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Abstract. Higher-order functions have become a staple of modern pro-
gramming languages. However, such values stymie concolic testers, as
the SMT solvers at their hearts are inherently first-order.
This paper lays a formal foundations for concolic testing higher-order
functional programs. Three ideas enable our results: (i) our tester con-
siders only program inputs in a canonical form; (ii) it collects novel
constraints from the evaluation of the canonical inputs to search the
space of inputs with partial help from an SMT solver and (iii) it col-
lects constraints from canonical inputs even when they are arguments to
concretized calls. We prove that (i) concolic evaluation is sound with re-
spect to concrete evaluation; (ii) modulo concretization and SMT solver
incompleteness, the search for a counter-example succeeds if a user pro-
gram has a bug and (iii) this search amounts to directed evolution of
inputs targeting hard-to-reach corners of the program.

1 Introduction

Concolic testing [8, 20] allows symbolic evaluation to leverage concrete inputs as
it attempts to uncover bugs. The role of concrete inputs is twofold. First, they
help symbolic evaluation focus on one control-flow path at a time, thus allowing
the exploration of the behavior of a user program in an incremental and directed
fashion. Second, they enable concretization, permitting symbolic evaluation to
seamlessly switch to concrete evaluation and back, thus facilitating interoper-
ability with external libraries. Testament to the success of concolic testing is
adaptations to a gamut of linguistic, platform and application settings [3, 6, 7,
12, 14, 15, 17, 21, 22, 23, 25, 29, 30, 35, 37, 38, 39, 41, 43].

However, concolic testers’ generation of inputs hinges on the power of SMT
solvers. That is, at the end of a run of a user program, the concolic tester con-
structs a formula whose solution determines the next input. Alas, SMT solvers
largely deal with first-order formulas that cannot capture higher-order properties
of inputs. As a result, existing concolic testers struggle with JavaScript, Python
or Racket components whose inputs are often higher-order functions and fall
back to incomplete approximations [17, 28, 31, 36].

The goal of this paper is to introduce provably correct foundations that
lift concolic testing to the world of higher-order functions.
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call-twice = λf. let i = f (equals 2) in
let j = f (equals 30) in
let k = f (equals 7) in
(cond [!(i = 12) 1]

[!(j = 5) 2]
[!(k = -2) 3]
[else error])

error-trigger =
λg. (cond [(g 2) 12]

[(g 30) 5]
[else -2])

Figure 1: One Argument Call Is Not Enough; Example & Error-Triggering Input

There are three interdependent challenges for the design of a correct higher-
order concolic tester. First, a higher-order concolic tester needs to be able to
generate sufficiently complex function inputs to explore the behavior of a user
program. Even in simple higher-order programs, this set of inputs includes func-
tions with sophisticated structure. The left-hand side of figure 1 displays one such
program, call-twice. It consumes a higher-order function f that when given a
predicate on numbers returns a number. It calls f with three different predicates
that return true if their input is 2, 30 and 7 respectively. If the result of any
of these calls is different than a specific number, call-twice terminates suc-
cessfully; otherwise call-twice errors. Hence, only a fine-tuned input can make
call-twice error. In particular, it has to be a function that calls its argument
at least twice with different numbers and returns the right result in each case,
like the counterexample on the right-hand side of the figure.

The second challenge is that a higher-order concolic tester needs to be able to
generate structurally complex function inputs in a directed manner. Specifically,
to preserve the character of first-order concolic testing, a higher-order concolic
tester must start with a default input that evolves, with each run of the user
program and the help of an SMT solver, to a new input that aims to exercise
a previously unexplored region of the program. Returning to the example from
figure 1, a higher-order concolic tester should start from a simple f such as a
constant function and then use hints from the evaluation of the example to add
appropriate calls inside f that call f’s argument, targeting the last branch of
call-twice’s cond expression.

date< = λd1. λd2. (or ((date-year d1) < (date-year d2))
((date-month d1) < (date-month d2))
((date-day d1) < (date-day d2)))

main = λdates. (let sorted-dates = (sort dates date<) in ⋯)

Figure 2: Broken Argument for a Library Function.

The third challenge is that, in a higher-order setting, concretization demands
that the concolic tester is ready to concretize any call to a higher-order function.
For example the main function in figure 2 takes as input a list of dates, calls sort
with the comparison function date< and expects the results to be lexicograph-
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ically sorted (as there are many reasons why sorting is necessary we leave the
details to the imagination of the reader). If sort is a library function whose im-
plementation is inaccessible, then the concolic tester has to concretize the call to
sort and disable symbolic evaluation for the extent of that call. Unfortunately,
date< does not implement the lexicographical order and discovering this requires
the concolic tester to track symbolically the flow of values in and out of date<
in order to generate a list of dates that exhibits the bug. In other words, the
concolic tester should be able to perform “partial” concretization so that date<
interacts with sort in a concrete manner while the the evaluation of date< still
produces the symbolic information the tester needs.

Our paper contributes the first formal model for a concolic tester for
higher-order functions that meets all three challenges:

1. Inspired by the function application rules of unknown symbolic values in
higher-order symbolic evaluation [32, 33], we construct a novel set of canoni-
cal functions that the concolic tester uses to generate inputs. We prove that if
a higher-order program under test errors for some input, there is a canonical
input that triggers an error too (representation completeness).

2. We devise input constraints to record at runtime facts about the structure
of the generated function inputs separately from the first-order control flow
path formulas from the symbolic evaluation of the user program. We spec-
ify an input evolution process that captures how the concolic tester can use
input constraints to iteratively search through the space of canonical func-
tions with the help of an SMT solver. We establish that, relative to the
completeness of the solver, the concolic tester can always start with a de-
fault input and, through evolution, generate a counter-example, if one exists
(search completeness). Furthermore the input evolution is directed by the
input constraints that the concolic tester collects (directness).

3. Building on top of higher-order contracts [16], we develop concretization
that employs wrappers around higher-order functions that are consumed by
library and other inaccessible code. The wrappers allow the concolic tester
to maintain control of function inputs and evaluate their bodies symbolically
while producing concrete values when they interact with code that the con-
colic tester does not control. We prove that, in the presence of concretization,
the search for the bug is not complete but the concolic tester still evaluates
user programs consistently with respect to concrete evaluation (soundness).

The remainder of the paper is organized as follows. Section 2 gives an in
depth by-example presentation of our approach to higher-order concolic testing.
Section 3 presents our formal model and section 4 establishes its correctness
properties. Section 5 describes a proof-of-concept implementation of our model
that provides evidence that the model is a reasonable basis for the development
of effective higher-order testers. Finally, section 6 places our results in the context
of related work and section 7 offers some concluding thoughts.
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2 Higher-order Concolic Testing by Example

The linguistic setting of our exposition of concolic testing is a small call-by-value
dynamically-typed functional language without mutable state. Furthermore, we
represent bugs explicitly as the term error and assume that user programs come
with type-like input specifications.

2.1 First-Order Concolic Execution in a Nutshell

The goal of a concolic tester is to find a value for the inputs to a user program
that cause the execution to reach error. To do so, the tester runs the user pro-
gram in a concolic loop with a different input for each loop iteration. There are
two differences between concolic evaluation and concrete evaluation. To explain
them, consider the user program in the left-hand column of figure 3, where X
represents the numeric input.

(cond
 [(X×X -X - 992 = 0) 

(cond
 [(X < 0) error]
[else 12])]

[else 11])

Input:
X↦ 0

Log:
• cond: (false)

‹X×X -X - 992 = 0›

Input:
X↦ 32

Log:
• cond: (true)

‹X×X -X - 992 = 0›
• cond: (false)

‹X < 0›

Figure 3: A First, First-order Concolic Example

The first difference is that, instead of concrete values, concolic evaluation
utilizes values of the form ‹t›, where t is a first-order formula over the input
variables that codifies the provenance of the value. Concretely, assume that in
the first run of our example program the concolic tester picks the concrete input
0. Instead of just starting the evaluation of the program by replacing X with
0, the concolic machine keeps an environment that maps X to 0 and runs the
program with the concolic value ‹X› as the input. The concrete counterpart of
a concolic value can be computed from the concrete values in the environment
and the (first-order) formula t at any point during concolic evaluation.

