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Abstract

Medical professionals have long used algorithmic thinking to de-
scribe and implement health care processes without the benefit
of the conceptual framework provided by a programming lan-
guage. Instead, medical algorithms are expressed using English,
flowcharts, or data tables. This results in prescriptions that are dif-
ficult to understand, hard to debug, and awkward to reuse.

This paper reports on the design and evaluation of a domain-
specific programming language, POP-PL, for expressing medical
algorithms. The design draws on the experience of researchers in
two disciplines, programming languages and medicine. The lan-
guage is based around the idea that programs and humans have
complementary strengths, that when combined can make for safer,
more accurate performance of prescriptions.

We implemented a prototype of our language and evaluated its
design by writing prescriptions in the new language and adminis-
tering a usability survey to medical professionals. This formative
evaluation suggests that medical prescriptions can be conveyed by
a programming language’s mode of expression and provides use-
ful information for refining the language. Analysis of the survey
results suggests that medical professionals can understand and cor-
rectly modify programs in POP-PL.

Categories and Subject Descriptors D.3.2 [PROGRAMMING
LANGUAGES]: Language Classifications—specialized application
languages; J.3 [LIFE AND MEDICAL SCIENCES]: Medical in-
formation systems

General Terms Design, Human Factors, Languages

Keywords DSL Design, Medical Programming Languages, Med-
ical Prescriptions, Empirical Evaluation
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1. Prescribing Programs

Physicians and other prescribers are programmers in search of a
programming language. They write and repeatedly modify com-
plex, algorithmic prescriptions, some the length of a journal pa-
per (Handelsman et al. 2011). Currently, prescribers use flowcharts,
structured data tables, or natural language to express their prescrip-
tions; and pharmacists, nurses, physicians, medical technicians, pa-
tients, caretakers, and medical devices perform the instructions in
the prescription to the best of their understanding and ability. These
instructions unavoidably contain errors and ambiguities, cause mis-
communication, and sometimes exceed human capacity for reliable
performance, any of which may result in patient injury or death.
Previous attempts to “computerize” prescriptions have floundered
because the algorithmic nature of prescriptions was not recognized.
Singh et al. (2009) have shown how physicians struggle with the
limited data-field entry programs that current Computerized Physi-
cian Order Entry (CPOE) and ePrescribing systems provide.

In response, we have designed, implemented, and tested a pro-
totype for a prescription programming language. This domain-
specific language, POP-PL, leverages the power of programming
and program development to help physicians articulate, model, test,
debug, and iteratively refine prescriptions. POP-PL is designed to
express all of the instructions relating to the care of a patient, in-
cluding drug therapy, diet, exercise, laboratory monitoring, imaging
studies, etc.

The nature of prescriptions is more complex than it might first
appear. Prescriptions require both detailed task accounting and hu-
man action. To handle this, POP-PL represents prescriptions as
reactive programs that interact with a system of actors that per-
form healthcare—including patients, prescribers, other clinicians,
clinics, hospitals, and, ultimately, entire healthcare systems. Based
on our observations, clinicians readily grasp this conceptualization
of healthcare; indeed, this is how the clinician-researchers on our
team think of their healthcare work. The prescription itself views
the health care system context as a stream of messages describing
events and tasks. In response to particular messages or patterns of
messages, a prescription issues instructions to command, control,
and coordinate relevant actors, including other prescriptions, med-
ical devices, or nurses. Unlike other systems for managing humans
to perform complex tasks—e.g. Jabberwocky (Ahmad et al. 2011)
and Automan (Barowy et al. 2012)—POP-PL is not a system for
distributed computation. Instead, its focus is on remote actuation,
which treats humans as actuators for performing the primitive op-
erations written in the prescription program.



Patient __lohn Vane Date _5 October 2014

Address __ 2306 Bothrops Av. Ferreira, IL e
(Required for controlled substances)  (Required for geriatric and pediatrics)

R Lisinopril tablets 10 mg
Dispense 90 tablets  May refill 4 times

Slg Take 1 tablet once daily by mouth
Indication For High Blood Pressure
Include indication on container label

Substitution Permissible ______ MDUO.

Number 55132 DEA#

Figure 1: Lisinopril Prescription

We have analyzed the structure and function of numerous exist-
ing English-language prescriptions and clinical protocols to inform
the creation of POP-PL. This paper reports on a formative evalua-
tion, in the form of a survey of medical professionals. The survey
assesses their ability to understand and modify POP-PL programs
after a 10 minute training session. Our results suggest that pre-
scribers and clinicians can understand programs in this language
without much difficulty.

This paper presents the concrete syntax of our language, sam-
ple prescriptions, and a semantics model. Section 2 provides some
of the medical background on our motivation, and on the nature of
prescriptions. Section 3 explains the design principles and require-
ments of POP-PL, and provides some detail on how they are met.
Section 4 works through an example prescription written in POP-
PL. Section 5 discusses POP-PL’s formal model of evaluation. Sec-
tion 6 describes how the model maps to the concrete syntax of the
language. Section 7 presents an empirical formative study of how
well prescribers can understand the language. Section 8§ covers re-
lated work, and section 9 concludes.

2. The Medical World

To fully understand this prescribing language, one must understand
a little about the medical world and, in particular, the nature of
prescriptions and the difficulty of mitigating medical errors.

