Contracts for Higher-Order Functions

Robert Bruce Findler! Matthias Felleisen
Northeastern University
College of Computer Science
Boston, Massachusetts 02115, USA

Abstract 1 Introduction

Assertions play an important role in the construction of robust soft- Dynamically enforced pre- and post-condition contracts have been

ware. Their use in programming languages dates back to the 1970swidely used in procedural and object-oriented languages [11, 14,

Eiffel, an object-oriented programming language, wholeheartedly 17, 20, 21, 22, 25, 31]. As Rosenblum [27] has shown, for example,

adopted assertions and developed the “Design by Contract” philos-these contracts have great practical value in improving the robust-

ophy. Indeed, the entire object-oriented community recognizes the ness of systems in procedural languages. Eiffel [22] even developed

value of assertion-based contracts on methods. an entire philosophy of system design based on contracts (“Design
by Contract”). Although Java [12] does not support contracts, it is

In contrast, languages with higher-order functions do not support one of the most requested extensiéns.

assertion-based contracts. Because predicates on functions are,

in general, undecidable, specifying such predicates appears to beNith one exception, higher-order languages have mostly ignored

meaningless. Instead, the functional languages community de-assertion-style contracts. The exception is Bigloo Scheme [28],

veloped type systems that statically approximate interesting pred-where programmers can write down first-order, type-like con-

icates. straints on procedures. These constraints are used to generate more
efficient code when the compiler can prove they are correct and are

In this paper, we show how to support higher-order function con- turned into runtime checks when the compiler cannot prove them

tracts in a theoretically well-founded and practically viable man- correct.

ner. Specifically, we introduck®®V, a typed lambda calculus with

assertions for higher-order functions. The calculus models the as-First-order procedural contracts have a simple interpretation. Con-

sertion monitoring system that we employ in DrScheme. We es- sider this contract, written in an ML-like syntax:

tablish basic properties of the model (type soundness, etc.) and ¢. int[> 9] —int[0,99]

illustrate the usefulness of contract checking with examples from 51 recf=A x. ---

DrScheme’s code base.

. . . It states that the argument fomust be arint greater thar® and
We belleve_that the development of an assertion system for higher-pat ¢ produces aint betweerd and99. To enforce this contract, a
order functions serves two purposes. On one hand, the system hagqniract compiler inserts code to check thas in the proper range
strong practical potential _because existing type systems _S|mply can-whenf is called and that’s result is in the proper range when
not express many assgrtlons t_hat programmers wou_ld I|k_e to stateetyrns. Ifx is not in the proper range’s caller is blamed for
On the other hand, an inspection of a large base of invariants mayy contractual violation. Symmetrically, ffs result is not in the
provide inspiration for the direction of practical future type system proper range, the blame falls dhitself. In this world, detecting
research. contractual violations and assigning blame merely means checking

])] appropriate predicates at well-defined points in the program’s eval-
Categories & Subject Descriptors: D.3.3, D.2.1;General Terms: De- uation.

sign, Languages, Reliabilitykeywords: Contracts, Higher-order Func-
tions, Behavioral Specifications, Predicate Typing, Software Reliability This simple mechanism for checking contracts does not generalize
Iwork partly conducted at Rice University, Houston TX. Address as of to Ianguages W'Fh hlgher-or(.jer functions. Consider this contract:
9/2002: University of Chicago; 1100 E 58th Street; Chicago, IL 60637 g : (int[> 9] —int[0,99]) —int[0,99]
val rec g = A proc. - - -

The contract’s domain states thaacceptdnt —int functions and
must apply them tints larger thare. In turn, these functions must
produceints betweerd and99. The contract’s range obligesto
produceints betweerd and99.

2002 [6]. This version includes everything that the conference version
does, but also includes the complete proofs in an appendix.

This is a technical report version of a paper that appeared in ICFF in

1http://developer.java.sun.com/developer/bugF’arade/topZSrfes.htmI

Although g may be givenf, whose contract matchess domain
contract,g should also accept functions with stricter contracts:
h :int[> 9] —int[50,99]
valrech=Ax.---

g(h),

functions without explicit contracts:
g(A x. 50),

functions that process external data:

read_num : int[> 9] —int[0,99]
val rec read_num = A n. ---read thenth entry from a file- - -

g(read_num),

and functions whose behavior depends on the context:

val rec dual_purpose = A x.
if ---predicate on some global state
then 50
else5000.

as long as the context is properly established whepplies its
argument.

Clearly, there is no algorithm to statically determine whethrer
matches its contract, and it is not even possible to dynamically
check the contract whesis applied. Even worse, it is not enough
to monitor applications oproc that occur ing’s body, becausg
may pasgproc to another function or store it in a global variable.

Additionally, higher-order functions complicate blame assignment.
With first-order functions, blame assignment is directly linked to
pre- and post-condition violations. A pre-condition violation is the
fault of the caller and a post-condition violation is the fault of the
callee. In a higher-order world, however, promises and obligations
are tangled in a more complex manner, mostly due to function-
valued arguments.

In this paper, we present a contract system for a higher-order world.
The key observation is that a contract checker cannot ensurgshat
argument meets its contract wheris called. Instead, it must wait
until proc is applied. At that point, it can ensure thabc’s argu-
ment is greater thad. Similarly, whenproc returns, it can ensure
thatproc’s result is in the range fromito 99. Enforcing contracts in

2 Example Contracts

We begin our presentation with a series of Scheme examples that
explain how contracts are written, why they are useful, and how to
check them. The first few examples illustrate the syntax and the ba-
sic principles of contract checking. Sections 2.2 and 2.3 discuss the
problems of contract checking in a higher-order world. Section 2.4
explains why it is important for contracts to be first-class values.
Section 2.5 demonstrates how contracts can help with callbacks,
the most common use of higher-order functions in a stateful world.
To illustrate these points, each section also includes examples from
the DrScheme [5] code base.

2.1 Contracts: A First Look

The first example is thegrt function:

;» sqrt : number —number
(define/contractsqrt
(A (x) (= x0)) — (A (x) (= x0)))
(A (x)--)

Following the tradition ofHow to Design Program§3], the sqrt
function is proceeded by an ML-like [23] type specification (in a
comment). Like Scheme'define a define/contract expression
consists of a variable and an expression for its initial value, a func-
tion in this case. In addition, the second subterrdeffne/contract
specifies a contract for the variable.

Contracts are either simple predicates or function contracts. Func-
tion contracts, in turn, consist of a pair of contracts (each either a
predicate or another function contract), one for the domain of the
function and one for the range of the function:

CD — CR.

The domain portion ofgrt’'s contract requires that it always re-
ceives a non-negative number. Similarly, the range portion of the
contract guarantees that the result is non-negative. The example
also illustrates that, in general, contracts check only certain aspects
of a function’s behavior, rather than the complete semantics of the
function.

The contract position of a definition can be an arbitrary expression
that evaluates to a contract. This allows us to clarify the contract
on sgrt by defining abigger-than-zero? predicate and using it in the

this manner ensures that the contract violation is signaled as soon agiefinition of sqrt’s contract:

the contract checker can establish that the contract has indeed been..

violated. The contract checker provides a first-order value as a wit-
ness to the contract violation. Additionally, the witness enables the
contract checker to properly assign blame for the contract violation
to the guilty party.

The next section introduces the subtleties of assigning blame for

higher-order contract violations through a series of examples in
Scheme [8, 16]. Section 3 preseds®", a typed, higher-order

;; bigger-than-zero? : number —boolean
(define bigger-than-zero? (A (x) (> x 0)))
;; sqrt : number —number
(define/contractsgrt

(bigger-than-zero? — bigger-than-zero?)