To kick-off concolic evaluation, the concolic machine evaluates the test ex-
pression of the outer cond of the example. Specifically the primitive operation ×

detects that its input is ‹X› and returns ‹X×X›. Even though the concrete coun-
terparts of both of these concolic values are 0, they bear a different relation to
the input X. The concolic machine proceeds with the rest of the evaluation of the
test expression, yielding ‹X×X -X - 992 = 0›. At this point, the concolic machine
uses the concrete counterpart of the concolic value and thus decides to follow
the “else” branch of the outer cond. Hence, the first run does not trigger error.
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The second characteristic of concolic evaluation are the connections it creates
between the inputs and the evaluation of a user program. Specifically, the con-
colic machine logs the concolic value of the test expressions of cond expressions
in the user program in the order they are evaluated; we refer to these entries of
the log as path constraints. The middle column of figure 3 shows the log (and the
inputs) for the run of our example when X is 0. Since only one cond expression is
evaluated, the log contains a single path constraint that the concrete counterpart
of the concolic value ‹X×X -X - 992 = 0› is false, that is the first branch of the cond
was not taken. Intuitively, the path constraint connects the evaluation of a cond
expression with the input to the program via concolic values. After the first run,
the concolic tester asks the SMT solver for an input where X×X -X - 992 = 0 holds,
forcing the branch to go the other way. The SMT solver may respond with 32,
leading to the run represented in the right-hand column of figure 3. That run
again fails to trigger the error, but has a log showing that the first branch of
the outer cond was taken this time because X×X -X - 992 = 0 is true. It also has
another constraint that indicates that the first branch of the inner cond was not
taken because X < 0 is false. At this point, the concolic tester can formulate a
new SMT problem that requires both X×X -X - 992 = 0 and X < 0 to be true. The
problem is satisfiable and the SMT solver replies that the new concrete value for
X should be -31, which uncovers the error.

2.2 From Numbers to Function Inputs

As described so far, concolic testing cannot handle inputs that are not numbers
or other data types that SMT solvers understand. The concolic tester relies solely
on a solver to generate new inputs and for that it needs to prepare a first-order
problem that the solver can solve. Our first insight to surpass this restriction is
to split the generation of function inputs into two subproblems:

1. testing programs with first-order function inputs and;
2. testing programs with higher-order function inputs.

As with many problems that involve higher-order functions, the first subproblem
is the hard one. The solution for the second subproblem falls out of that for the
first one, exploiting the natural co- and contravariance of higher-order functions.
So, we first focus on first-order function inputs and we return to higher-order
inputs in section 2.5.

The left-hand column in figure 4 shows a program whose input F is a first-
order function from numbers to numbers. One of the many functions that can
trigger error in this example is λx. 2-x. However, a key aspect of our approach
is recognizing that we care only about the behavior of the input when given 1
and 2. Since the program calls F with only those arguments, other arguments are
irrelevant. In general, any program that terminates calls its input a finite number
times so the concolic tester can model first-order function inputs as functions
that look up values from a table, which we represent with a case expression.

As with non-function inputs, the concolic tester starts with the simplest
possible function input: λx. (case x), as shown in the middle column of figure 4.



6 Shu-Hung You[B], Robert Bruce Findler, and Christos Dimoulas

(cond
 [((F 1) × 3 = (F 2) + 3) 
error]

[else 11])

Input:
F↦ λx. (case x)

Log:
• call: (F 1)
• call: (F 2)
• cond: (false)

‹0×3 = 0+3›

Input:
F ↦
λx.(casex

[1 ‹Y›]
[2 ‹Z›])

Y↦ 0
Z↦ 0

Log:
• call: (F 1)
• call: (F 2)
• cond: (false)

‹Y×3 =Z+3›

Figure 4: First-order Input

This function looks up its argument in an empty table and returns always 0. If
the concolic machine treated this function as a first-order input, it would record
that the first branch of cond was not taken because ‹(F 1) × 3 = (F 2) + 3› is false.
This formula, however, involves function symbols which SMT solvers cannot
handle when higher-order functions come into play. Thus the concolic machine
does not record the constraint and instead simply reduces all applications of F
en route to the concolic value of the test expression. Unfortunately, this first
function input does not help the concolic tester make progress. Since the input
returns the constant 0 for any argument, the concolic value of the test loses any
connection to F and the concolic tester does not have much leverage to adjust
F’s behavior and affect the evaluation of the program.

To rectify the situation our concolic tester aims to generate a new input with
a shape that gives to the tester increased control over F’s behavior. The pivotal
idea that enables the input evolution process is that the concolic machine logs
so called input constraints. That is, in addition to the path constraints of the
user program, it also records the values that the user program provides to F, or
any other function input. Back to the example, the evaluation records two input
constraints: one for argument 1 and one for 2. The middle column of figure 4
shows the new log entries along with the path constraint from the evaluation of
the cond expression.

With the input constraint from the log, the concolic tester can construct a
second function input as shown in the right-hand column of figure 4. This new
function input has a case expression with two clauses: one for when the argument
is 1 and one for when it is 2. Furthermore the concolic tester introduces two fresh
input variables Y and Z as the actions of the two clauses. The initial values for
these two new inputs are both 0. However, exactly because the results of the
function are input variables rather than mere constants, the concolic tester can
configure the values for these inputs to trigger the error with the help of an SMT
solver. Specifically, the concolic value of the test of the first branch of the cond
expression in the example becomes ‹Y×3 =Z+3›, as shown in the log. This problem
has solutions and the SMT solver discovers that Y=1 and Z=0 are sufficient to
“switch” the evaluation of the conditional, which triggers the error.
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In sum, to handle first-order function inputs, the concolic tester starts with
the simplest possible function, records input constraints that describe the ar-
guments that the function consumes, uses the constraints to generate a new
function that, in turn, introduces fresh inputs, and finally employs the SMT
solver to fine-tune the values for these inputs.

As a final remark in this section, function inputs are regular functions that
behave like a concrete input would behave. For the concolic machine though, the
evaluation of their bodies is a source of new information that powers the subse-
quent iterations of the concolic loop. This is a key observation for concretization
in the our setting. A concolic tester concretizes calls to functions when it can-
not evaluate their bodies in a concolic manner. This situation arises when the
function comes from an external library, such as sort from section 1, and the
function’s code is not under the control of the concolic machine. In the context
of this section, this translates to the situation where the function’s body cannot
interact with any concolic values nor can its evaluation record path constraints
in the log of the machine. A naive solution to the issue is that the concolic
machine computes the concrete counterpart of the argument, delegates the call
of the function to a concrete machine and then uses the result of the concrete
call to proceed. This means, however, that the concolic machine loses any con-
straints from the evaluation of the body of the argument if the argument is a
function itself. Instead, our concolic machine uses a proxy argument for the con-
crete call that wraps the actual argument. Thus calls to the argument go back to
the concolic machine that records all the usual constraints and only concretizes
any first-order results the argument produces. We return to our approach to
concretization in section 3.3.

2.3 Input Interactions

The previous example supplies a constant number to F. However, programs can
also supply other, first-order inputs to their function inputs, as in the example
in the left-hand column of figure 5.

(cond
 [((F X) × 3 = (F (X×2)) + 3) 
error]

[else 11])

Input:
F↦ λx. (case x)
X↦ 0

Log:
• call: (F ‹X›)
• call: (F ‹X×2›)
• cond: (false)

‹0×3 = 0+3›

Input:
F ↦
λx.(casex

[‹X› ‹Y›]
[‹X×2› ‹Z›])

X↦ 1
Y↦ 0
Z↦ 0

Log:
• call: (F ‹X›)
• call: (F ‹X×2›)
• cond: (false)

‹Y×3 =Z+3›

Figure 5: Interacting Inputs
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In order to trigger the error in this example, F must be able to return different
results from its two different calls. However, if the initial concrete value for X is 0,
the concrete counterparts of the arguments to the calls to F are the same for both
calls. Thus, if the concolic machine logs only the concrete counterparts of the
arguments as part of input constraints, the concolic tester loses the connection
between X and the values that the user program passes to F. Instead, the concolic
machine uses the concolic values when logging input constraints. As shown in
the log in the middle column of figure 5, the concolic values of the arguments to
the two calls to F are ‹X› and ‹X×2›. Thus, the concolic tester can extend the case

of F with two clauses, one for when the concrete counterpart of the argument
of F matches that of ‹X› and one when it matches that of ‹X×2›. The effect of
this extension is that any problems the concolic tester sends to the SMT solver
contain the additional constraint that X and X×2 are different. Consequently, in
a manner similar to the previous example, the concolic tester eventually uses 1
as the concrete value for X and discovers the error. The right-hand column of
figure 5 displays this counter-example.