2.1 What is a Prescription?

The nature and complexity of prescriptions may not be immediately
evident to the casual observer. Even seemingly simple prescriptions
are more than just lists of drugs and dosages, and contain hidden
complexities. Consider the medical form in figure 1. This is an
order for a prescription that includes instructions for the pharmacist
after the “R” and for the patient after the “Sig”. But this is not
the full prescription. In addition to the text of the note, there are
usually additional instructions—either explicit or implicit, written
or verbal—for the patient, caregiver, pharmacist, nurse, dietician,
and other clinicians. Examples of these instructions include:

* For the patient: “Check blood pressure daily, contact physician
if blood pressure is above or below target range.”; “Follow
DASH2 Diet.”

* If the patient is a woman: “Avoid pregnancy while taking lisino-
pril, as this drug can cause serious birth defects.”

* And for prescribers and pharmacists: “Prevent prescription of
drugs known to have harmful interactions with lisinopril.”

All of these instructions are part of the prescription. So, to be
precise: a prescription comprises the entire set of healthcare in-
structions that are issued about a particular patient, including com-
plex, contingent, iterative instructions for how to manage the pa-
tient, how to modify drug dosing and sequencing, criteria specify-
ing when to notify a doctor, scheduling of laboratory tests, monitor-
ing of relevant biomarkers of treatment efficacy, and management
of potential adverse effects. These instructions may be for a patient,
caregiver, nurse, pharmacist, or physician.

Therefore, a prescription is a program whose instructions gov-
ern the plan of health care for an individual patient (Belknap et al.
2008). Currently, these instructions are expressed as free-text pseu-
docode, as pre-printed fill-in-the-blank style order sets, and (imper-
fectly) as structured data in CPOE systems.

2.2 Why is Reducing Error Important?

Over the past half-century, medical research has consistently iden-
tified medical error as a major impediment to the practice of
patient—oriented1 medicine (Gaba et al. 1987; Leape 1994; Schim-
mel 1964). Errors are surprisingly common in medicine; among
hospitalized patients, errors occur at the rate of one error per pa-
tient per day (Committee on Identifying and Preventing Medication
Errors 2007). Despite extensive and expensive efforts to improve
patient safety, medical error still contributes to roughly one-sixth of
all deaths in the United States—approximately 440,000 people per
year (James 2013). Unfortunately, Landrigan et al. (2010) found
that there had been little improvement in the rate of medical errors
in the previous decade.

3. The Design of POP-PL

Based on our clinical experience, we have derived a primary de-
sign principle and several requirements for POP-PL. This section
covers these principles and requirements, then presents the design
concepts POP-PL uses to meet them.

3.1 Design Principle

Medical professionals and software have complementary and syn-
ergistic strengths. Software can reliably perform repetitive, tedious
tasks such as searching large data sets, continuously monitoring for
out-of-range values, precisely measuring time intervals, task audit-
ing, and general bookkeeping. In contrast, medical professionals
are naturally good at obtaining and analyzing patient narratives,
making and testing hypotheses about diagnosis, applying general
principles and mental models of human physiology, pathology, and
pharmacology to plan a course of treatment, and communicating
in natural language with patients, caregivers, and other clinicians.
Both kinds of skills are crucial for effective patient care.

POP-PL is designed to enhance this synergy. By giving pre-
scribers a mechanism to describe tedious tasks and let a machine
carry them out, we hope to avoid error, while leaving high-level
control of health-care in the hands of the prescriber.

3.2 Requirements

Providing medical care to a patient requires that many small tasks
be issued, scheduled, and performed. Individually, these tasks are
usually not difficult. Problems arise, however, because there are
many tasks for each patient, multiple patients for each clinician, and
competition among these tasks and actors for multiple constrained
resources. The precise set of tasks can vary in small or large ways
between patients that have similar conditions, and the sheer number
of these tasks can sometimes overwhelm healthcare workers.

! Patient-oriented medicine has the goal of improving or maintaining health
while being responsive to the patient’s needs and values (Kindig 1971).



The remainder of this section describes general categories of
task-related error and how they have become POP-PL design re-
quirements. Specific instances of all of these general categories
were witnessed by the team who developed a prescription for opi-
oids (Belknap et al. 2008); indeed, the development of that pre-
scription was the germination of many of the ideas presented here.

Forgotten Monitoring. Safe administration of dangerous drugs
typically requires a commensurate form of monitoring. Because the
specifics of the monitoring may vary across patients, however, the
monitoring is typically not explicitly coupled with the drug, even
when they are commonly ordered together. Accordingly, monitor-
ing may be omitted or removed, leading to bad outcomes. To fix
this, a programming language must provide an easy-to-use mecha-
nism to build abstractions over common patterns of orders.

Alarm Fatigue. Even when monitoring is ordered, an alert may go
unnoticed or unaddressed, presumably due to alarm fatigue. Many
devices produce many noises in the hospital setting and false alarms
are common. Cvach (2012) found that clinicians may have to deal
with as many as 700 monitor alarms per patient per day. To fix this,
a programming language must generate better targeted alarms. A
program should take the entire medical context into account before
sounding an alert and then generate a limited number of messages
targeted directly to those who need to perform the required tasks.

Delayed Reaction. With some prescriptions, even when monitor-
ing is ordered, and dangerous situations are recorded, noticed, and
understood, life saving measures are not taken. In these cases the
active prescription does not contain an order that provides specific
instructions for when these measures are to be taken and how to
perform them correctly (e.g., precise names and dosage informa-
tion for antidotes for dangerous drugs). For example, if the nurse is
not told the dose of antidote to give the patient, it becomes difficult
to perform even this seemingly simple lifesaving intervention cor-
rectly. In such cases, the nurse must contact the physician or other
prescriber, which may result in dangerous delay. To fix this, a pro-
gramming language for prescriptions must provide a way for the
prescription to identify dangerous situations and issue the precise
set of tasks required for such life-saving measures.