A(x)--)

The contract orqrt can be strengthened by relatisngt’s result to

functional programming language with contracts. Section 4 speci- Its argument. The dependent function contract constructor allows
fies the meaning 0f€°N, and section 5 provides an implementation the programmer to specify range contracts that depend on the value

of it. Section 6 contains a type soundness result and proves that the?f the function’s argument. This constructor is similar-te-, ex-
implementation in section 5 matches the calculus. Section 7 showsCePt that the range position of the contract is not simply a contract.

how to extend the calculus with function contracts whose range de- Instéad, it is a function that accepts the argument to the original
pends on the input to the function, and section 8 discusses the interfunction and returns a contract:
actions between contracts and tail recursion. cp -4 (A (arg) CR)

(module preferences scheme/contract

(provide add-panel open-dialog)

;; add-panel : (panel — panel) —void

(define/contractadd-panel
((any —

(A (new-child)
(let ([children (send(sendnew-child get-parent)
get-children)])
(eq? (car children) new-child))))

— any)

(A (make-panel)
(set! make-panels (cons make-panel make-panels))))
;; make-panels : (listof (panel — panel))
(define make-panels null)
;; open-dialog : —void
(define open-dialog
A0
(letx ([d (instantiate dialog% () ---)]
[sp (instantiate single-panel% () (parent d))]
[children (map (call-make-panel sp) make-panels)])
)
;; call-make-panel : panel —(panel —panel) — panel
(define call-make-panel
(A (sp)
(A (make-panel)
(make-panel sp)))))

Figure 1. Contract Specified withadd-panel

Here is an example of a dependent contrackdor:

;1 sqrt : number —number
(define/contractsqrt

(bigger-than-zero? LN
(A (x)
(A (res)
(and (bigger-than-zero? res)
(< (abs (— x (x res res))) 0.01)))))
(A (x)--)

This contract, in addition to stating that the resultqft is positive,

also guarantees that the square of the result is witiin of the
argument.

2.2 Enforcement at First-Order Types

(module preferences scheme
(provide add-panel open-dialog)
;; add-panel : (panel — panel) —void
(define add-panel
(A (make-panel)
(set! make-panels (cons make-panel make-panels))))
;; make-panels : (listof (panel — panel))
(define make-panels null)
;; open-dialog : —void
(define open-dialog
UY0)
(let« ([d (instantiate dialog% () - -)]
[sp (instantiate single-panel% () (parent d))]
[children (map (call-make-panel sp) make-panels)])
)
;; call-make-panel : panel —(panel — panel) — panel
(define call-make-panel
(A (sp)
(A (make-panel)

(let ([new-child | (make-panel sp) |

[children (send(sendnew-child get-parent)
get-children)])
(unless(eq? (car children) new-child)
(contract-error make-panel))
new-child) D))

Figure 2. Contract Manually Distributed

(bigger-than-zero? — bigger-than-zero?)

(A (n) (saved n))))

Themodule [8, 9] declaration consists of a name for the module,
the language in which the module is writterpr@vide declaration
and a series of definitions. This module provideg: anduse. The
variablesaved holds a function that should map positive numbers
to positive numbers. Since it is not exported from the module, it
has no contract. The gettarse) and setterqave) are the two vis-
ible accessors aofaved. The functionsave stores a new function
anduse invokes the saved function. Naturally, it is impossible for
save to detect if the value ofaved is always applied to positive
numbers since it cannot determine every argumemké¢o \Worse,
save cannot guarantee that each tiswed’s value is applied that

it will return a positive result. Thus, the contract checker delays the
enforcement ofave’s contract untilsave’s argument is actually ap-

The key to checking higher-order assertion contracts is to post- plied and returns. Accordingly, violations gfve’s contract might
pone contract enforcement until some function receives a first-order not be detected untilse is called.

value as an argument or produces a first-order value as a result.

This section demonstrates why these delays are necessary and dign general, a higher-order contract checker must be able to track
cusses some ramifications of delaying the contracts. Consider thiscontracts during evaluation from the point where the contract is es-

toy module:

module delayed scheme/contract

Ly

(provide save use)

;; saved : integer —integer

(definesaved (A (x) 50))

;; save : (integer —integer) —void

(define/contractsave
((bigger-than-zero? — bigger-than-zero?) —any)
(A (f) (set! saved f)))

;; use : integer —integer

(define/contractuse

tablished (the call site fosave) to the discovery of the contract
violation (the return site fonse), potentially much later in the eval-
uation. To assign blame, the contract checker must also be able to
report both where the violation was discovered and where the con-
tract was established.

The toy example is clearly contrived. The underlying phe-
nomenon, however, is common. For a practical example, consider
DrScheme’s preferences panel. DrScheme’s plugins can add addi-
tional panels to the preferences dialog. To this end, plugins register
callbacks that add new panels containing GUI controls (buttons,
list-boxes, pop-up menus, etc.) to the preferences dialog.

- make/c : (& o —bool) —a —a —bool bad value, no matter if the bad value was passed by directly apply-

(define (make/c op) (A (x) (A (¥) (op y x)))) ing an exported function or by applying a first-class function.

. >lc, </c: number —number —bool L

(define >/c (make/c >)) As with first-order function contract checking, two parties are in-

(define </c (make/c <)) volved for each contract: the function and its caller. Unlike first-

- eq/c, equal/c : any —any —bool order function contract checking, a more general rule applies for

(define eg/c (make/c eq?)) blame assignment. The rule is based on the nur_nber of_ times that

(define equal/c (make/c equal?)) each base contract appears to the left of an arrow in the higher-order

+ any : any —bool contract. If the base contract appears an even number of times, the

(defineany (A (x) #t)) function itself is responsible for establishing the contract. If it ap-

pears an odd number of times, the function’s caller is responsible.

Figure 3. Abstraction for Predicate Contracts This even-odd rule captures which party supplies the values and

corresponds to the standard notions of covariance (even positions)
and contravariance (odd positions).

Every GUI control needs two values: a parent, and a callback that is Consider the abstract example from the introduction again, but with
invoked when the control is manipulated. Some GUI controls need a little more detail. Imagine that the body gfs a call tof with 0:
additional control-specific values, such as alabel or alist of choices. - 5 : (integer —integer) —integer

In order to add new preference panels, extensions define a function (define/contractg

that accepts a parent panel, creates a sub-panel of the parent panel, ((greater-than-nine? — between-zero-and-ninety-nine?)

fills the sub-panel with controls that configure the extension, and NN

returns the sub-panel. These functions are then registered by call- petween-zero-and-ninety-nine?)

ing add-panel. Each time the user opens DrScheme’s preferences () () (f 0)))

dialog, DrScheme constructs the preferences dialog from the regis-

tered functions. At the point wheng invokesf, the greater-than-nine? portion of

) o) g's contract fails. According to the even-odd rule, this musgise
Figure 1 shows the definition afid-panel and its contract (boxed fault. In fact,g does supply the bad value, ganust be blamed.
in the figure). The contract requires thitd-panel’s arguments are
functions that accept a single argument. In addition, the contract |magine a variation of the above example wherappliesf to 10
guarantees that the result of each calidid-panel’'s argumentis a instead ob. Further, imagine thatreturns—10. This is a violation
panel and is the first child in its parent panel. Together, these checksof the result portion of’s argument’s contract and, following the
ensure that the order of the panels in the preferences dialog matchegyen-odd rule, the fault lies wit's caller. Accordingly, the con-
the order of the calls tadd-panel. tract enforcement mechanism must track the even and odd positions

) o) of a contract to determine the guilty party for contract violations.