2.4 Blind Extensions Are Not Enough

So far we have seen how the concolic tester uses input constraints and concolic
values to extend the case expression of a first-order function input. However, the
extension may lead the concolic tester to a dead-end. This is a subtle point that,
unfortunately, requires a complex example to illustrate. Figure 6 contains the
simplest one we know.

This example is complex enough that it deserves a brief walkthrough. To
start, note that it has two inputs, F, a function from numbers to numbers, and
X, a number, and that reaching the error requires that the tests of all of the
branches of the cond expression of the example fail. In effect, the condition for
triggering error is the conjunction of the four formulas that follow the negations
in the example. To confirm that this example does have a error-triggering input,
take X to be -10 and F to be λx. 11 × (x+11).

If the concolic tester follows the process described so far in this section, it
manages to generate an input that makes the tests of the first three branches
of cond to fail. But then, it seems impossible for the concolic tester to extend
the input further to make the test of the fourth branch cond succeed. To see
how this plays out, the middle column in figure 6 shows the state of the concolic
machine after a few iterations of the concolic loop. The concolic tester first runs
the example with the default constant zero function as the input, which results
in 11 and logs the argument X for F; the concolic tester then extends the case

of F with a clause that returns a fresh concolic variable Y. It then discovers
Y must be set to 11 to skip the first branch in the cond expression. For this
input, the example produces result 7, failing to also skip the second branch of
the cond expression. After another iteration, the concolic tester manages to skip
the second branch of cond and generates the input shown in the middle column
of figure 6.
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(cond
 [!(F X = 11) 1]
[!(F 0 = 121) 7]
[!(F (X+10) = 121) 2]
[!(X = -10) 9]
[else error])

Input:
F ↦
λx.(casex

[‹X› ‹Y›]
[0 ‹Z›])

X↦ 1
Z↦ 121
Y↦ 11

Log:
• call: (F ‹X›)
• cond: (false)

‹!(Y = 11)›
• call: (F 0)
• cond: (false)

‹!(Z = 121)›
• call: (F ‹X+10›)
• cond: (true)

‹!(0 = 121)›

Input:
F ↦
λx.(casex

[‹X› ‹Y›]
[0 ‹Z›]
[‹X+10› ‹W›])

X↦ 1
W↦ 121
Z↦ 121
Y↦ 11

Log:
• call: (F ‹X›)
• cond: (false)

‹!(Y = 11)›
• call: (F 0)
• cond: (false)

‹!(Z = 121)›
• call: (F ‹X+10›)
• cond: (false)

‹!(W = 121)›
• cond: (true)

‹!(X = -10)›

Figure 6: A Complex, Subtle Example

Let us analyze the middle section of the figure to understand the concolic
tester’s state at this point in the process. The input consists of a function F
that returns ‹Y› when it sees the input ‹X›, where Y is 11 and returns ‹Z› when
it sees 0, where Z is 121. When we feed this input to the program in the left-
hand column, we skip the first and second branches of the cond, because F has
been tuned to get through them. This part of the execution produces the first
four entries in the log. Next the concolic machine arrives at the third branch of
the cond and the call (F (X+10)), which produces the fifth entry in the log. The
concrete value of the argument is 11, which has no matching clause in the case of
F so F returns 0, and the program terminates with 2, following the fourth branch
as recorded in the last entry in the log.

The straightforward next step is to insist that this third call has its own
distinct clause in F, meaning the concolic engine asks the solver for a solution
to the equations !(X = 0) and !(0 =X+10). An input based on the solution to these
equations is shown in the third column of figure 6, and it too deserves a careful
look. The log is identical up to the last “call” entry so the program evaluates
the same to that point. The next entry in the log (second to last) reveals the
concolic machine skips the third branch of the cond and thus proceeds with the
evaluation of the test X = -10 of the fourth branch. Since the value for the input
X is 1, the machine follows the branch and the program returns 9.

Clearly, since we want the machine to skip the fourth branch too, the tester
should present to the solver the same set of equations that lead to the latest
input and assert in addition X = -10. Unfortunately, there is no solution to these
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equations since they already contain !(X = -10) because the first and third clauses
of F are distinct.

While it is usually a good choice for the concolic tester to force the arguments
the user program provides to function inputs to be distinct, in some cases, like
this one, it is necessary to do otherwise. Indeed, at the very point of this example
to be able to reach error, we need to improve the concolic tester’s capabilities.
More precisely, the concolic tester needs to be able to take a new argument and
force it into an existing clause rather than adding a new one. In this example, if
the concolic tester forces the argument X+10 and the argument 0 to match the
same clause, then it can add the equation 0 =X+10 to the problem it presents
to the SMT solver at the end of the iteration of the concolic loop described in
the middle column of figure 6. This extra equation no longer clashes with the
necessary equation to skip the fourth branch of the user program (!(X = -10)) and
with the help of the SMT solver, the tester can adjust the input in the middle
column of figure 6 to use -10 as X and trigger the error.

To sum up, at the end of each iteration of the concolic loop there are multiple
ways a first-order input can evolve. The concolic tester can use the logged input
constraints to assert to the SMT solver that the arguments of a call to the input
are different from those of some other calls and extend the case expression of
the input accordingly (section 2.2 to section 2.3). Or, it can assert to the SMT
solver that the arguments of two calls to the input are equal (section 2.4). In
either case, the concolic tester asks the SMT solver to determine the values
of first-order inputs. We revisit formally the evolution of inputs in section 3.2.
As a concluding note, we underline that the concolic tester may have to try any
number of the possible ways an input can evolve. The strategy the concolic tester
uses to prioritize and search the space of these possibilities is out of the scope of
this paper. Herein, we focus instead on what the concolic tester can do at each
point in the concolic loop and whether a sequence of its choices is guaranteed to
reveal a possible error in a user program.

2.5 Higher-order Inputs

Handling higher-order inputs, that is functions that consume and/or return other
functions, not just numbers, requires a generalization of the ideas in the previous
section. However, the seed of the key insight is already there in the way our
concolic tester handles first-order function inputs. Intuitively, the tester treats a
first-order function input as a source of new, latent inputs that the concolic tester
provides to the user program. As we discuss above this is exactly the rationale
for the fresh input variables that appear in the actions of the case expressions
of first-order function inputs.

Contravariantly, when an input consumes a function argument, the tester
can simply treat the function argument as a source of further, latent arguments
that the user program provides. The input can decide how and when to call
its function argument in order to obtain these latent arguments. These function
calls, in turn, open up new points where the concolic tester supplies additional
inputs to the user program.
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(cond
 [(G (λx. x+1) +G (λx. x+2) = 9) 
error]

[else 11])

Input:
G↦ λf. ‹X›

Input:
G↦ λf. let fY = f ‹Y› in

(case fY [‹Y+1› ‹X›]
[‹Y+2› ‹Z›])

Figure 7: Co- & Contravariance at Work

Concretely, consider the left-hand program in figure 7. It has one input, G, which
consumes a function f on numbers and returns a number. As before, the concolic
tester starts out by generating the constant zero function. Of course, this does not
uncover the error so, same as for first-order function inputs, the concolic tester
turns to the input constraints in its log. However, the log simply shows that
the user program provides G with two procedures. Therefore the case-expression
approach does not apply in a straightforward manner. The concolic tester can
change the input G to return a fresh input variable X as in the middle column
of figure 7. Unfortunately, this still does not help trigger the error.

While many programming languages offer a certain notion of physical equal-
ity for procedures, our approach is for the concolic tester to generate a function
G that calls its argument f and then inspects the result fY with a case expres-
sion as if it was yet another argument to G. In this case, G calls f with a fresh
input variable Y then binds the result to fY which acts as a latent argument that
the user program provides to G. To account for latent arguments, we generalize
input constraints to keep track of variables such as fY together with the results
of calls to function arguments.

