In

Proceedings of the European Conference on Object-Oriented Programming
(ECOOP ’91). 21–38.

V. Karpov. 2016. Thoughts on ES6 Proxies Performance. http://
thecodebarbarian.com/thoughts-on-es6-proxies-performance.

M. Keil, S. Guria, A. Schlegel, M. Gefken, and P. Thiemann. 2015. Transparent

Object Proxies in JavaScript. In 29th European Conference on Object-
Oriented Programming (ECOOP 2015) (Leibniz International Proceedings in
Informatics (LIPIcs)), John Tang Boyland (Ed.), Vol. 37. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 149–173. https:
//doi.org/10.4230/LIPIcs.ECOOP.2015.149

R. Kelsey, W. Clinger, and J. Rees. 1998. The Revised(5) Report on the

Algorithmic Language Scheme. Higher-Order and Symbolic Computation
11, 1 (Sept. 1998).

M. Lekova. 2017. Optimizing ES2015 proxies in V8. https://v8.dev/blog/
optimizing-proxies.

Microsoft. 2013. TypeSscript, Language Specification, version 0.9.5.

Mozilla. 2019a. Proxy. https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/Proxy.

Mozilla. 2019b. Strings. https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/String.

Mozilla-central. 2019. StringType.h. https://searchfox.org/mozilla-
central/rev/7ed8e2d3d1d7a1464ba42763a33fd2e60efcaedc/js/src/vm/
StringType.h#422-428.

C. Opia. 2018. A quick intro to JavaScript Proxies.

https://www.freecodecamp.org/news/a-quick-intro-to-javascript-

proxies-55695ddc4f98/.

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagi-

otis Vekris. 2015. Safe &#38; Efficient Gradual Typing for TypeScript. In

Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’15). ACM, New York, NY,

USA, 167–180. https://doi.org/10.1145/2676726.2676971
A. Rauschmeyer. 2018. Exploring ES6.
B. Serpette and M. Serrano. 2002. Compiling Scheme to JVM bytecode: a

performance study. In 7th ACM Sigplan Int’l Conference on Functional
Programming (ICFP). (taux d’acceptation : 24/76), Pittsburgh, Pensylvanie,
USA.

M. Serrano. 2018. JavaScript AOT Compilation. In 14th Dynamic Language
Symposium (DLS). Boston, USA. https://doi.org/10.1145/3276945.3276950

M. Serrano and M. Feeley. 2019. Property Caches Revisited. In Proceedings
of the 28th Compiler Construction Conference (CC’19). Washington, USA.

https://doi.org/10.1145/3302516.3307344
S. Strickland, R. Findler, M. Flatt, and S. Tobin-Hocshstard. 2012a. Chaper-

ones and impersonators: Run-time support for reasonable interposition.

ACM SIGPLAN Notices 47 (10 2012). https://doi.org/10.1145/2384616.
2384685

S. Strickland, S. Tobin-hochstadt, R. Findler, and M. Flatt. 2012b. M.: Chaper-

ones and Impersonators: Run-time Support for Reasonable Interposition.

In Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’12). Arizona, USA, 943–962.

S. Thompson. 2015. Design Elements. https://github.com/v8/v8/wiki/
Design%20Elements.

T. Van Cutsem and M. Miller. 2010. Proxies: Design Principles for Robust

Object-oriented Intercession APIs. Proceedings of the 6th Symposium on
Dynamic Languages, DLS ’10 45, 59–72. https://doi.org/10.1145/1869631.
1869638

T. Van Cutsem and M. Miller. 2013. Trustworthy Proxies - Virtualizing

Objects with Invariants. In 27th European Conference on Object-Oriented
Programming (ECOOP 2013).

Wikipedia. 2019. Rope (data structure). https://en.wikipedia.org/wiki/Rope_
%28data_structure%29.