The body ofadd-panel saves the panel making function in a list.
Later, when the user opens the preferences dialogyte dialog This problem of assigning blame naturally appears in contracts
function is called, which calls thenake-panel functions, and the from DrScheme’s implementation. For example, DrScheme creates
contracts are checked. Thiéilog% andsingle-panel% classes are g separate thread to evaluate user’s programs. Typically, extensions
part of the primitive GUI library andhstantiate creates instances to DrScheme need to initialize thread-specific hidden state before
of them. the user’s program is run. The accessors and mutators for this state

)]))) _implicitly accept the current thread as a parameter, so the code that
In comparison, flgure 2 contains the CheCk|ng COde, written as if initializes the state must run on the user’s thréad

there were no higher-order contract checking. The boxed portion of

the figure, excluding the inner box, is the contract checking code. To enable DrScheme’s extensions to run code on the user’s thread,
The code that enforces the contracts is co-mingled with the code prScheme provides the primitiven-on-user-thread. It accepts a
that implements the preferences dialog. Co-mingling these two de- thunk, queues the thunk to be run on the user’s thread and returns.

creases the readability of both the contract aatt-make-panel, It has a contract that promises that when the argument thunk is ap-
since client programmers now need to determine which portion of pjied, the current thread is the user's thread:

the code concerns the contract checking and which performs the
function’s work. In addition, the author of theeferences module

must find every call-site for each higher-order function. Finding
these sites in general is impossible, and in practice the call sites are
often in collaborators’ code, whose source might not be available.

;; run-on-user-thread : (—void) —void
(define/contractrun-on-user-thread
(((N O (eq? (current-thread) user-thread)) — any)

any)
(A (thunk)

2.3 Blame and Contravariance)

This contract is a higher-order function contract. It only has one
interesting aspect: the pre-condition of the function passedito
on-user-thread. This is a covariant (even) position of the function
contract which, according to the rule for blame assignment, means
thatrun-on-user-thread is responsible for establishing this contract.

Assigning blame for contractual violations in the world of first-class
functions is complex. The boundaries between cooperating compo-
nents are more obscure than in the world with only first-order func-
tions. In addition to invoking a component’s exported functions,
one component may invoke a function passed to it from another
component. Applying such first-class functions corresponds to a
flow of values between components. Accordingly, the blame fora 2This state is not available to user's program because the accessors and
corresponding contract violation must lie with the supplier of the mutators are not lexically available to the user’s program.

(module preferences scheme/contract The mixin-contract/intf function accepts an interface as an argu-

(provide add-panel - --) ment and produces a contract similamiéxin-contract, except that
;; preferences:add-panel : (panel — panel) —void the contract guarantees that input to the function is a class that im-
(define/contractadd-panel plements the given interface.

((any N

Although the mixin contract is, in principle, checkable by a type

(A (sp) S : ;
oy o oy ystem, no such type system is currently implemented. OCaml [18,
('et&[?jiﬁéﬁfﬁ (copy-spine (sendsp get-children)]) 19, 26] and OML [26] are rich enough to express mixins, but type-
(let ([post-children (sendsp get-children)]) checking fails for any interesting use of mixins [7], since the type
(and (= (length post-children) system does not allow subsumption for imported classes. This con-
(add1 (length pre-children))) tract is an example where the expressiveness of contracts leads to
(andmap eq? an opportunity to improve existing type systems. Hopefully this
(cdr l}’}?ﬁ'Chgldfeﬂ) example will encourage type system designers to build richer type
re-cnilaren H wi
(eq? (carl;) ost-children) new-child))) systems that support practical mixins.
any) 2.5 Callbacks and Stateful Contracts
(A (make-panel)
(set! make-panels (cons make-panel make-panels)))) Callbacks are notorious for causing problems in preserving invari-

ants. Szyperski [32] shows why callbacks are important and how

:+ copy-spine : (listof a) —(listof o) they cause problems. In short, code that invokes the callback must

(define (copy-spine 1) (map (A (x) x) 1)) guarantee that certain state is not modified during the dynamic ex-
)) tent of the callback. Typically, this invariant is maintained by ex-
Figure 4. Preferences Panel Contract, Protecting the Panel amining the state before the callback is invoked and comparing it to

the state after the callback returhs.

Consider this simple library for registering and invoking callbacks.
Therefore yun-on-user-thread contractually promises clients of this (module callbacks scheme/contract
function that the thunks they supply are applied on the user'sthread (provide register-callback invoke-callback)

and that these thunks can initialize the user’s thread’s state. . . .
;1 register-callback : (—void) —void

(define/contractregister-callback

2.4 First-class Contracts (=
A0

Experience with DrScheme has shown that certain patterns of con- (let ([old-state - - -save the relevant state])
tracts recur frequently. To abstract over these patterns, contracts (A (res)
must be values that can be passed to and from functions. For exam- ---compare the new state to the old statg)))
ple, curried comparision operators are common (see figure 3). —

any)
More interestingly, patterns of higher-order function contracts are (A (c)
also common. For example, DrScheme’s code manipulates mix- (set! callback c)))
ins [7, 10] as values. These mixins are functions that acceptaclass - jnyoke-callback : —void
and returns a class derived from the argument. Since extensions of (define invoke-callback
DrScheme supply mixins to DrScheme, it is important to verify that O 0
the mixin’s result truly is derived from its input. Since this contract (callback)))

is so common, it is defined in DrScheme’s contract library: - callback : —void

;(;dzfﬁ]:;?;fffé;n(i?%Clasg contract (define callback (A () (void))))
(class? R (A (arg) (A (res) (subclass? res arg))))) The functionregister-callback accepts a callback function and reg-

isters it as the current callback. Theoke-callback function calls
This contract is a dependent contract. It states that the input to thethe callback. The contract amgister-callback makes use of the
function is a class and its result is a subclass of the input. dependent contract constructor in a new way. The contract checker

applies the dependent contract to the original function’s arguments
Further, it is common for the contracts on these mixins to guar- beforethe function itself is applied. Therefore, the range portion
antee that the base class passed to the mixin is not just any classpf a dependent contract can determine key aspects of the state and
but a class that implements a particular interface. To support thesesave them in the closure of the resulting predicate. When that pred-
contracts, DrScheme’s contract library provides this function that icate is called with the result of the function, it can compare the
constructs a contract: current version of the state with the original version of the state,

;; mixin-contract/intf : interface —(class—clasg contract thus ensuring that the callback is well-behaved.

define mixin-contract/intf
() (mzz;;};zzec)on ractin This technique is useful in the contract for DrScheme’s preferences

(A (x) (implements? x interface)) panel, whose contract we have already considered. Consider the
d

— 3In practice, lock variables are often used for this; the technique pre-

(A (arg) (A (res) (subclass? res arg)))))) sented here adapts to a lock-variable based solution to the callback problem.