The overall effect is that the concolic tester acquires the vantage point it needs
to follow the same process as for first-order function inputs. In particular, the
input constraints for fY contain the results from calling f that in turn are tied to
input variable Y and thus under the control of the concolic tester. Furthermore,
just like for first-order functions, they provide guidance for filling in the clauses
of the case expression of G. Concretely in our example, the input constraints for
fY record that it is equal to either ‹Y+1› or ‹Y+2›, which the concolic tester can
consider as distinct and, with the help of the SMT solver, generate the G on the
right-hand side of figure 7 that triggers the error, where X and Z are fresh input
variables mapped to 4 and 5 respectively.

Overall, the concolic tester handles function inputs by decomposing them one
layer at a time until it ends up with first-order functions. At each point of de-
composition, that is when an input calls one of its arguments, the concolic tester
introduces fresh input variables and logs input constraints that connect the fresh
input variables and the calls’ results. Then it keeps track of these connections
with input constraints and uses the constraints to fill in the case expressions
in the bodies of higher-order function inputs. Effectively, this approach entails
that the concolic tester considers inputs in a so called canonical form only. In-
formally, canonical inputs nest let-expressions and case-expressions. The precise
definition of canonical functions and their evolution are the subject of Section 3
along with the rest of the model for higher-order concolic testing.
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3 Formalizing Higher-order Concolic Testing

The core of our formal model of higher-order concolic testing is a concolic (ab-
stract) machine that loads and runs user programs, and the input evolution
metafunction that generates inputs for the next run.

The User Program, e_

Loading with Inputs
e = L⟦ρ, e_⟧

Concolic Evaluation
⟨ρ , [] , e⟩ * ⟨ρ , π , e′ ⟩

Evolution
⟨ρ′ , π′ ⟩ ∈ evolve⟦ρ, π⟧

Counter-example, ρ

Logs
π

Input Environment
ρ : X ÞÝÑ n or CF (i.e.
canonical functions)

Figure 8: The Full Input Evolution Cycle

Figure 8 depicts how the concolic machine and the input evolution metafunc-
tion work together to form the concolic loop. At the beginning of each iteration
of the loop, the load metafunction L consumes the environment ρ that maps each
input variable X in the user program e_ to a value and prepares the user program
for the concolic machine. The concolic machine evaluates the loaded program, e,
with the help of two registers: the environment of inputs ρ and the log π (that
is initially empty). If the result of the evaluation is not an error, the final con-
tent of log π together with the environment ρ determine how the input evolves.
Specifically, the evolve metafunction uses them to compute a list of pairs that
each contains a new environment of inputs ρ′ and a prediction of the contents
of the log π′ of the concolic machine after evaluating the program with ρ′. The
concolic loop repeats and, with each iteration, explores one more input. When it
discovers an error in the user program, the loop terminates and the environment
of the error-generating input turns into a concrete counter-example.

Section 3.1 details the concolic machine, section 3.2 formalizes the evolution
function and section 3.3 extends the model with concretization.

3.1 From User Programs to Concolic Evaluation

op ::= ! | + | - | × | < | = | integer? | procedure?
e_ ::= n | error | x | X | (λx. e_) | op e_ | op e_ e_ | e_ e_ | (cond [e_ e_] . [else e_])

X, Y, Z, F, G, etc., are concolic variables.

Figure 9: The Syntax of User Programs
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CF ::= (λx. casex)
casex ::= (caseℓ x) | (caseℓ x [procedure? e° ]ℓ [‹t› e° ]ℓ .)

e° ::= v° | (let z = f v°  in casez)
v° ::= x | ‹X› | CF

Figure 10: Canonical Functions

Figure 9 collects the constructs of the language of user programs, including
numbers n, error, primitive operators op e_ ., multi-way conditional expressions
cond, and uppercase variables X, Y, F, etc., for the inputs of a user program.
These inputs are either numbers or, as we discuss briefly in section 2.5, functions
in canonical form. The error construct represents actual bugs in user programs;
dynamic type errors manifest themselves as stuck terms.

Figure 10 provides the formal definition of canonical functions. The body of
a canonical function with argument x is a casex expression with zero or more
clauses. As we mention in section 2, a casex that has no clauses is equivalent
to the constant 0. Different than the presentation in section 2 and due to the
dynamically-typed nature of our model, the very first clause of every non-empty
casex always checks whether x is a function. If x is a function f, similar to the
discussion in section 2.5, the action e° of the procedure? clause is typically a let

expression that applies f and inspects the result of the application z with yet
another case expression.1 If x is a number then the casex compares x with each of
the concolic values ‹t› and delegates to the corresponding action e°. Similar to the
examples of section 2, the argument v° for f in a let expression is an input, i.e.,
a concolic value ‹X› where X is a fresh concolic variable, or a canonical function.
Some goes for the actions e° of a non-procedure? clause of a case expression.
However, in these positions the model can also use variables in scope in an
attempt to identify a counter-example for a user program with fewer concolic
loop iterations, which is helpful when proving the metatheoretical properties of
the model. In general, despite their restricted shape, canonical functions can
simulate any function input that triggers an error in a user program. We return
to this point in section 4.

As a final remark on canonical functions, one important difference from the
discussion of function inputs in section 2.5 is that, herein, each case expression
comes with labels ℓ. There are two kinds of labels: labels that uniquely identify
a case expression and labels that uniquely identify a clause of a case. As we
explain further on, their purpose is to allow the concolic tester to analyze the
log of the concolic machine after each iteration of the concolic loop to direct the
evolution of a canonical function.

Figure 11 shows the complete definition of the concolic machine. As we men-
tion at the beginning of this section, the machine has three registers: the input
environment ρ that maps concolic variables X to either numbers or canonical
functions; the log of constraints π; and the term e the machine evaluates.

1 We use let x = e1 in e2 as shorthand for (λx. e2) e1.
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M ::= ⟨ρ , π , e⟩

ρ  :  X ⟼ n or CF

π ::= [p , .]
p ::= ⟨“R-COND” , “FALSE” , ‹t›⟩ | ⟨“R-COND” , “TRUE” , ‹t›⟩

 | ⟨“R-CASE” , ℓ , v , “MISS”⟩ | ⟨“R-CASE” , ℓ , v , “HIT”: ℓ⟩

t ::= X | n | !t | op t t
e ::= ‹t› | error | x | (λx. e) | op e | op e e | e e | (cond [e e] . [else e])

 | (caseℓ e) | (caseℓ e [procedure? e]ℓ [‹t› e]ℓ .)
v ::= (λx. e) | ‹t›
E ::= []

 | op E | op E e | op v E | E e | v E | (cond [E e] [e e] . [else e])
 | (caseℓ E) | (caseℓ E [procedure? e]ℓ [‹t› e]ℓ .)

L : ρ e_ → e  (interesting cases)
L⟦ρ, n⟧  = ‹n›
L⟦ρ, X⟧  = ‹X›
 where ρ(X) = n
L⟦ρ, F⟧  = λx. casex
 where ρ(F) = (λx. casex)

E : ρ t → n
E⟦ρ, n⟧  = n
E⟦ρ, X⟧  = n
 where ρ(X) = n
E⟦ρ, op t1 .⟧  = n
 where op ∈ {! , + , - , × , < , =}, 

δ⟦op, E⟦ρ, t1⟧, .⟧ = n

Figure 11: The Concolic Machine and the Evaluation Language

Evaluation terms e are user program terms extended with canonical functions
and concolic values ‹t›. Recall from section 2 that the latter keep track of the
provenance of a value as a symbolic first-order formula t that an SMT solver
can handle. The concrete counterpart of a concolic value can be computed at
any point in the evaluation from t and the input environment ρ of the concolic
machine with the simple E metafunction.

The log, π, of the concolic machine collects two kinds of constraints, p. Path
constraints are either ⟨“R-COND” , “FALSE” , ‹t›⟩ or ⟨“R-COND” , “TRUE” , ‹t›⟩ and are logged
by evaluating cond expressions. The first indicates that the test of a branch failed
during concolic evaluation; the second that the test succeeded. In either case, the
concolic value of the test is ‹t› where the symbolic first-order formula t codifies
the necessary and sufficient condition for the test to succeed.