Task Overload. The tempo required for performance of med-
ical tasks is unremitting and can be overwhelming. Schubert et
al. (2013) found that 98% of nurses had to drop at least one task in
the span of a week. The capacity of humans for vigilance is limited.
To fix this a programming language must reduce the overall num-
ber of, or simplify the existing, human-dependent tasks (e.g., by
automating simple computations or bookkeeping), and help track
missing tasks to ensure critical tasks are not forgotten.

3.3 Concepts

The design of POP-PL handles these requirements by dividing its
world model into actors. Each entity in the clinical setting (pre-
scriptions, nurses, pharmacists, patients, programmable infusion
pumps, etc.) is modeled as an actor. Each actor subscribes to mes-
sages about their patients. All messages and actions are recorded
in a log, which forms the history of the entire healthcare system.
The log is, in principle, a time-ordered list of all events that have
occurred and tasks that have been issued with respect to a patients
care, including information about when events occurred, plus other
event-specific data.

A prescription consists of a set of handlers that react to the
addition of entries to the log, by looking at the most recent message
or querying the log for complex information. As such, an instance
of a POP-PL program “runs” by launching new actors into the
clinical network. These prescription actors issue tasks to relevant
caretakers of their patients.

4. An Example POP-PL Program

To illustrate POP-PL’s design concepts, figure 2 contains an exam-
ple POP-PL program for administering an anticoagulant called hep-
arin in a hospital setting. The program is a partial translation of the
Washington Adventist Hospital (2009) protocol. Heparin is given
to patients to prevent or treat thrombosis—the formation of a blood
clot inside a blood vessel, which may impede blood flow. Heparin
dosing is challenging because both the duration and intensity of
heparin’s effect change disproportionately and unpredictably with
drug dose. If the heparin dose is too low, treatment may fail and
the patient may have a catastrophic embolism to the brain or lungs;
too high, and the patient may hemorrhage to death. To maintain the
correct amount of anticoagulation, the protocol requires frequent
monitoring of the heparin’s effect and adjustment of its dose.

The first line of the program tells Racket runtime (Flatt and PLT
2010) that our program is written in the POP-PL language. The
third line tells POP-PL to load a library with definitions for the
communication protocols of the Jessie Brown VA Medical Center.

When a prescriber starts this program, it initially—lines 5 to
7—sends a message to generate a task for the nurse on duty to
give a one-time dose of heparin, called a bolus, to increase the
concentration of heparin in the patient’s blood up to the desired
levels. It then sends a message to start continuous intravenous
infusion of heparin at 18 units/kg of body weight per hour.

The section of the prescription labeled infusion: is a handler
that continuously modifies the heparin dosage by either changing
the rate of the infusion, giving another bolus, or stopping the infu-
sion altogether. It does so based on a measurement of the patient’s
blood called the activated partial thromboplastin time, or aPTT.
This measurement is the number of seconds it takes for blood to clot
under special lab conditions. Line 10 reacts to new aPTT messages,
running lines 11 through 24 when a new aPTT value is present. The
identifier aPTTResult is an externally-referent identifier, bound in
a library required on line 3 and encoding information about mes-
sages containing aPTT values. Using it with whenever new tells
the handler to wait for a message indicating a new aPTT result, and
to bind its payload to the variable aPTT. A conditional dispatch is
then performed based on the value of aPTT. The test expressions
are on the left of the pipes, and their corresponding bodies are to
the right. For instance, if aPTT is between 101 and 123, the pro-
gram asks the nurse to decrease the heparin infusion by 1 unit/kg
body weight per hour. The prescription’s target range for aPTT val-
ues is between 59 and 101; when results within this range come in
the program issues no orders. The comment on line 17 documents
the gap in the conditional.

Finally, lines 26 through 28 schedule aPTT readings. It requests
that the nurse check the aPTT value daily if the last two aPTT
readings were in the target range, and every six hours otherwise.
The aPTTResult tells POP-PL to query the log for aPTT results,
the in range and outside of tell POP-PL what range of values
to look at, and the x2’s insist that event happened twice. There is
some syntactic trickery? here: if there are less than two aPTT values
present the six hour case is run. This is because

aPTTResult outside of 59 to 101, x2
on line 27 is not equivalent to
aPTTResult not(in range 59 to 101), x2
but rather equivalent to
not(aPTTResult in range 59 to 101, x2)

that is, the negation applies to the entire query, not just the range
portion.

2 This trickery backfired. We revisit the issue in section 7.



1. #lang pop-pl

2.

3. used by JessieBrownVA

4.

5. initially

6. giveBolus 80 units/kg of: HEParin by: iv

7. start 18 units/kg/hour of: HEParin by: iv

8.

9. infusion:

10. whenever new aPTTResult

1. aPTT < 45 | giveBolus 80 units/kg of: HEParin by: iv
12. | increase HEParin by: 3 units/kg/hour

13.

14. aPTT in 45 to 59 | giveBolus 40 units/kg of: HEParin by: iv
15. | increase HEParin by: 1 unit/kg/hour

16.

17.// aPTT in 59 to 101 | Continue current HEParin dose

18.