core syntax

Pllm'/70] — ermror(/)
p=d..e ml +mpl ~ Tnp+npl
d:valreCX:e:e_ m! * [nol ~ Ty * np!
e=Ax.eleelx|fixxe ‘m! /!~ Tny/ny

|n|eaope|erope ‘m! =yl ~ Ing —ny
| exe | [| hd(e) | t(e) | mt(e) lng! >l ~ true
| if e then e elsee | true | false | str - if ng > mp
| e — e | contract(e) Tny] > o] B
1" >'no ~ false
| flatp(e) | pred(e) | dom(e) | rng(e) | blame(e) if 0y < ny
str="" | ngn ‘ npn ‘ | "3a" | "ah" | »nlw _ >H21 ~ true
I'Op:+‘*|*‘/ |fn1:n2
aop = Z | = 'yl = ny! ~ false
X = variables i
n=0]1] - 1] 2]~ fm7m
AxeV ~ e[x/V]
fix x.e ~ e[x / fix x.e]
types

t=t—t|tlist]int | bool| string | t contract

P[x] — Pleg]

whereP containsvalrec x : e; = e

. if true thene; elsee; ~» e1
evaluation contexts if false then ey elsee; ~ e
P=valrecx:V=V... hd(Vy:: V) ~ Vi
valrecx :E=e P[hd([])] — error(hd)
d--- tl(V1 :: V) ~ \Z)
e Pld([l)] — error(tl)
|valrecx : V=1V .. mt([]) ~ true
valrecx: V=E mt(Vy:: Vo) ~ false
d--- flatp(contract(V)) ~» true
e flatp(V1 — V) ~ false
|valrecx : V=V pred(contract(V)) ~» \%
E Plpred(V1— V2)] — error(pred)
dom(Vy — V3) ~ Vi
E=Ee|VE
|E aop‘ ¢|VaopE|Erope|VropE P[dom(contract(V))] —— error(dom)
|E :e|V:E|hd(E)|U(E) mg(Vir— Vo)~ V2
|if E then e elsee P[rmg(contract(V))] — error(rng)
P[blame(p)] — error(p)

| E— e | V+— E | contract(E)
| dom(E) | mg(E) | pred(E) | flatp(E) | blame(E)

= whereP[e] — P[€]if e ~ €

Figure 6. Reduction Semantics oh©°N
values

V=V :V|Ax.e|str|n|true|false|V— V| contract(V)
Vp=valrecx : V=V...
\'4

Figure 5. AC°N Syntax, Types, Evaluation Contexts, and Values bou_n_d_ byval rec in a single program must be distinct. All of t_h_e
definitions are mutually recursive, except that the contract positions

of a definition may only refer to defined variables that appear earlier
in the program.

revision ofadd-panel’s contract in figure 4. The revision does more
than just ensure that the new child is the first child. In addition, it
guarantees that the original children of the preferences panel remai
in the panel in the same order, thus preventing an extension from
removing the other preference panels.

Expressionsd) include abstractions, applications, variabfesex-
r’oressions, numbers and numeric primitives, lists and list primitives,
if expressions, booleans, and strings. The final expression forms
specify contracts. Theontract(e) ande — e expressions con-
struct flat and function contracts, respectively.flép expression
returnstrue if its argument is a flat contract affalse if its argument
3 Contract Calculus is a function contract. Thpred, dom, andrng expressions select

the fields of a contract. Thdame primitive is used to assign blame
Although contracts can guarantee stronger properties than typed0 @ definition that violates its contract. It aborts the program. This
about program execution, their guarantees hold only for particular first model omits dependent contracts; we return to them later.
program executions. In contrast, the type checker’s weaker guaran- Con))
tees hold forall program executions. As such, contracts and types 1ne types foA™>" are those of core ML (without polymorphism),
play synergistic roles in program development and maintenance soP!Us types for contract expressions. The typing rules for contracts
practical programming languages must support both. In that spirit, a€ given in figure 7. The first typing rule is for complete programs.
this section contains a calculus with both types and contracts toA Program’s type is a record of types, written:
show how they interact. (t-)

Figure 5 contains the syntax for the contract calculus. Each pro- where the first types are the types of the definitions and the last type
gram consists of a series of definitions, followed by a single expres- is the type of the final expression.

sion. Each definition consists of a variable, a contract expression

and an expression for initializing the variable. All of the variables Contracts on flat values are tagged by toatract value construc-

F+{xj=t|0<j<i}Fey:tcontract..- Fr+{xi=t,---}rey:t--- Fr+{x=¢t,--tte:t
I+ valrecx; : ey

=ep e (f-t)

ke :t—bool Ik ey : t contract I+ ey : to contract I+ e:string
" - contract(e) : t contract It (e1— ep) : t1 —tp contract I+ blame(e) : t
[+ e:tp —t contract [+ e: tp —t contract [+ e : t contract [+ e : t contract

I+ dom(e) : t; contract I+ rng(e) : tp contract I+ pred(e) : t —bool I - flatp(e) : bool

Fr+{x:t}te:t lFer:th —b Mlex:ty F+{x:tjkFe:t
FEAXx.e:th —t F-(e1e2) : to M+{x:tkx:t M-fixx.e:t
MFep:int MFep:int ey :int MFep:int
FEn:int I e1 aop ez : bool Itepropep:int
Mkep:t Eep:tlist e :tlist MHe:tlist MEe:tlist
Mep:rep:tlist FE - tlist I = mt(e) : bool - hd(e) :t IEte): tlist
[+ ey : bool Mkex:t Mez:t
[Hif e; theney elsees : t [+ true : bool I+ false : bool [str: string

Figure 7. ACON Type Rules

tor and must be predicates that operate on the appropriate typeThe first superscriptis a contract expression that the base expression

Contracts for functions consist of two contracts, one for the domain is obliged to meet. The last two are variables. The variables enable

and one for the range of the function. The typing rule for defini- the contract monitoring system to assign blame properly. The first

tions ensures that the type of the contract matches the type of thevariable names the party responsible for values that are produced by

definition. The rest of the typing rules are standard. the expression under the superscript and the second variable names
the party responsible for values that it consumes.

Consider this definition of thegrt function:

val rec sqrt : contract(A x.x > 0) — contract(A x.x > 0) = An implementation would add a fourth superscript, representing the
An - - - source location where the contract is established. This superscript
would be carried along during evaluation until a contract violation
The body of thesgrt function has been elided. The contractsgnt is discovered, at which point it would be reported as part of the error
must be an— contract because the typefit is a function type. ~ Message.

Further, the domain and range portions of the contract are predi-) o L .

cates on integers becausgt consumes and produces integ‘érs. In this model, each definition is treated as if it were written by a

More succinctly, the predicates in this contract augmensgings different programmer. Thus, each definition is considered to be a

type, indicating that the domain and range must be positive. se.parate.erjtlty for. the purpose of assigning bllame. In an |mplemen-
tation, this is too fine-grained. Blame should instead be assigned to

Figures 5 and 6 define a conventional reduction semantics for the@ coarser construce.g, Modula's modules, ML structures and
base language without contracts [4]. functors, or Java’s packages. In DrScheme, we blarnéules [9].

Programmers do not write obligation expressions. Instead, con-
PSR tracts are extracted from the definitions and turned into obligations.
4 Contract Momtonng To enforce this, we define the judgmenok that holds when there

As explained earlier, the contract monitor must perform two tasks. are no obligation expressionsn

First, it must track higher-order functions to discover contract vio-

lations. Second, it must properly assign blame for contract viola-
tions. To this end, it must track higher-order functions through the
program’s evaluation and the covariant and contravariant portions
of each contract.