Input constraints, ⟨“R-CASE” , ℓ , v , “HIT”: ℓi⟩ and ⟨“R-CASE” , ℓ , v , “MISS”⟩, are logged
by evaluating case expressions in canonical functions. The label ℓ associates
each input constraint with a case expression in the input environment ρ. A
⟨“R-CASE” , ℓ , v , “HIT”: ℓi⟩ constraint indicates that the case expression with label ℓ
given value v followed the action of its clause with label ℓi. A ⟨“R-CASE” , ℓ , v , “MISS”⟩
indicates that the case with label ℓ given value v followed the implicit in our
model “else” clause, whose action is the constant 0. Since the first thing a canon-
ical function does when it interacts with the user program is to inspect the value
it receives with case, some of the values v in input constraints are exactly the
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values that the user program provides to function inputs and consequently the
concolic tester. Others are the results of calls to functions of the user program
that higher-order function inputs perform with their let expressions, which are
also values that the user program provides to the concolic tester as we discuss
in section 2.5. Hence the input constraints here supersede the simplified input
constraints from section 2.

Since concolic evaluation handles concolic rather than concrete values, the
L⟦ρ, e_⟧ metafunction prepares a user program e_ accordingly for the concolic
machine. It traverses e_ and replaces every integer n with ‹n›, concolic variables
X with ‹X› if ρ maps X to an integer and F with the actual function if ρ maps
F to a canonical function. Note that L does not introduce any ‹F› since ρ(F) can
be a higher-order function which, in general, SMT solvers have no theory for.

Given a loaded program, the concolic machine operates in accordance with
the reduction rules from figure 12. The rules can be divided into four groups.
Group Sym implements base-value provenance tracking for primitive operators.
For primitive operators that have straightforward SMT formula counterparts,
rule [R-Trace1] produces a concolic value whose formula is formed by the
operator and the symbolic provenance of the operands. Otherwise, [R-Trace2]
discards the provenance information of the operands and simply returns the
concolic value ‹n› where n is the concrete result of the operation.

The next group, Cond, includes the rules for cond expressions. In general,
the concolic machine inspects the concrete counterpart of the value of the test
expression in the first clause of a cond determine whether to take or skip a branch.
When E⟦ρ, t⟧ is non-zero, [R-CondTrue] proceeds with the action expression e1
of the first clause and logs the path constraint ⟨“R-COND” , “TRUE” , ‹t›⟩. When E⟦ρ, t⟧
is zero, rule [R-CondFalse] drops the first clause of the cond and appends
the path constraint ⟨“R-COND” , “FALSE” , ‹t›⟩ to the list of path constraints. If cond
has no other clauses but the else one, [R-CondElse] replaces the conditional
expression with the action expression e of its else clause.

The third group, Case, describe the evaluation of case expressions from
canonical functions. When evaluating a case expression, the concolic machine
searches the clauses for a match. If the case expression is empty or if the input (v)
is a concolic value whose concrete counterpart is a number that is different from
tests of all clauses, [R-CaseMiss1] and [R-CaseMiss2] (respectively) reduce
the case expression to the default action expression ‹0›. They also append the
input constraint ⟨“R-CASE” , ℓ , v , “MISS”⟩ to the log. Otherwise, the last two rules of
the group handle successful matches. For cases where the input v is a function
λx. e, [R-CaseHit1] reduces case to the action expression of its first clause e.
For cases where the input v is a concolic value ‹t›, rule [R-CaseHit2] selects
the matching clause with label ℓi and reduces case to the corresponding action
ei. Both rules log the input constraint ⟨“R-CASE” , ℓ , v , “HIT”: ℓi⟩ with the label ℓ of
the case expression, the input v and the label ℓi of the matching clause.

The last group, Other, completes the definition of the reduction rules. Rule
[R-App] is the standard call-by-value β-reduction while rule [R-Error] and
[R-Ctxt] close the rules over evaluation contexts.
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GROUP SYMop ∈ {! , + , - , × , < , =}

⟨ρ , π , op ‹t1› .⟩  ⟨ρ , π , ‹op t1 .›⟩
 [R-TRACE1]

op ∈ {integer? , procedure?}

⟨ρ , π , op v⟩  ⟨ρ , π , ‹tag⟦op, v⟧›⟩
 [R-TRACE2]

tag : op v → 0 or 1
tag⟦integer?, ‹t›⟧  = 1
tag⟦integer?, (λx. e)⟧  = 0
tag⟦procedure?, ‹t›⟧  = 0
tag⟦procedure?, (λx. e)⟧  = 1

GROUP CONDE⟦ρ, t⟧ ≠ 0 π′ = π  ++  [⟨“R-COND” , “TRUE” , ‹t›⟩]

⟨ρ , π , (cond [‹t› e′1] [e2 e′2] . [else e′k])⟩  ⟨ρ , π′ , e′1⟩
 [R-CONDTRUE]

E⟦ρ, t⟧ = 0 π′ = π  ++  [⟨“R-COND” , “FALSE” , ‹t›⟩]

⟨ρ , π , (cond [‹t› e′1] [e2 e′2] . [else e′k])⟩ 
⟨ρ , π′ , (cond [e2 e′2] . [else e′k])⟩

 [R-CONDFALSE]

⟨ρ , π , (cond [else e])⟩  ⟨ρ , π , e⟩
 [R-CONDELSE]

GROUP CASEπ′ = π  ++  [⟨“R-CASE” , ℓ , v , “MISS”⟩]

⟨ρ , π , (caseℓ v)⟩  ⟨ρ , π′ , ‹0›⟩
 [R-CASEMISS1]

E⟦ρ, t⟧ ∉ {E⟦ρ, t2⟧ , .} π′ = π  ++  [⟨“R-CASE” , ℓ , ‹t›, “MISS”⟩]

⟨ρ , π , (caseℓ ‹t› [procedure? e1]ℓ1 [‹t2› e2]ℓ2 .)⟩  ⟨ρ , π′ , ‹0›⟩
 [R-CASEMISS2]

π′ = π  ++  [⟨“R-CASE” , ℓ , (λx. e) , “HIT”: ℓ1⟩]

⟨ρ , π , (caseℓ (λx. e) [procedure? e1]ℓ1 [‹t2› e2]ℓ2 .)⟩  ⟨ρ , π′ , e1⟩
 [R-CASEHIT1]

[⟨ℓ2 , t2 , e2⟩ , .] = [⟨ℓp , tp , ep⟩ , .] ++ [⟨ℓi , ti , ei⟩] ++ [⟨ℓs , ts , es⟩ , .]

E⟦ρ, t⟧ ∉ {E⟦ρ, tp⟧ , .} E⟦ρ, t⟧ = E⟦ρ, ti⟧

π′ = π  ++  [⟨“R-CASE” , ℓ , ‹t›, “HIT”: ℓi⟩]

⟨ρ , π , (caseℓ ‹t› [procedure? e1]ℓ1 [‹t2› e2]ℓ2 .)⟩  ⟨ρ , π′ , ei⟩
 [R-CASEHIT2]

GROUP OTHER

⟨ρ , π , (λx. e) v⟩  ⟨ρ , π , e{x ↦ v}⟩
 [R-APP]

⟨ρ , π1 , e1⟩  ⟨ρ , π2 , e2⟩

⟨ρ , π1 , E[e1]⟩ 
⟨ρ , π2 , E[e2]⟩

 [R-CTXT]
E ≠ []

⟨ρ , π , E[error]⟩ 
⟨ρ , π , error⟩

 [R-ERROR]

Figure 12: The Reduction Relation of Concolic Evaluation
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Before concluding, it is worth mentioning that if the concolic evaluation of a
user program raises error, it is straightforward for the concolic tester to produce a
counter-example in the language of user programs. All the necessary information
is in the latest input environment of the concolic machine.

3.2 Evolution of Higher-order Inputs

If the concolic machine evaluates a user program without raising an error, the
metafunction evolve⟦ρ, π⟧ analyzes the log of the machine and compiles a list
of new input environments. Specifically, for each constraint from π, evolve⟦ρ, π⟧
“switches” its truthfulness and computes all new input environments ρ′ that are
compatible with the switched constraint. Here, a new input environment ρ′ is
compatible with π if running the user program with ρ′ produces a log π′ that has
the same prefix as π plus the constraint that evolve has switched to obtain ρ′. Put
differently, evolve returns all possible evolutions of the current input that direct
the concolic tester to explore a new aspect of the behavior of the user program.
Theorem 3 from section 4 states this property formally.