19. aPTT in 101 to 123 | decrease HEParin by: 1 unit/kg/hour

20.

21. aPTT > 123 | hold HEParin

22. | after 1 hour

23. | restart HEParin

24. | decrease HEParin by: 3 units/kg/hour
25.

26. aPTTChecking:

27. every 6 hours checkaPTT whenever aPTTResult outside of 59 to 101, x2
28. every 24 hours checkaPTT whenever aPTTResult in range 59 to 101, x2
29.

30. —-—- Tests ---

31.

32. [giveBolus 80 units/kg of: HEParin by: iv]
33. [start 18 units/kg/hour of: HEParin by: iv]

34. [checkaPTT]
3s.

36. > aPTTResult 240
37. [hold HEParin]

Figure 2: Example of a POP-PL Program

The every form takes two expressions: a time and a message.
It queries the log to see if that message has been sent within its time
frame and if not, sends it. So line 27 reads in English as “If there
has not been an aPTT value read in 6 hours, and either the last two
aPTT values are not both between 59 and 101 seconds or there are
fewer than two aPTT values, then check the aPTT value.”

In our prototype implementation, when a program is run, it
prints out the messages that would be sent from the prescription in a
deployed version. It also prints a prompt where the user can submit
messages to simulate responses from the world. This is POP-PL’s
version of a REPL.

When the program in figure 2 is run, it sends the messages:

[checkaptt]
[start 18 units/kg/hour heparin iv]
[givebolus 80 units/kg heparin iv]

which ask for the initial aPTT reading, and tell the nurse to start the
IV and give the initial bolus.> We can then enter messages at the
REPL to see how the program responds. For example, we send an

[TRELA

aPTT response of 46 seconds by typing the text following the “>":

> aPTTResult 46 seconds
[increase heparin 1 unit/kg/hour]
[givebolus 40 units/kg heparin iv]

The program responds by increasing the heparin drip and giving
another bolus. A little over six hours later, the program requests
another aPTT test:

> wait 6 hours
[checkaptt]

3 The outgoing messages are downcased because POP-PL is case insensi-
tive. See section 6.



e ::= (add name e) | (remove name) | (send e)
| A @ ...)e) | (ee ...) | (0 e ...)
| € | m | log | void
| (begin e e) | (if0 e e e)

0 ::= time-of | most-recent |

Figure 3: POP-PL Model Syntax

Lines 30 and after contain unit tests for the program. They
are written just like REPL interactions; a message in brackets
denotes an outgoing message, and a message preceded by a “>” is
a message sent to the prescription. Unlike REPL interactions, they
are run and the results are checked. If they fail, the program prints

out a message saying that the test cases failed.

5. A Formal Model for Evaluation

To formally model how POP-PL behaves, we define an evaluator
that handles one new message at a time. This evaluator takes the
current history of the hospital (including the new message), and an
actor, which is nothing more than a list of handlers. These handlers
can send messages to the outside world, add new handlers to the
actor, or remove existing ones. This produces a set of outgoing
messages and a new set of handlers for the actor.

In this section we present the formal model for this evaluator.
We then extend this model with a DSL for querying complex
information from the event log. The abstract syntax for POP-PL
(shown in figure 3) is the A-calculus with sequencing, plus three
new forms: two for adding and removing named handlers from the
state, and one for sending messages to the outside. In addition it
has three primitive data types: messages (m), logs, and void. We
use the A-calculus here not because POP-PL is inherently higher-
order, but because the A-calculus is a convenient lingua franca for
programming language models.

It may not be readily apparent how the model in this section
maps to the program in figure 2. We ask the reader’s indulgence
here. We will describe how the language’s concrete syntax com-
piles to this abstract model in the next section.

5.1 Language Basics

A log is a complete representation of history. It has a chronologi-
cally ordered sequence of messages, plus the time these messages
were sent. The language has primitive functions for getting the most
recent message from a log, getting the time of that message, and
other similar functions (not mentioned here). Logs as first class im-
mutable values allow closures to capture logs and compare them
against logs they receive later.

Messages are arbitrary network-serializable data. For the sim-
plicity of the model we leave messages opaque but, in our imple-
mentation, messages have structure and a human-readable form.

Time is represented with heartbeat messages. Each heartbeat
means that a time interval has passed. Programs use these heartbeat
messages to react to changes in time the same way they react to
other events. While this could be done with a more elegant system,
like an alarm service, we choose heartbeats for simplicity.

5.2 The Evaluator

The evaluator—whose type is at the top of figure 4—takes in a set
of handlers and the current log. Each handler is a named function
of one argument: the log to handle. The evaluator invokes each
handler with the current log. When a message that the prescription
is subscribed to appears, the evaluator is invoked with the new state
and a log containing the new message.

EVAL : H x log » H x (m ...)

s ::=(e, H, (m ...))

H ::=(h ...)

h ::= (name, (A (x) e))

v ::=m | log | void | (A (x ...) e)

S ::=(E, H, (v ...))

E ::= (add name E) | (begin E e) | (send E)

'|(v...Ee )| (ov ... Ee ...)
| (if0 E e e) | []

(E[(send m,)], Hy, (m ...))
—> (E[void], H, (m, m ...))

[sEND]

(E[(add name, v)], (b ...), (m ...)) [aDD]
—> (E[void], ((name,, v) h ...), (m ...))
where ((name, vy,) ...) = (h ...),
name, ¢ (name ...)