Obligations are placed on each reference walaec-defined vari-
able. The first part of the obligation is the definition’s contract ex-
pression. The first variable is initially the name of the referenced
definition. The second variable is initially the name of the definition
where the reference occurs (ain if the reference occurs in the
last expression). The functiah(defined in the appendix) specifies

To monitor contr w new form of expression, some new ; . S .
0 monitor contracts, we add a new form of expression, some ne precisely how to insert the obligations expressions.

values, evaluation contexts and reduction rules. Figure 8 contains

the new expression form, representingodfigatior The introduction of obligation expressions induces the extension of

the set of evaluation contexts, as shown in figure 8. They spec-
£€ XX ify that the value of the superscript in an obligation expression is
determined before the base value. Additionally, the obligation ex-
a . _ pression induces a new type rule. The type rule guarantees that the
Technically,sqrt should consume and produce any number, but since gbligation is an appropriate contract for the base expression.
ACON only contains integers and the precise detailsgof are unimportant,
we consider a restricted form efrt that operates on integers.

obligation expressions
e=--| € XX
obligation type rule

eyt [ey : t contract

[e ®2XX

obligation evaluation contexts
E=-| eEX.X | EVX.X

obligation values
V = ‘ VV — V,X,X

obligation reductions

P[Vlcontract(vz),p,n] fat

— P[if V,(V1) then V; elseblame("p")]

hoc Vs,n,p)VA,p,H]

Pl(v4(Va— Va)pn v, 296 pycy, v,

Figure 8. Monitoring Contracts in ACON

Finally, we add the class of labeled values. The labels are function
obligations (see figure 8). Although the grammar allows any value

wrap : t contract —t —string —string —t
wrap = fix wrap. A ct. A x. A p. A n.
if flatp(ct) then
if (pred(ct)) x then x elseerror(p)

else
let d = dom(ct)
r = rng(ct)
in
Ay. wrap r
(x (wrap d y n p))
p

n

Figure 9. Contract Compiler Wrapping Function

to last reduction are examples of how flat contracts are checked.
In this case, each predicate holds for each value. If, however, the
predicate had failed in the second reduction stegin would be
blamed, sincenain supplied the value tegrt. If the predicate had
failed in the second to last reduction stegst would be blamed
sincesqrt produced the result.

For a second example, recall the higher-order program from the
introduction (translated to the calculus):

valrecgt9 =Ax.x >9

val rec bet0_99 = A x. if 99 > x then x > 0 elsefalse

to be labeled with a function contract, the type soundness theorem g rec g : ((gt9 — bet0_99) — bet0_99) =

coupled with the type rule for obligation expressions guarantees

that the delayed values are always functions, or functions wrapped

with additional obligations.

For the reductions in figure 6, superscripted evaluation proceeds

just like the original evaluation, except that the superscript is car-
ried from the instruction to its result. There are two additional re-
ductions. First, when a predicate contract reaches a flat value, th

itive position of the superscript is blamed.

The final reduction of figure 8 is the key to contract checking for
higher-order functions (thkoc above the arrow stands for “higher-
order contract”). At an application of a superscripted procedure,
the domain and range portion of the function position’s superscript
are moved to the argument expression and the entire application
Thus, the obligation to maintain the contract is distributed to the
argument and the result of the application. As the obligation moves
to the argument position of the application, the value producer and

the value consumer exchange roles. That is, values that are being

provided to the function are being provided from the argument and
vice versa. Accordingly, the last two superscripts of the obligation

€
predicate on that flat value is checked. If the predicate holds, the
contract is discarded and evaluation continues. If the predicate fails,
execution halts and the definition named by the variable in the pos-

Af.fO
g (A x. 25)

The definitions ofgt9 andbet0_99 are merely helper functions for
defining contracts and, as such, do not need contracts. Although the
calculus does not allow such definitions, it is a simple extension to
add them; the contract checker would simply ignore them.

Accordingly, the variablez in the body of themain expression is
the only reference to a definition with a contract. Thus, it is the
only variable that is compiled into an obligation. The contract for
the obligation isg’s contract. If an even position of the contract is
not met, g is blamed and if an odd position of the contract is not
met, main is blamed. Here is the reduction sequence:
g((gt9 — bet0-99) — bet0_99),g,main (\ x. 25)

(g (A x 25)(gt9 — bet0,99),main,g)bet0,99,g,main
(O x 25)(gt9 — bet0-99),main,g O)bet0,99,g,ma1'n
— (((x. 25) 0gt9,g,main)bet0,99,main,g)bet0,99,g,main
— (((\ x. 25)

(if gt9(0) theno
e|seblame(ug.y)))bet0,99,main,g)bet0,99,g,ma1‘n

—* blame("g")

expression must be reversed, which ensures that blame is properly

assigned, according to the even-odd rule.

For example, consider the definition afrt with a single use in
the main expression. The reduction sequence for the application
of sqrt is shown on the left in figure 10. For brevity, references
to variables defined byal rec are treated as values, even though
they would actually reduce to the variable’s current values. The
first reduction is an example of how obligations are distributed on

In the first reduction step, the obligation gris distributed tog’s
argument and to the result of the application. Additionally, the vari-
ables indicating blame are swapped Mx(25)’s obligation. The
second step substitutask. 25 in the body ofg, resulting in an ap-
plication ofA x. 25 to 0. The third step distributes the contracton

x. 25 to 0 and to the result of the application. In addition, the vari-
ables for even and odd blame switch positions agairsicontract.
The fourth step reduces the flat contractodo anif test that deter-

an application. The domain portion of the superscript contract is mines if the contract holds. The final reduction steps assign blame
moved to the argument of the procedure and the range portion isto g for supplying0 to its argument, since it promised to supply a
moved to the application. The second reduction and the secondnumber greater thad

ORIGINAL PROGRAM

val rec sqgrt : contract(A x.x > 0) — contract(A x.x > 0) =
A n. ---body intentionally elided- -

sqrt 4

CoN
REDUCTIONS INA REDUCTIONS OF THE COMPILED EXPRESSION
sqrt(contract()\ x.x > 0) — contract(A x.x > 0)),sqrt,main

] (wrap (contract(A x.x > 0) — contract(A x.x > 0))

sqrt "sqrt" "main")
4
—* ((\ y. wrap (contract(A x.x > 0))
(sqrt (wrap (contract(A x.x > 0))

y
"main" "sqrt"))
"Sqrt" "main“)
4)
For the next few steps, we show the reductionsip's
argument before the reductionwfap, for clarity.
— wrap (contract(A x.x > 0))
(sqrt (wrap (contract(A x.x > 0))
4

s (sqrt gcontract(A x.x > 0),main,sqrt)contract()\ x.x > 0),sqrt,main

"main" "sqrt"))
] "sqrt" "main”
— (sqrt (if (A x.x >0) 4 —* wrap (contract(A x.x > 0))

tfllen 4 , (sqrt (if (A x.x > 0) 4) then 4

elseblame(main)) elseblame("main™)))

§ > . "sqrt" "main"
—" (sqrt 4)C0mracw\ X = 0),5qrt,mam —* wrap (contract(A x.x > 0)) (sqrt 4) "sqgrt" "main"
__» ocontract(A x.x > 0),sqrt,main —* wrap (contract(A x.x > 0)) 2 "sqrt" "main"
—if A\ x.x >0) 2then2 —*if (\ x.x > 0) 2then 2
elseblame(sqrt) elseblame("sqrt")

—*2 —* 2

)Contract()\ Xx.x > 0),sqrt,main

Figure 10. Reducingsgrt in AC°N and with wrap

This example shows that higher-order functions and first-order of contract. The first case handles flat contracts; it merely tests if
functions are treated uniformly in the calculus. Higher-order func- the value matches the contract and blames the positive position if
tions merely require more distribution reductions than first-order the test fails. The second casewfap deals with function con-
functions. In fact, each nested arrow contract expression induces atracts. It builds a wrapper function that tests the original function’s
distribution reduction for a corresponding application. For simplic- argument and its result by recursive callswep. Textually, the

ity, we focus on ousgrt example for the remainder of the paper. first recursive call tovrap corresponds to the post-condition check-
ing. It applies the range portion of the contract to the result of the
original application. The second recursive callit@p corresponds

to the pre-condition checking. It applies the domain portion of the
contract to the argument of the wrapper function. This caiiap

To implement “°, we must compile away obligation expressions. has the positive and negative blame positions reversed as befits the
The key to the compilation is the wrapper function in figure 9. The domain checking for a function.