⟨ρ′ , π′ ⟩ ∈ evolve⟦ρ, π⟧

⟨ρ′ , π′ ⟩ ∈ evolve⟦ρ, π  ++  [p]⟧
[M-PREFIX]

π = π1  ++  [⟨“R-COND” , “FALSE” , v⟩]
π′ = π1  ++  [⟨“R-COND” , “TRUE” , v⟩]
ρ′  = update⟦ρ, π′ ⟧

⟨ρ′ , π′ ⟩ ∈ evolve⟦ρ, π⟧
[M-TRUE]

π = π1  ++  [⟨“R-COND” , “TRUE” , v⟩]
π′ = π1  ++  [⟨“R-COND” , “FALSE” , v⟩]
ρ′  = update⟦ρ, π′ ⟧

⟨ρ′ , π′ ⟩ ∈ evolve⟦ρ, π⟧
[M-FALSE]

Figure 13: Negating Conditional Branches in User Programs

Figure 13 collects the three most basic rules of the definition of evolve. The
first rule, [M-Prefix], is an administrative one; it allows the removal of an
arbitrary suffix from the log π so that the rest of the rules can focus on the last
entry of the remaining log.

The next two rules, [M-False] and [M-True], form the first-order aspect of
evolve that we discuss in section 2.1. They fire when the last entry of the log is
a path constraint from a branch of a cond expression of the user program. Their
purpose is to guide evolve to generate an input that forces concolic evaluation to
change the outcome of the branch. To do so, the two rules replace the constraint
with its “negation” and then, with metafunction update, they present the modified
list of constraints as a problem to an SMT solver and use the solution to obtain
a new input environment ρ′.

Figure 14 presents the higher-order rules and figure 15 contains the auxiliary
definitions they need. The higher-order rules switch an input constraint of form
⟨“R-CASE” , ℓ , v , _⟩. Recall that such constraints result from the evaluation of a
case expression with label ℓ in the body of a canonical function. Thus an input
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F ∈ dom(ρ), ρ(F) = C°[(caseℓ y)] π = π1 ++ [⟨“R-CASE” , ℓ , (λx. e) , “MISS”⟩]
⟨ρ1 , e° ⟩ ∈ actionb⟦ρ, locals⟦C°⟧, {y}∪localsp⟦C°⟧⟧
fresh ℓ1  ∉ labels(ρ1, e° ) π′ = π1  ++  [⟨“R-CASE” , ℓ , (λx. e) , “HIT”: ℓ1⟩]
ρ′ = ρ1[F ↦ C°[(caseℓ y [procedure? e°]ℓ1)]]

⟨ρ′ , π′ ⟩ ∈ evolve⟦ρ, π⟧
[M-NEWPROC1]

F ∈ dom(ρ), ρ(F) = C°[(caseℓ y)] π = π1 ++ [⟨“R-CASE” , ℓ , ‹t›, “MISS”⟩]
⟨ρ1 , e° ⟩ ∈ actionb⟦ρ, locals⟦C°⟧, {y}∪localsp⟦C°⟧⟧
fresh ℓ1  ∉ labels(ρ1, e° ) π′ = π1  ++  [⟨“R-CASE” , ℓ , ‹t›, “MISS”⟩]
ρ′ = ρ1[F ↦ C°[(caseℓ y [procedure? e° ]ℓ1)]]

⟨ρ′ , π′ ⟩ ∈ evolve⟦ρ, π⟧
[M-NEWPROC2]

F ∈ dom(ρ), ρ(F) = C°[(caseℓ y [procedure? e°1]ℓ1 [‹t2› e°2]ℓ2 .)]
π = π1 ++ [⟨“R-CASE” , ℓ , ‹t›, _⟩]
⟨ρ1 , e° ⟩ ∈ actionb⟦ρ, locals⟦C°⟧, localsp⟦C°⟧⟧
fresh ℓn+1  ∉ labels(ρ1, e° ) π′ = π1  ++  [⟨“R-CASE” , ℓ , ‹t›, “HIT”: ℓn+1⟩]
ρ2 = ρ1[F ↦ C°[(caseℓ y [procedure? e°1]ℓ1 [‹t2› e°2]ℓ2 . [‹t› e° ]ℓn+1)]]
ρ′  = update⟦ρ2, π′ ⟧

⟨ρ′ , π′ ⟩ ∈ evolve⟦ρ, π⟧
[M-NEWINT]

π = π1 ++ [⟨“R-CASE” , ℓ , ‹t›, _⟩]
F ∈ dom(ρ), ρ(F) = C°[(caseℓ y [procedure? e°1]ℓ1 [‹t2› e°2]ℓ2 .)]
[⟨t2 , ℓ2⟩ , .] = [⟨tp , ℓp⟩ , .] ++ [⟨ti , ℓi⟩] ++ [⟨ts , ℓs⟩ , .]
π′ = π1  ++  [⟨“R-CASE” , ℓ , ‹t›, “HIT”: ℓi⟩] ρ′  = update⟦ρ, π′ ⟧

⟨ρ′ , π′ ⟩ ∈ evolve⟦ρ, π⟧
[M-CHANGE]

Figure 14: Directed Evolution of Higher-order Inputs

constraint is sufficient for evolve to identify the case expression in the input
environment it concerns.

Rules [M-NewProc1] and [M-NewProc2] apply when the case expres-
sion with label ℓ is empty. They modify ρ to extend the case expression with
a procedure? clause, the default first clause for recognizing function arguments.
Rule [M-NewProc1] handles the situation where v, the value case examines, is
a function. To create a new clause, [M-NewProc1] calls actionb to compute new
actions — we return to this metafunction towards the end of the section. Rule
[M-NewProc2] handles the situation where v is a first-order concolic value ‹t›.
It is the same as [M-NewProc1] except that the new list of constraints still
ends with ⟨“R-CASE” , ℓ , v , “MISS”⟩ as ‹t› cannot match the new procedure? clause of
the case expression.

If the case expression with label ℓ is non-empty, the concolic tester can change
its evaluation only when v is not a function. After all, if v is a function, the
evaluation of a non-empty case always follows the first clause of the case. As
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C° is the compatible context of e°.
Δ Ă tx,y, z, . . . u stands for any finite subset of non-concolic variables.
locals : C° → Δ

Given a compatible context of canonical functions, computes the
set of all variables in scope in the hole.

localsp : C° → Δ
Given a compatible context of canonical functions, compute the set
of all variables in scope in the hole that are bound to functions.

actionb : ρ Δ Δ → [⟨ρ , e° ⟩ , .]⟨ρ′ , v° ⟩ ∈ actionc⟦ρ, Δ⟧ f ∈ Δp

fresh x ∉ Δ fresh ℓ  ∉ labels(ρ, v° )

⟨ρ′ , let x = f v°  in (caseℓ x)⟩ ∈
actionb⟦ρ, Δ, Δp⟧

[E-HAVOC]
⟨ρ′ , v° ⟩ ∈ actionc⟦ρ, Δ⟧

⟨ρ′ , v° ⟩ ∈ actionb⟦ρ, Δ, Δp⟧
[E-CONST]

actionc : ρ Δ → [⟨ρ , v° ⟩ , .]

fresh X ∉ dom(ρ)

⟨ρ[X ↦ 0], X⟩ ∈ actionc⟦ρ, Δ⟧
[C-INT1]

x ∈ Δ

⟨ρ , x⟩ ∈ actionc⟦ρ, Δ⟧
[C-BOUND]

X ∈ dom(ρ), ρ(X) = n

⟨ρ , X⟩ ∈ actionc⟦ρ, Δ⟧
[C-INT2]

fresh x ∉ Δ fresh ℓ  ∉ labels(ρ)

⟨ρ , λx. (caseℓ x)⟩ ∈ actionc⟦ρ, Δ⟧
[C-PROC]

Figure 15: Computation of New Actions & Local Variables

we discuss in section 2.3 and section 2.4, if v is a first-order concolic value ‹t›,
the tester has two options: either to extend the case expression with a new
clause, or to assert that ‹t› matches an existing clause. Rules [M-NewInt] and
[M-Change] handle these two cases, respectively. There are two subcases for
[M-NewInt]: ‹t› matches an existing clause but the tester opts to create a
dedicated clause for it in the next iteration of the concolic loop, or ‹t› does not
match any existing clause and the tester extends the case to accommodate it. In
either case, rule [M-NewInt] computes the new actions for the additional clause
in the same manner as in [M-NewProc1] and the new clause is inserted into
the case expression. As a last step, rule [M-NewInt] queries the SMT solver
to adjust the values of first-order inputs in the environment, ensuring that all
the clauses of the extended case are distinct. Rule [M-Change] corresponds to
the discussion in section 2.4 and its goal is to assert that ‹t› matches an existing
clause ℓi of the case expression. Hence evolve replaces the last entry of the log
with ⟨“R-CASE” , ℓ , ‹t›, “HIT”: ℓi⟩. Similar to the previous rule, as a last step rule [M-
Change] consults the SMT solver to adjust the input environment given the
new constraint about ‹t›.