(E[(remove name)], H, (m ...)) [REM]
—> (E[void], (h, chy oo, (moLlL))

where (h; ... (name, v) hy ...) = H
S[IA (x ...)e) v ..)] [Bv]
—> S[le{x := v, ...}]
S[(begin v e)] — Slel] [BEGIN]
Slo v ...)] — S[dlo, v, ...I] [5]
S[(Af0 0 e; ex)] —> Sles] [1F0]
S[(Af0 v e; ey))] —> Sle:] [17!0]

where v=#0

Figure 4: POP-PL Model of Evaluation

Figure 4 extends POP-PL’s syntax with the machine state (s)
and evaluation contexts (E and S). The machine has three registers:
the current expression being evaluated, the set of handlers being
computed for the next state, and the outgoing messages. Given in-
puts H, (the current handlers) and Zog (the current view of history)
EVAL starts computation in the machine state ((h Zog), Hy, ())

where h is the first handler in H,,.

During evaluation, a handler can change the machine state via
the first three rules in figure 4. The [sEND] rule puts a new message
in the outgoing queue. The [app] and [REM] rules change the set
of handlers used for the next message by adding a new handler or
removing an existing one. Note that [app] and [REM] modify the
next set of handlers. They cannot interfere with any of the current
handlers. The remaining rules are standard.

After each handler completes, the second and third components
of the machine state it computed are used by evaL for the next
handler. When all handlers have been evaluated, EvarL produces the
new handlers and the outgoing messages. In essence, EvAL folds
over the current list of handlers, producing outgoing messages and
the new set of handlers.



(query e (qp ...)
(query-param e)
cut:

filter:
get-consec:
subseq:
length>=:

qp
query-param

Figure 5: Model for the querying DSL

5.3 Querying

The querying extension in figure 5 adds a series of operations
to check if the current state of the world matches some criteria.
The allowed operations are: cut history at a certain point; filter
out unneeded information from history; determine the consecutive
events that match some criteria; find the largest subsequence of
these events that matches some predicate; decide if the number
of events left passes some threshold. The operations are always
applied in that order, and any operation may be a no-op.

cuT : ( Message — Bool ) X Log — Log

The cut operation returns a log of all elements after (but not
including) the most recent message for which the given predicate
holds. Its purpose is to ask for history only after some event.

FILTER : ( Message — Bool ) X Log = Log

The r1LTER operation removes information irrelevant to subse-
quent operations. For instance, it removes any non aPTTResult
messages in the example in figure 2.

GET-CONSEC : ( Message — Bool ) X Log — Log

The GET-coNSEC operation returns the longest prefix of the log
where the predicate holds. This operation is similar in form to
CUT, but its purpose is very different. It is meant to ask how much
something has happened without deviation. For instance “How
many blood tests had a glucose value of above 457"

SUBSEQ : ( Message X Message — Bool ) X Log = Log

The suBseq operation finds the longest subsequence of the log
such that every pair of consecutive elements in the output matches
the given predicate. Its purpose is to remove elements that are
too similar to their neighbors to be relevant. This is often used
to remove test results that are so close together in time that they
do not represent unique data points. For example, suBseqQ: of
2-HOURS-APART?, Which checks if two messages are at least two
hours apart, and a log whose messages have the timestamps (in
hours) {1 4 5 6 7 8} evaluates to a log with the messages whose
times are {1 4 6 8}.

LENGTH>= : Natural X Log = Log or Fail

The LENGTH>= operation asks if there are at least N elements in the
log. Its purpose is to determine if there are enough events left to
consider the findings relevant.

As an example that uses all of the features of the querying lan-
guage, consider a question from a prescription for Fentanyl (Belk-
nap et al. 2008): “Are there three consecutive pain scores over 8
cm?”. The formulation of this question takes into account the train-
ing of the nurses and leaves out information that cannot be left out

(query a-log ((length: 3)
(cut: dose-change?)
(filter: pain-score?)
(get-consec: painscore>8?)
(subseq: l-hour-apart?)))

Figure 6: A query, in the syntax of the model

in a program. Written less ambiguously the question is: “With the
current dosage, has the pain score been consistently high enough to
raise the dosage?”. We codify this as “are there at least three pain
scores that are an hour apart and 8 cm or above since the last dose
change in fentanyl, with no dosage readings between them below 8
cm?”.* This translates to the abstract syntax in figure 6.

6. The Concrete Syntax

The concrete syntax for POP-PL is designed to abstract over the
complex, unambiguous ideas doctors have, while still looking like
the prescriptions doctors write today. In fact, the syntax is designed
so that the language should be usable with little or no program-
ming training on the part of the clinician. Thus, we make several
unconventional choices to reflect the vagaries of how prescriptions
are currently written and to ease a prescriber’s transition into us-
ing POP-PL. This section covers the concrete syntax and describes
how some forms map to the abstract syntax.

Literal Data. The only form of literal data in POP-PL is num-
bers, possibly with attached units. Any other data needed—such as
a type of drug, or the name of a mode of drug delivery—are bound
to identifiers by the language implementation. This allows for ar-
bitrary complexity in these data structures without increasing the
programming burden on the physician. In addition, this makes cer-
tain program analyses easier. For example, by having a known list
of identifiers that represent drugs, the language can generate a list
of drugs that a prescription is prescribing; or, by looking at how
these drugs are given, the language could determine exactly how
many IV lines are needed to deliver all the drugs.