wrapper function is defined in the calculus (et expression is
short-hand for inline applications afexpressions, and is used for The right-hand side of figure 10 shows how the compiled version
clarity). It accepts a contract, a value to test, and two strings. Theseof the sqrt program reduces. It begins with one call#ap from
strings correspond to the variables in the superscripts. We write the one obligation expression in the original program. The first
wrap as a meta-variable to stand for the program text in figure 9, reduction appliesvrap. Since the contract in this case is a function
nota program variable. contract,wrap takes the second case in its definition and returns a
A expression. Next, the expression is applied . At this point,
Compiling the obligations is merely a matter of replacing an obli- the function contract has been distributeddet’s argument and to
gation expression with an application @fap. The first argument the result ofsqrt's application, just like the distribution reduction in
is the contract of the referenced variable. The second argument isyCON (as shown on the left side of figure 10). The next reduction
the expression under the obligation and the final two arguments arestep is another call tezap, in the argument tegrt. This contract is
string versions of the variables in the obligation. Accordingly, we flat, so the first case in the definitionwfap applies and the result is
define a compiler €) that maps from programs to programs. It anif test. If that test had failed, thdsebranch would have assigned
replaces each obligation expression with the corresponding appli- blame tomain for supplying a bad value tegrt. The test passes,
cation ofwrap. The formal definition is given in the appendix. however, and thé expression returns in the next reduction step.

])])) ~ After that, sqrt returns2. Now we arrive at the final call tovrap.
The functionwrap is defined case-wise, with one case for each kind

5 Contract Implementation

<fn> if C(I(p)) — Ax. e
E(p) = Vp it C(I(p)) —* VpandVp#Ax.e
error(x) if C(1(p)) —* error(x)
<fr> if I(p) P A xp
<fo> if 1(p) P yVar— Va,p.n
Eo(p) = Vo if 1(p) 2 v, where
Vp # A x. e and
Vp# V1 V2 — V3,p,n
error(x) if I(p) RS error(x)
<fn> i I(p) % A xe
Lrw(p) = Vi) M vyandV, £ x e
error(x) if I(p) RLAY error(x)

Figure 11. Evaluator Functions

As before, the contract is a flat predicate,v&@p reduces to aiif
expression. This time, however, if tifetest had failedsqrt would
have been blamed for returning a bad result. In the final reduction,
theif test succeeds and the result of the entire prograam is

6 Correctness

DEFINITION 6.1 DIVERGENCE. A programp diverges under—
if for any p; such thatp —* py, there exists @, such thatp; —

p2.

Although the definition of divergence refers only-te-, we use it
for each of the reduction relations.

The following type soundness theorem }t°N is standard [34].

THEOREM 6.2 (TYPE SOUNDNESS FORNCON). For any program,
p, such that

OFp:(t--)

according to the type judgments in figure 7, exactly one of the fol-
lowing holds:

o p—*Vy:(t-)

e p —* error(x), wherex is aval rec defined variable irp, /,
hd, tl, pred dom, or rng, or

e p diverges under—.

PrROOF Combine the preservation and progress lemmas for
ACoN. O

LEMMA 6.3 (PRESERVATION FORACON). If O+ p : (t---) andp
— p/ then0+p' : (t--).

LEMMA 6.4 (RROGRESS FORON). If O+ p : (t ---) then either
p = Vp,0rp— p,for somep'.

To relate these two semantics, we introduce a hew semantics and
show how it bridges the gap between them. The new semantics
is an extension of the semantics given in figures 5 and 6. In

addition to those expressions it contains obligation expressions,

evaluation contexts, and™ reduction from figure 8 (but not the
new values or thd reduction in figure 8), and the~ reduction:

D[()\ X. 6)(V1 [— V2)vp1n] @
D[Ay. (A x. e) y V1P)V2.p.n)

wherey is not free ine.

DEFINITION 6.5 (EVALUATORS). Define—* to be the transitive

closure of (— U % U %) and define™* to be the transitive

flat wra
closure of (— U 1% y Z).

The evaluator functions (shown in figure 11) are defined on pro-
gramsp such thatp ok andl - p : (¢t ---). As a short-hand
notation, we write that a program value is equal to a valjg= V
when the main expression of the progranis equal toV.

LEMMA 6.6. The evaluators are partial functions.

PROOF From an inspection of the evaluation contexts, we can
prove that there is a unique decomposition of each program into
an evaluation context and an instruction, unless it is a value. From
this, it follows that the evaluators are (partial) function§&.

THEOREM 6.7 (COMPILER CORRECTNESS.

E=Enm

PrROOFE Combine lemma 6.8 with lemma 6.9
LEMMA 6.8.E = Ep,

PROOFSKETCH. This proof is a straightforward examination of

the evaluation sequences®fandZEg,. Each reduction of an appli-

. . . flat wra,
cation ofwrap corresponds directly to either-a> or alp

tion and otherwise the evaluators proceed in lock-step.

reduc-

The full proof is given in the appendix. [J

LEMMA 6.9. Eqy = Em

PROOFSKETCH. This proof establishes a simulation betwegg
andZEg,. The simulation is preserved by each reduction step and it

relates values to themselves and errors to themselves.

The full proof is given in the appendix. [J

7 Dependent Contracts

Adding dependent contracts to the calculus is straightforward. The
reduction relation for dependent function contracts naturally ex-

The remainder of this section formulates and proves a theorem thattends the reduction relation for normal function contracts. The
relates the evaluation of programs in the instrumented semanticsreduction for distributing contracts at applications is the only dif-

from section 4 and the contract compiled programs from section 5.

ference. Instead of placing the range portion of the contract into
the obligation, an application of the range portion to the function’s
original argument is placed in the obligation, as in figure 12.

dependent contract expressions Since experience has shown that module boundaries are typically
not involved in tight loops, we conjecture that losing tail recursion
for contract checking is not a problem in practice. In particular,
adding these contracts to key interfaces in DrScheme has had no
noticeable effect on its performance. Removing the tail-call opti-
I ey : t contract I+ ey : tn — (tz contract) mization entirely, however, would render DrScheme useless.

d
e=-le—e

dependent contract type rule

d
e — ez : (1 — t2) contract
! 2: (1 2 Serrano presents further evidence for this conjecture about tail re-

cursion. His compiler does not preserve tail recursion for any cross-
d d module procedure call — not just those with contracts. Still, he has
E=-|Er—e|V+—E not found this to be a problem in practice [29, section 3.4.1].

dependent contract evaluation contexts

dependent contract reductions
d .

PIva(Vi— V2)pi v, p(vy v, Vimpy(V2 Va),p.n 9 Conclusion
i i CON
Figure 12. Dependent Function Contracts fok Higher-order, typed programming language implementations [1,
12, 15, 19, 33] have a static type discipline that prevents certain
abuses of the language’s primitive operations. For example, pro-
grams that might apply non-functions, add non-numbers, or invoke
methods of non-objects are all statically rejected. Yet these lan-
‘guages go further. Their run-time systems dynamically prevent ad-
ditional abuses of the language primitives. For example, the prim-

The evaluation contexts given in figure 8 dictate that an obligation’s

superscript is reduced to a value before its base expression. In par
ticular, this order of evaluation means that the superscripted appli-
cation resulting from the dependent contract reduction in figure 12 e array indexing operation aborts if it receives an out of bounds

Is reduced before the base expression. Therefore, the procedure fhdex, and the division operation aborts if it receives zero as a divi-

the dependent contract can examine the state (of the world) beforeg, "1 ether these two techniques dramatically improve the quality
the function proper is applied. This order of evaluation is critical

> of software built in these languages.
for the callback examples from section 2.5. guag