As a final remark, metafunction actionb computes the set of actions for the
new case clauses that evolve introduces. It largely follows the grammar of e°
discussed in section 3.1. When it introduces a new function or a let-expression
as a new action, actionb constructs an empty case for their corresponding body
expressions. Moreover, actionb delegates to locals and localsp to compute the set of
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variables that new actions can refer to. The metafunction locals takes a context
C° and extracts the set of all local variables visible in the hole. The metafunction
localsp is similar to locals but only extracts variables that are bound to functions.

3.3 Adding Concretization

e_ ::= .... | concretize(e_)

e ::= .... | concretize(e)

n = E⟦ρ, t⟧

⟨ρ , π , concretize(‹t›)⟩  ⟨ρ , π , ‹n›⟩
[R-CONCRETIZE]

Figure 16: Adding Concretization to Concolic Evaluation

Figure 16 shows the extensions for concretization. For simplicity, we identify
concrete values with ‹n› and consider such terms as feasible to interoperate
with external functions. We do not introduce any specific concrete evaluation
rules. Instead, we augment the reduction rules of the concolic machine with
the [R-Concretize] that reduces the new form, concretize(‹t›), to its concrete
counterpart with the help of E. Recall that the latter metafunction uses the
current input ρ to compute the value of the formula t of a concolic value.

date<
main-bad

= λd1. λd2. (or ((date-year d1) < (date-year d2)) ⋯)
= λdates. (let sorted-dates = (sort dates date<) in ⋯)

sort/wrap
main-ok

= λlst. λcmp. (sort lst (λx. λy. concretize(cmp x y)))
= λdates. (let sorted-dates = (sort/wrap dates date<) in ⋯)

Figure 17: sort With Concretization Wrapper

The astute reader will have noticed that the concretization extension handles
only first-order values. In the remainder of the section, by revisiting the example
from section 1 in figure 17, we argue informally that in fact this is sufficient, even
for functions. In the example, date< is a buggy comparison function and sort is
a library function that is polymorphic in its list argument. Since sort is external
to the concolic tester, the evaluation of its body is delegated to a concrete ma-
chine which does not record constraints nor handles concolic values. This quickly
becomes an issue for testing main-bad. To discover the bug, the concolic machine
needs to log constraints from the evaluation of date< and main-bad. However,
this implies that date< produces concolic values which flow to sort and disrupt
the concrete evaluation of its body.

A straightforward non-solution is to fully concretize the list of dates and miss
recording the critical path constraints from the evaluation of date<’s body. In
contrast, our approach enables both the seamless interoperation of the concolic
tester with external libraries and the collection of constraints. The key insight is
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to create wrappers that strategically concretize concolic values. By assumption,
sort is parametric to its input list. Thus sort can consume a list of concolic
values as long as the comparison function produces concrete results. This leads
to the sort/wrap function that behaves like sort, except that its cmp argument
is wrapped in a function that concretizes cmp’s return value.

The mechanism for creating correct wrappers for higher-order constructs
from user annotations is well-studied [13, 16, 40], thus we do not formalize it.
However, we note that our proof-of-concept implementation, discussed in sec-
tion 5, supports all the necessary features to run the example of this section
including lists, external functions, concretization annotations and interoperabil-
ity between a concrete and a concolic machine.

4 Correctness of Higher-order Concolic Testing

This section establishes three facts about our concolic tester that together entail
its correctness. First, given an input, if concolic evaluation of a user program
triggers an error so does the concrete evaluation of the program (soundness).
Second, relative to the completeness of SMT solvers, the concolic tester always
manages to produce an input in canonical form that triggers error in the user
program, if a counter-example for the program exists (completeness). Third, for
each iteration of the concolic loop, the concolic tester produces a new input
that explores a specific and selected-in-advance aspect of the behavior of the
user program (directness). Here we discuss the necessary bits for the formal
statements of the three facts. The complete formal development with all the
proofs are at https://github.com/shhyou/chop-esop-supplementary.

Soundness guarantees that the concolic machine respects the semantics of
user programs. Thus, the information that the concolic machine logs or its use
of concolic values do not affect the evaluation of programs. Specifically, the
soundness theorem states that if the concolic evaluation of user program e_ with
proper input environment ρ reduces to error,2 the concrete evaluation of e_ with ρ
also reduces to error. Since error represents bugs in the user program, soundness
effectively reassures that concolic evaluation does not discover spurious bugs.

For the formal statement of the theorem, we first introduce a few technical
devices. For closed user programs, i.e., those without input or other free variables,
we define a standard call-by-value reduction semantics with reduction relation

λ. Let C⟦ρ, e_⟧ be the metafunction that constructs concrete inputs from the
input environment ρ and substitutes them in e_. That is, C traverses the user
program e_, dropping any concretize forms and, for each X in e_, if ρ maps X to
a number, C replaces X with the number. Otherwise if ρ maps X to a function, C
compiles the canonical function into an equivalent concrete function and replaces
X with the result.

2 An environment ρ is proper if (i) it maps all concolic variables occurring free in
canonical functions in ρ to numbers, (ii) all labels in ρ are unique and (iii) the
concrete counterparts of the tests of the clauses in case expressions are numbers. In
this section, we only consider proper environments.

https://github.com/shhyou/chop-esop-supplementary
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Theorem 1 (Soundness). Let e_ be any user program written in the extended
language from section 3.3, i.e. e_ with concretize forms. Let ρ be any input en-
vironment closing e_. If ⟨ρ , [] , L⟦ρ, e_⟧⟩ * ⟨ρ , π , error⟩ then C⟦ρ, e_⟧ λ* error.

Completeness captures that if the concrete evaluation of a user program
with some input raises error, our concolic tester can find the input through the
iterative evolution of initially default inputs. More precisely, Theorem 2 formal-
izes the iterative evolution process as a sequence of pairs of inputs and logs
⟨ρ1 , π1⟩, . . . , ⟨ρm , πm⟩ such that (i) the sequence starts with an input environment
that contains numbers and default canonical functions and ends with an input
environment that triggers error; (ii) each πi is the log produced by the concolic
evaluation of the user program with input environment ρi, and (iii) most im-
portantly, each and every adjacent pairs in the sequence is connected by evolve:
⟨ρi+1 , π′ ⟩ ∈ evolve⟦ρi, πi⟧ and π′ is equivalent to a prefix of πi+1. In particular, con-
clusion (iii) says that using the logs from each iteration, evolve predicts the logs
for the next iteration.

Theorem 2 (Completeness). For any e_ written in the user language in sec-
tion 3.1 with concolic variables X1, . . . ,Xn, if there exists closed values v_1, . . . , v_n

in the language of user programs such that none of the values contain error and
e_{X1 ↦ v_1, .} λ* error then there exists a sequence of environments and logs
⟨ρ1 , π1⟩, . . . , ⟨ρm , πm⟩ such that dompρ1q “ tX1, . . . ,Xnu and

1. For all X P dompρ1q, either ρ1(X) = 0 or ρ1(X) = λx. (caseℓ x).
2. For all 1 ď i ă m, ⟨ρi , [] , L⟦ρi, e_⟧⟩ * ⟨ρi , πi , ei⟩.
3. For all 1 ď i ă m, there exists a pair ⟨ρi+1 , π′i+1⟩ ∈ evolve⟦ρi, πi⟧ such that π′i+1 is

equivalent to a prefix of πi+1.
4. ⟨ρm , [] , L⟦ρm, e_⟧⟩ * ⟨ρm , πm , error⟩.