Case insensitivity. The syntax of POP-PL is case insensitive. The
merits of case-sensitivity are debatable, but in a medical context
it allows for Tall Man lettering (Filik et al. 2006). A common
medical error is the confusion of two different drugs with similar
names (Gerrett et al. 2009). For instance, the drug carboplatin is
written as CARBOplatin to avoid confusion with cisplatin, which is
written CISplatin. These capitalizations are not always consistent.
POP-PL allows physicians to use any capitalization they choose,
and thus always use a clear form of the drug name.

Keyword Arguments. Functions in POP-PL allow variations on
their keyword arguments. In addition to allowing keyword argu-
ments in any order, arguments list keywords that are allowed as
synonyms. For example:

giveBolus 80 units/kg of: HEParin by: iv
is equivalent to
giveBolus 80 units/kg of: HEParin via: iv

because giveBolus declares via: and by: as synonyms. The
variation in arguments lets physicians pick whatever words they
would use in plain English orders. This way of handling name
parameters is inspired by Hypertalk (Apple Computer, Inc 1988).

41t is worth noting that medical professionals do not always arrive at the
more precise meaning, and mistakes are made.



After. The after form corresponds to adding a handler that, after
some amount of time, performs an action and then removes itself:

(add <some-unique-name>
(A (new-log)

(1if0 (time-passed? (time-of new-log)
(time-of old-log)
time)

(begin <body-of-after>
(remove <that-same-name>))
void)))

Initially. The initially form puts a handler in the initial state
that removes itself after execution:

(<some-unique-name>,
(A (a-log)
(begin
<body-of-initially>
(remove <that-same-name>))))

Basic Handlers. The name: form corresponds to a handler of the
given name in the initial state.

Whenever. The whenever form is a triple-purpose form: it serves
as conditional dispatch; it matches the current message against a
pattern; and it hosts the querying DSL. The whenever new form
checks the current message against some known message pattern
and binds using that pattern. A whenever form whose expression
is a query tests against the querying DSL. A whenever form with
pipes in its body acts as a multi-armed conditional that runs inside
the scope of the outer whenever. This is designed to look like the
tables that are often used to represent conditions in current order
sets (Washington Adventist Hospital 2009).

Querying with Whenever. A whenever form in the concrete

syntax—without a new—equates to an i £0 whose expression is
a query. So the query from figure 6 would be written as:

whenever painscore > 8 cm, 1 hour apart, x3,
since the last change in: fentanyl

The x3 form maps to the LENGTH>= operation. The choice of
using x3 instead of something like 3 times is because in the pre-
scriptions we have seen most doctors use the first form. The since
the last change in: fentanyl form maps to the cur: oper-
ation. The 1 hour apart form maps to the suBsEQ: operation.
These three may or may not appear, in any order. The first ex-
pression of the whenever corresponds to both the F1irLTER and
GET-CONSEC operations and is an arbitrary expression. This expres-
sion may reference the name of up to one message. That message is
the one filtered for. The cET-coNsEc: operation then uses a func-
tion that binds the message name and evaluates the expression.

7. Assessing the Language

Day to day, doctors do not write prescriptions as complicated as
figure 2. The majority of day to day prescriptions consist of simple
orders like “give Lisinopril, 10 mg every day”, or invoking complex
pre-written protocols like the one in figure 2, perhaps with some
minor modifications.

We evaluated POP-PL on this day to day use case. We gave a
usability survey to medical professionals designed to assess if they
could read and modify prescriptions-as-programs, and to assess our
language design to ferret out weak points.

Type count

Attending Physician 2
Resident Physician 9
Medical Student 7
Post-Training Pharmacist 6
Resident Pharmacist 11
Pharmacy Student 11
Advanced Practice Nurse 4
Blank 1
Total 51

Figure 7: Demographics of the Survey

7.1 Survey Design

The survey began with a short explanation of a translated insulin
protocol.’ The participants were then presented with a survey con-
taining the protocol in figure 2 without the test cases, and the fol-
lowing questions (with typos preserved from the original survey):

1. Circle the part of the program that handles appt values of 50
seconds.

2. What happens when we get a an appt of 50 seconds?

3. Modify the part of the protocol you have circled so that it will
instead increase the heparin dosage by 2 units/kg/hour.

4. Circle the part of the protocol that controls how often an aptt
test is run.

5. What is the least frequent the test is run?

6. Given each of the following test results, when would the next
aPTT check be done if the protocol is accurately followed?

aPtt = 50 seconds at 6am
aPtt = 80 seconds at noon
aPtt = 90 seconds at 6pm

In addition each participant was asked about their medical training,
formal programming training, and comfort with programming.

7.2 Understanding the Demographics

The survey was given to 51 respondents. Each respondent had one
of 7 levels of medical training: attending physician, resident physi-
cian, medical student, post-training pharmacist, resident pharma-
cist, pharmacy student, or advanced practice nurse. These represent
three stages of training (student, resident, post-training) across two
tracks (pharmacist or physician), plus advanced practice nurses.
The physicians’ role is to observe and communicate with pa-
tients, make diagnoses, and coordinate patients’ medical care. The
formal training of physicians begins in medical school, which is
typically a four-year post-graduate program. After medical school,
many physicians undergo additional training in residency pro-
grams, typically three to seven years (depending on specialty),
and usually based in hospitals or clinics. Once physicians complete
their residency, they become attending physicians. The pharma-
cists’ role is to provide expertise about drug therapy, coordinate the
process of drug delivery, and monitor the efficacy and toxicity of
drugs in patients. The pharmacists’ track is similar to the doctors’,
but with a difference in degree: five years of pharmacy school, usu-
ally starting with a high-school degree, and occasionally a two-year
residency, before becoming a post-training pharmacist. Advanced

5The script for the survey introduction, the full survey and the tal-
lied results are available at http://eecs.northwestern.edu/
~sfg833/resources/blobs/pop-pl-GPCE-2015.tar.gz
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Figure 8: Survey Data

practice nurses (APNs) are nurses with additional post-graduate
education; APNs can write prescriptions and provide other clinical
care to patients without the direct supervision of a physician.