. . With the advent of module languages that support type abstrac-
8 Tail Recursion tion [13, 18, 24], programmers are empowered to enforce their own
abstractions at the type level. These abstractions have the same
Since the contract compiler described in section 5 checks post-expressive power that the language designer used when specifying
conditions, it does not preserve tail recursion [2, 30] for proce- the language’s primitives. The dynamic part of the invariant en-
dures with post-conditions. Typically, determining if a procedure forcement, however, has become a second-class citizen. The pro-
call is tail recursive is a simple syntactic test. In the presence of grammer must manually insert dynamic checks and blame is not
higher-order contracts, however, understanding exactly which calls assigned automatically when these checks fail. Even worse, as dis-
are tail-calls is a complex task. For example, consider this program: cussed in section 2, it is not always possible for the programmer
val rec gt0 = contract(A x.x > 0) to insert these checks manually because the call sites may be in

val rec f : (gt0 — gt0) — gt0 unavailable modules.

he.gs This paper presents the first assertion-based contract checker for
£ (A x. x+1) languages with higher-order functions. Our contract checker en-
ables programmers to refine the type-specifications of their abstrac-
tions with additional, dynamically enforced invariants. We illus-
trate the complexities of higher-order contract checking with a se-
ries of examples chosen from DrScheme’s code-base. These exam-
ples serve two purposes. First, they illustrate the subtleties of con-
tract checking for languages with higher-order functions. Second,
they demonstrate that current static checking techniques are not ex-
pressive enough to support the contracts underlying DrScheme.

The body off is in tail position with respect to a conventional inter-
preter. Hence, a tail-call optimizing compiler should optimize the
call to g and not allocate any additional stack space. But, due to the
contract thag’s result must be larger tham the call tog cannot be
optimized, according to the semantics of contract checRing.

Even worse, since functions with contracts and functions without
contracts can co-mingle during evaluation, sometimes a call to a
function is a tail-call but at other times a call to the same function
call is not a tail-call. For instance, imagine that the argumerft to
was a locally defined recursive function. The recursive calls would
be tail-calls, since they would not be associated with any top-level
variable, and thus no contract would be enforced.

We believe that experience with assertions will reveal which con-
tracts have the biggest impact on software quality. We hope that this
information, in turn, helps focus type-system research in practical
directions.

Contracts are most effective at module boundaries, where they serve

the programmer by improving the opportunities for modular rea- Acknowledgments

soning. That is, with well-written contracts, a programmer can

study a single module in isolation when adding functionality or Thanks to Thomas Herchdider, Michael Vanier, and the anony-
fixing defects. In addition, if the programmer changes a contract, mous ICFP reviews for their comments on this paper.

the changed contractimmediately indicates which other source files

must change. We would like to send a special thanks to ICFP reviewer #3, whose
careful analysis and insightful comments on this paper have re-
5At a minimum, compiling it as a tail-call becomes much more difficult. newed our faith in the conference reviewing process.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

AT&T Bell Labratories. Standard ML of New Jersg$993.

Clinger, W. D. Proper tail recursion and space efficiency. In
Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementatigrages 174-185, June
1998.

Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi.
How to Design ProgramsMIT Press, 2001.

Felleisen, M. and R. Hieb. The revised report on the syntactic
theories of sequential control and state.Thmeoretical Com-
puter Sciencgpages 235-271, 1992.

Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krish-
namurthi, P. Steckler and M. Felleisen. DrScheme: A pro-
gramming environment for Schemelournal of Functional
Programming 12(2):159-182, March 2002. A preliminary
version of this paper appeared in PLILP 1997, LNCS volume
1292, pages 369-388.

Findler, R. B. and M. Felleisen. Contracts for higher-order
functions. InProceedings of ACM SIGPLAN International
Conference on Functional Programmiri2p02.

Findler, R. B. and M. Flatt. Modular object-oriented program-
ming with units and mixins. IrProceedings of ACM SIG-
PLAN International Conference on Functional Programming
pages 94-104, September 1998.

Flatt, M. PLT MzScheme: Language manual. Technical
Report TR97-280, Rice University, 1997. http://www.plt-
scheme.org/software/mzscheme/.

Flatt, M. Composable and compilable macros: You want it
when?In Proceedings of ACM SIGPLAN International Con-
ference on Functional Programming002.

Flatt, M., S. Krishnamurthi and M. Felleisen. A programmer’s
reduction semantics for classes and mixirarmal Syntax
and Semantics of Jaya523:241-269, 1999. Preliminary ver-
sion appeared in proceedings Pfinciples of Programming
Languages1998. Revised version is Rice University techni-
cal report TR 97-293, June 1999.

Gomes, B., D. Stoutamire, B. Vaysman and H. Klawittr.
Language Manual for Sather 1.August 1996.

Gosling, J., B. Joy and J. Guy Steelhe Java(tm) Language
Specification Addison-Wesley, 1996.

Harper, R. and M. Lillibridge. A type-theoretic approach to
higher-order modules with sharing. Rroceedings of ACM
Conference Principles of Programming Languagesges
123-137, Janurary 1994.

Holt, R. C. and J. R. Cordy. The Turing programming lan-
guage. InCommunications of the ACMolume 31, pages
1310-1423, December 1988.

Jones, M. P., A. Reid and The Yale Haskell Groiipe Hugs
98 User Manual1999.

Kelsey, R., W. Clinger and J. R. (Editors). Revi3eeport of
the algorithmic language Schem&CM SIGPLAN Notices
33(9):26-76, 1998.

Kolling, M. and J. Rosenberdlue: Language Specification,
version 0.941997.

Leroy, X. Manifest types, modules, and separate compilation.
In Proceedings of ACM Conference Principles of Program-

(19]

(20]

(21]

(22]
(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]
(32]
(33]

(34]

ming Languagespages 109-122, Janurary 1994.

Leroy, X. The Objective Caml system, Documentation and
User's guide 1997.

Luckham, D. Programming with specificationgexts and
Monographs in Computer Sciende90.

Luckham, D. C. and F. von Henke. An overview of Anna, a
specification language for Ada. |IEEE Softwarevolume 2,
pages 9-23, March 1985.

Meyer, B. Eiffel: The LanguagePrentice Hall, 1992.

Milner, R., M. Tofte and R. HarpeT he Definition of Standard
ML. MIT Press, 1990.

Mitchell, J. C. and G. D. Plotkin. Abstract types have existen-
tial type. ACM Transactions on Programming Languages and
Systemsl10(3):470-502, 1988.

Parnas, D. L. A technique for software module specification
with examplesCommunications of the ACM5(5):330-336,
May 1972.

Rémy, D. and J. Vouillon. Objective ML: A simple object-
oriented extension of ML. IRroceedings of ACM Conference
Principles of Programming Languaggsages 40-53, January
1997.

Rosenblum, D. S. A practical approach to programming
with assertionslEEE Transactions on Software Engineering
21(1):19-31, Janurary 1995.

Serrano, M. Bigloo: A practical Scheme compilel992—
2002.

Serrano, M. Bee: an integrated development environment for
the Scheme programming languagéournal of Functional
Programming 10(2):1-43, May 2000.

Steele, G. L. J. Debunking the “expensive procedure call”
myth; or, Procedure call implementations considered harm-
ful; or, LAMBDA: The ultimate goto. Technical Report 443,
MIT Artificial Intelligence Laboratory, 1977. First appeared
in the Proceedings of the ACM National Conference (Seattle,
October 1977), 153-162.

Switzer, R.Eiffel: An Introduction Prentice Hall, 1993.
Szyperski, CComponent SoftwareAddison-Wesley, 1998.

The GHC Team. The Glasgow Haskell Compiler User's
Guide 1999.