There are two points worth unpacking here. First, conclusion 1 assumes an ap-
propriate choice between numbers and default canonical functions in the initial
environment ρ1. In an implementation, either the user supplies an input specifi-
cation or the tester employs some sophisticated search strategy over all combina-
tions. Second, since the user program may diverge, in conclusion 2 the concolic
machine may need to end the evaluation early. As the maximum number of steps
needed is finite, an implementation can overcome this by setting a time limit.

We prove Theorem 2 in two steps. First, we show that if there is an input for
which the concrete evaluation of a user program raises error, then there exists
an input environment ρ that contains numbers and canonical functions that also
causes the concolic machine to triggers an error. Thus this step validates the
definition of canonical functions.

Lemma 1 (Representation Completeness). We say that ⟨ρ , π⟩ is a proper
counterexample for a user program e_ if (i) ρ closes e_, i.e. FV pe_q Ă dompρq, (ii)
⟨ρ , [] , L⟦ρ, e_⟧⟩ * ⟨ρ , π , error⟩ and (iii) π does not contain input constraints of
the form ⟨“R-CASE” , ℓ , v , “MISS”⟩.
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For any user program e_ with inputs X1, . . . ,Xn. if there exists closed values
v_1, . . . , v_n such that no value contains error and e_{X1 ↦ v_1, .} λ* error then
there exists a proper counterexample of e_.

In the second step of the proof of Theorem 2, we show that the evolution of
inputs during the concolic loop results in an environment input that can trigger
an error if such an input exists. As a consequence, the concolic tester only needs
to explore inputs it generates with evolve.

Lemma 2 (Search Completeness). For any e_ with inputs X1, . . . ,Xn, if e_ has
a proper counterexample then there exists a sequence of environments and logs
satisfying Theorem 2 (1)–(4).

The last fact we establish for our concolic tester is necessary for the proof of
Lemma 2, but also has value on its own. It entails that, at each iteration of the
concolic loop, the concolic tester aims to explore a specific aspect of the behavior
of the user program and indeed produces new inputs that achieve this goal. We
call this the concolic property. Formally, Theorem 3 shows that after the concolic
machine evaluates a user program with an input environment produced by evolve,
the machine’s log is a prefix of the log evolve predicts.

Theorem 3 (Concolic). For any e_ and ρ1, if

1. ⟨ρ1 , [] , L⟦ρ1, e_⟧⟩ * ⟨ρ1 , π1  ++  [p1], e1⟩.
2. π1 has no “miss” input constraints (of the form ⟨“R-CASE” , ℓ , v , “MISS”⟩).
3. ⟨ρ2 , π1  ++  [p]⟩ ∈ evolve⟦ρ1, π1  ++  [p1]⟧.

then ⟨ρ2 ,[] ,L⟦ρ2, e_⟧⟩ * ⟨ρ2 ,π2  ++  [p2],e2⟩ such that π1  ++  [p] is equivalent to π2  ++  [p2].

5 From the Model to a Proof-of-Concept Implementation

A question about our model is whether it can serve as a guide for an effective
higher-order concolic tester. To provide some positive evidence, we have imple-
mented a prototype that closely follows the model. The prototype plays the role
of a sanity check that our theoretically-correct model is not inherently imprac-
tical; performance was not a serious concern. Notably, the prototype’s input
generation strategy is naive. To ensure progress, the prototype sets a config-
urable timeout for each run and avoids duplicating work with a log from trying
each input it generates. We leave the details to https://github.com/shhyou/
chop-esop-supplementary and only summarize our experimental results here.

We compiled a benchmark suite from three sources. The primary source is
Nguyễn et al. [33]’s work, specifically from the jfp branch of https://github.
com/philnguyen/soft-contract. These programs ultimately come from other
papers; see figure 18. The second source is CutEr [18], the Erlang concolic tester.
We collected all of the test cases in CutEr’s test suite that use higher-order
functions and translated them to our prototype’s language. Finally, we contribute
three small examples as as part of this work that have proven out of reach for

https://github.com/shhyou/chop-esop-supplementary
https://github.com/shhyou/chop-esop-supplementary
https://github.com/philnguyen/soft-contract
https://github.com/philnguyen/soft-contract
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Name Failures Source
games 3/3 Nguyễn et al. [32, 33]
hors 0/23 Kobayashi et al. [27]
mochi-new 0/11 Kobayashi et al. [27]
octy 0/13 Tobin-Hochstadt and Felleisen [44]
others 1/26 Nguyễn et al. [32, 33], Tobin-Hochstadt and Van Horn [45]
softy 0/12 Cartwright and Fagan [10], Wright and Cartwright [46]
terauchi 0/7 Terauchi [42]
cuter 0/20 Giantsios et al. [18]
c-hop 0/3 Interesting examples we discovered
total 4/118

Figure 18: Benchmark Results

both Nguyễn et al. [33]’s tool and CutEr. Overall, the benchmark programs
use the Scheme numeric tower, booleans, lists, objects encoded as functions [1],
strings, symbols, and higher-order functions.

Out of 118 benchmarks, our prototype fails to discover bugs in 4 of the
programs. These programs can be grouped based on two limitations of our pro-
totype. First, our search strategy is naive and as a result two benchmarks time
out after an hour. Second, our prototype does not handle Racket’s struct decla-
ration and a few other complex syntactic features of Racket that two of Nguyễn
et al. [33]’s benchmarks use.

6 Related Work

Concolic Testing. CutEr [17, 18] is a concolic testing tool for Erlang [4].
Although CutEr generates functions, it does not generate inputs that contain
calls in their bodies.3 Palacios and Vidal [34] offer an instrumentation approach
for concolic testers of functional languages but do not address the generation of
higher-order inputs.

Li et al. [31] extend the design of path constraints with symbolic subtype
expressions to handle polymorphism in object-oriented languages. However, their
input generation uses only already defined classes.

Path explosion remains a central challenge for concolic testing techniques [5,
9], and it is a challenge that has lead to approaches that rely on the correct
handling of function inputs. Godefroid [19] compute function summaries on-
the-fly to tame the combinatorial explosion of the search space of control-flow
paths. Similarly, Anand et al. [2] performs symbolic execution compositionally
using function summaries. FOCAL [24] breaks programs down into small units
to reduce the search space; it tests each units individual and constructs a system-
level tests by using summaries. In all three cases, the summaries are first-order
and do not include higher-order interactions between functions.

3 Personal communication with Kostis Sagonas.



Sound and Complete Concolic Testing for Higher-order Functions 25

Higher-order Symbolic Execution. Nguyễn et al. [33] and Tobin-Hochstadt
and Van Horn [45] propose the idea of refining symbolic unknown values into
canonical shapes to generate higher-order counterexamples. We adapt their re-
finement rules into the grammar of canonical functions in figure 10. Unfortu-
nately, despite opposite claims, their rules are not complete and fail to generate
a counter-example for our buggy call-twice from section 1.4 Our work prov-
ably fixes this issue. Moreover, we introduce the notion of input constraints to
support the directed search of the higher-order input space.

Random Testing. QuickCheck [11] supports random testing of higher-order
functions by using user-provided maps from the input type to integers and
from integers to the output type. Koopman and Plasmeijer [28] improves upon
QuickCheck by using a predefined datatype to represent the syntax of higher-
order functions. LambdaTester [36] focuses on testing and generating higher-
order functions that mutate an object’s state in order to affect control-flow paths
that depend on this state. Klein et al. [26] random-generate higher-order inputs
that call their arguments to trigger bugs in stateful programs with opaque types.

7 Conclusion

This work offers a theoretical roadmap for generalizing concolic testing to pro-
grams with higher-order inputs. The central innovation is that our concolic tester
records salient information about the interactions between a user program and
its (canonical) inputs. The information induces an SMT problem that describes a
new canonical input that exercises a yet unexplored aspect of the user program.

For this paper, we focus on the quintessential higher-order linguistic feature,
higher-order functions. That said, much remains to be done to build this the-
ory into a production tool by, for example, using the insights of this paper to
support other features such as objects and mutable state. Specifically for state,
our model can be easily and soundly extended to imperative user programs.
However, completeness and the generation of stateful function inputs requires
further study. Finally, another important direction is improving the implementa-
tion, notably exploring search optimizations and strategies. Our prototype uses
a naive strategy and this hampers its performance. Nevertheless, we view this
paper an essential first step towards sophisticated testing strategies for modern
programming languages.
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