In addition, respondents reported their programming training in
free-form text and their relative comfort with programming on a
scale of 0-10. Of the 51 respondents, 6 had some formal training
in programming (which at most amounted to a single undergradu-
ate course), and 14 had a non-zero comfort with programming. The
remaining respondents in each category either claimed no train-
ing/zero comfort, or left the question blank.

The survey was administered in three settings. Physicians com-
pleted the survey in small groups in the hospital, typically right
after finishing rounds. All of the pharmacists completed the survey
at the same time after listening to a seminar on an unrelated topic.
The APN’s completed the survey in a meeting scheduled for this
purpose. The breakdown of the survey participants is in figure 7.

7.3 Analyzing the Data

Three graders evaluated each survey. From these, we calculated the
inter-rater agreement, a score for the level of consensus between
graders. The questions were graded with 3 possibilities: “yes”,
meaning the respondent answered the question completely cor-
rectly; “partial”’, meaning the respondent was neither completely
correct nor completely incorrect; “no”, meaning the respondent was
completely incorrect. The results for each question are displayed
both by percentage and graphically in figure 8.

Data were analyzed using univariate optimal discriminant anal-
ysis (UniODA), a non-parametric statistical methodology for which
no distributional assumptions are required (model parameters and
exact Type I error rates are always valid), that explicitly maxi-
mizes model classification accuracy for each specific sample and
hypothesis. For UniODA the index of classification accuracy is ef-
fect strength for sensitivity (ESS), a normed index on which ESS=0

indicates the accuracy that is expected by chance, and ESS=100 in-
dicates perfect, errorless prediction: by convention, ESS<25 is a
relatively weak effect; ESS<50 is a moderate effect; ESS<75 is a
relatively strong effect; and ESS>75 is a strong effect (Yarnold and
Soltysik 2004).

UniODA was performed to assess inter-rater agreement for all
18 pairings of three independent raters scoring six separate test
questions (Yarnold 2014). Due to absence of variability in scores
assigned by at least one rater, no model was possible for 7 pairings:
for these combinations of raters and questions inter-rater agreement
was 91.5% or greater. For the remaining 11 pairings, 5 indicated
perfect agreement, 2 indicated strong agreement, and 4 indicated
moderate agreement: inter-rater agreement was 75.5% or greater
for these analyses, and all results were statistically significant with
Bonferroni adjusted p<0.05. For all questions except the question
about programming comfort, inter-rater agreement was 90.2% or
greater. All instances of rater disagreement were resolved to con-
sensus in post-rating discussion.

The class (dependent) variable was whether or not the respon-
dent obtained a perfect score across all six questions. Obtaining a
perfect score was not predicted by score on any of the six individ-
ual questions (all p<0.13), or by track (p<0.73), level (p<0.32), or
years of experience (p<0.23). However, obtaining a perfect score
was very strongly related to having formal training in program-
ming: p<0.0004, ESS=95.0. And, non-zero comfort with program-
ming was a strong predictor of obtaining a perfect score: p<0.016,
ESS=53.3. No multivariable model was possible after accounting
for computer programming training.

7.4 Interpreting the Analysis

The correlation between perfect score and programming experi-
ence/comfort is discouraging. However from looking at the data
in figure 8, it is clear that the majority of people only had problems
with the last question, which dealt with the querying DSL. The first
five questions had reasonably high scores.

From this we draw two conclusions. First, the querying DSL
and its syntactic trickery are confusing to medical practitioners.
A closer inspection of the survey results revealed that the most
common mistakes on the last question were that the respondent
believed the aPTT test only needed to be in the effective range
once, or that the test should be run on the faster schedule after
two aPTT tests were in range. The first of these mistakes shows
that the x2 syntax is confusing. This is supported by anecdotal
evidence from several physicians we have spoken to, who find “x2”
confusing when used in conventional prescriptions. The second of
the mistakes would seem to imply that something in the querying
language is confusing. Given that experience with programming
correlates to a perfect score, perhaps the querying language strays
too far from the natural language doctors are used to and should be
simplified, or at least hidden with some form of helper function.

Second, the high scores on the first five questions provide strong
evidence that doctors can interpret and modify prescriptions written
as programs with little training.

7.5 Anecdotes

In addition to the survey, we have collected several revealing com-
ments from survey participants about POP-PL. Two survey partic-
ipants asked if POP-PL would automatically update nurses’ task
lists. This illustrates a flaw in current systems, where new tasks are
not automatically propagated to nurses. Physicians compensate for
this flaw by verbally notifying a nurse when they have modified a
patient’s prescription, prompting the nurse to log in to the EMR and
update their task list. Without this verbal communication between
prescriber and other clinicians, a stale order may be performed in
error or a new order may be neglected for several hours, either of



which may result in serious patient injury or death. POP-PL’s focus
on tasks and relative task-related sophistication suggests it naturally
helps with this problem.

Another survey participant mentioned that POP-PL looked al-
most exactly like how she wrote free-text orders currently. Yet an-
other participant mentioned that POP-PL would be useful for trans-
mitting orders when engaged in telemedicine.

8. Related Work

Computers and software have long been proposed as a means of
reducing medical error. The American Recovery and Reinvestment
Act of 2009 allocated more than $19 billion to support adoption of
health information technology; the national investment now under-
way is estimated at $115 billion distributed over 15 years (Hillestad
et al. 2005). These efforts include placing computers at the point
of care, providing Electronic Medical Record (EMR) systems to
manage and store data, using Computerized Prescriber Order Entry
(CPOE) or ePrescribing systems, for handling prescriptions, and
using Clinical Decision Support (CDS) systems to automatically
detect potential errors and alert clinicians.

Some research studies have shown that computerization of
health care reduces medical error and patient injury, but the ef-
fect is often small and in some cases is nonexistent (Jones et al.
2014). CPOE does reduce or eliminate some kinds of error, like
illegible handwriting, but introduces new types of medical error. In
one report, CPOE systems caused 22 new types of medical error,
including: fragmented display of drugs, inventory display mistaken
for dose guidelines, duplicate and incompatible orders, and inflex-
ible formats (Koppel et al. 2005). Because prescribers find CPOE
limited in expressiveness, they often include free-text instructions
they cannot fit into the structured forms of CPOE systems. A large
study of CPOE systems found that 1% of prescriptions contained
free-text instructions that were inconsistent with structured data
fields, and 20% of these inconsistencies risked moderate or severe
patient injury (Singh et al. 2009). There is little evidence that cur-
rent attempts to computerize health care have resulted in significant
improvement of patient safety in routine medical practice (Landri-
gan et al. 2010).

The work we describe here is inspired by POPA (Belknap et
al. 2008), a protocol developed for management of severe pain in
hospitalized patients. The authors of the protocol used software
engineering and programming language ideas to develop and debug
the protocol, which was expressed entirely on paper. The protocol
was successful, reducing severe or fatal opioid-associated adverse
drug events from an initial 3 to 7 per month to O per month.

Medical practitioners have long recognized the value of using
algorithmic descriptions to codify other aspects of clinical practice.
One of the most successful instances of algorithmic medicine is the
Ottawa Ankle Rules (Stiell et al. 1994), an efficient algorithm for
distinguishing between a broken ankle and a sprain. Distinguishing
between a sprain and a break is something that can be done with a
physical inspection with high accuracy, but only if you know pre-
cisely what to look for. It has led to better outcomes at lower cost
and is now widely used. There have also been entire textbooks that
collect medical algorithms and explain how to use them (Healey
and Jacobson 1994; Mushlin and Greene 2010). These algorithms
are, however, expressed using flow-charts and tree-like decision di-
agrams and thus fail to bring the full power of algorithmic expres-
sion that programming languages have to offer because the under-
lying programming language of flow-charts and decision trees is
inexpressive. Our work is the logical next step: bringing program-
ming language know-how to design languages for the clear expres-
sion of medical algorithms.

Computer scientists have already made several attempts to im-
prove clinical practice; these efforts have come largely from the Al

community (Peleg et al. 2000; Sharar et al. 1998; Tu and Musen
1999). Most of these efforts, at a high level, consist of building on-
tologies and decision support systems for medical practice, in an at-
tempt to make more accurate diagnoses, generate treatment plans,
or detect hazards. Unlike these approaches, we are attempting to
build on the established strengths of software, relieving clinicians
from the tedious, error-prone tasks that compromise patient safety.
We leave the challenging tasks of interacting with patients, gather-
ing evidence, and diagnosing to people who are well-trained for it
and, perhaps more importantly, love to do it.

Several other bodies of work have modeled hospitals as ac-
tor systems. For example, Belknap (1991) provides a system for
simulating in hospital drug therapy by modeling a patient as a
set of functions that are affected by interactions with the outside
world. In addition, the Eon system (Tu and Musen 1999) concep-
tualizes the hospital “as consisting of multiple agents—health care
providers, patients, and decision-support systems—interacting with
each other at different points along a temporal continuum.”

As already mentioned, POP-PL is not a system for distributed
computation; rather, it handles remote actuation. In principle this
is similar to the iTasks (Jansen et al. 2010) task management
language, which has been used to model the Netherlands’ Coast
Guard’s SAR operations (Lijnse et al. 2011). However, iTasks dis-
tinguishes the end user from the programmer (Lijnse et al. 2012),
whereas POP-PL aims to have prescribers writing programs.

Hewitt et al. (1973) originated actor model. The delivery of
messages to relevant parties we use is similar to Actorspaces from
Callsen and Agha (1994).

9. Conclusion

Prescription errors are strikingly similar to software bugs; both are
often shallow and regrettably common. The programming language
research community has tools and techniques for reducing the num-
ber of software errors. Now that we know that prescriptions are pro-
grams, these techniques have clinical applications. Imagine a world
where a type-system prevents a patient’s weight in kilograms from
being used with dosing instructions in pounds, where a static analy-
sis prevents coadministration of incompatible drugs to a patient, or
where a regression test suite prevents buggy modifications to a pro-
gram as it is ported from one hospital to another. Our hope is that
the full range of programming languages technology can find ap-
plication in health care to reduce medical error, improve treatment
efficacy, and improve patient outcomes. This paper is our attempt to
take the next step towards a future where medical error is surprising
and unusual rather than the norm.
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