Wright, A. and M. Felleisen. A syntactic approach to type
soundness. Information and Computatignpages 38-94,
1994. First appeared as Technical Report TR160, Rice Uni-
versity, 1991.

arithmetic binary operators

d definitions
e expressions
E expression evaluation contexts
n numbers or negative blame variables
p programs or positive blame variables
P program evaluation contexts
rop relational binary operators
str strings
t types
v expression values
Vp program vaIL_Jes
X program variables
r type environment

The context makes clear wharandp are being used as numbers, programs,
or blame-assignment variables.

Figure 13. Key to Variables

Appendix

This appendix contains the full definitions &f C, the simulation
relation, and the full proofs for lemmas 6.8 and 6.9.

The definition forI (figure 14) uses a helper functiode. The
helper function accepts an expression, a program, a variable, and
a set of variables. It traverses the first argument, replacing occur-
rences of top-level defined variables with obligation expressions.
The second argument is the entire program being traversed and is
used to find the contract for each variable. The third argument is

I:p—p
I(p=valrecx:ey=ey---e3) =
val rec x : Ie(e1,p,x,0) = Ie(e2,p,x,0) -+
Ie(es, p,main,0)
Ie:e x p x x x {x} —e
Ie(Ay.e,p,n,s)=Ay. Ie(n,p,e,s U{y})
Ie(e1(e2),p,n,s) = Ie(e1,n,p,s)(le(ez,n,p,s))
x&XIif H(p, x, e) andx & s

Ie(x,p,n,s) = otherwise

X
Ie(num,p,n,s) = num
Ie(e1 aop e2,p,n,s) = Ie(p.n.s.e1) aop Ie(e2,p.n.s)
Ie(el aOP eg,p,n,s) = IE(elrpvn!S) rOP Ie(CZ:Prnxs)
Is(p,n,s,e1 :: e2) = Ie(e1,p,n,s) :: Ie(ez,p,n,s)
Ie(p.ns) =1
Ie(hd(e),p,n,s) = hd(Ie(e,p,n.s))
Ie(tl(e),p,n,s) = t(Le(e,p.n,s))
Ie(mt(e)vpvnvs) = m[(IE(evpvnvS))
Ie(if e1 then e, elsees,p,n,s) =

if (Ie(e1,p,n,s)) then (le(ez,p,n,s)) else(l(es,p,n,s))
Ie(true,p,n,s) = true
Ie(false,p,n,s) = false
Ie(str,p,n,s) = str
[e(el L eZvP:nvS) = IE(el!pvnrs) — Ie(ezvprnis)
Ie(contract(e),p,n,s) = contract(le(e,p,n,s))
Ie(flatp(e),p,n,s) = flatp(Le(e,p.n,s))
Ie(pred(e),p,n,s) = pred(Ie(e,p,n,s))
Ie(dom(e),p,n,s) = dom(Ie(e,p,n,s))
Ie(mg(e)xpv” ,S) = mg(IE(evP'"vS))
Ie(blame(e),p,n,s) = blame(lg(e,p,n,s))

H(p,x,e1) holdsif valrecx : eg=ep isin p

Figure 14. Obligation Expression Insertion

the name of the definition being traversed and the final argument is
a set of names that shadow top-level names. With the exception of

variables, each case of the function merely recurs, and constructs
an identical term. The variable case wraps the variable if it is not
shadowed, using{ relation. The# relation relates variables to the
top-level definitions that bind them.

The definition ofC is shown in figure 15. As described in section 5,
it traverses expressions, replacing obligation expressions with calls
to wrap.

LEMMA 6.8.E = Ep,

PROOF This proof establishes that the reduction sequenceg for
and forEg, proceed in lockstep. First it shows that the evaluation
contexts for any term and its compiled counterpart match and then
it shows that each possible reductionfris mirrored inEgy.

Except for obligations, the compiler does not change programs.
Therefore, except for obligation expressions, a program and the
compiled version of the program decompose into an instruction and
a context identically. For obligation expressions, the compiler pro-
duces an application expression. From the definition of evaluation
contexts for applications and for obligation expressions, we know
that the obligation expressions and the compiled versions of obli-
gation expressions also decompose in parallel. Accordingly, for the
purposes of the proof we exteri as follows:

Ce(0)=0

C:p—p

C(d ---e) = Cy(d) ---Cele)

(Cg:d—d

Cg(valrecx : e =e) = valrec x : Ce(e) = Cele)
Ce: e —e

Ce(A x. e) = A x. Cele)
Ce(e1°2'P1") = Wrap Ce(ez) Celer) "p" "n"
Cele1 e2) = Celer) Celez)

Ce(x) = x

Ce(n)=n

Ce(e1 aop e2) = Ce(er) aop Celez)
Ce(e1 rop e2) = Ce(er) rop Ce(ez)
Celer :: €2) = Celen) = Cele2)
Ce(D =11

Ce(hd(e)) = hd(Ce(e))

Ce(t(e)) = t(Cele))

Ce(mt(e)) = mt(Ce(e))

Ce(if e1 then ey elseesz) = if Ce(e1) then Ce(ey) elseCe(es)
Ce(true) = true

Ce(false) = false

Ce(str) = str

Ce(er — e2) = Ce(e1) — Cele2)
Ce(flatp(e)) = flatp(Ce(e))
Ce(pred(e)) = pred(Ce(e))
Ce(dom(e)) = dom(Ce(e))
Ce(rng(e)) = mg(Ce(e))
Ce(blame(e)) = blame(Ce(e))

Figure 15. Contract Compiler

so thatC(P[e]) = C(P)[C(e)].

Since the compiler does not change any expressions except obliga-

tions, we merely need to show that if an obligation expression is counterpart does. There are two cases. First, consider obligation

the instruction it reduces to the same expression that its compiledexpressions whose exponent is a flat contract:

((((Act. (((wrap (contract ceV2)) if flatp (contract CgiNVp)
AX)’\ CeV1) then if (pred (contract CeiVa))
o "p) o)
if flatp ct " then cevV1)
then if (pred ct) x else error "p"
then x (An. else let d = dom (contract CgV2)
else error p if flatp (contract Ce(Vp) r =rng (contract CgMVo)
else let d f dom ct then if (pred (contract CeV2)) Ay.
ro=rngct V1) (((wrap) (GeNVy) ((((wrap d) y)
Ay. elV1 ")
(((wrap r) (x ((((Wwap d) y) then ceivy) “0')))
n) el se error "p" "oty
p))) else let d = dom (contract CgV2) "
)p) r =rng (contract CgVa)
n
. Ay.
(contract coiVa)) (((W@D 1) (GeN) ((((Wap) y)
. f?Nlb n) if true
" p) "p"))) then if (pred (contract CgMVa))
") oM
e " then cV1)
else error "p"
else let d = dom (contract CgV2)
(((Ax. r =rng (contract CgV2)
Ap. N Ay.
An. « b (((wrap r) (V) ((((Wwap d) ¥)
|ft:1lat?f(cont;act C?sz)t if flatp (contract CeiVa) pn);)
en if (pred (contract GeVp)) then if (pred (contract CeVa)) o)
X
then x CeV1) n”
el'se error p then ceV1)
else let d = dom (contract CGeV2) el se error p
r = rng (contract CeMVo) else let d = dom (contract CgV2) if (pred (contract ceNa))
Ay. r =rng (contract CeMp) v
(((wrap r) (x ((((wap d) y) Ay celft/
. th ‘
n) (((Wap 1) (cevy) ((((Wap d)) on M)
")) n) else error "p
p) P)))
n p)
GeV1) n) if CeV2) CeV1)
"p") "p") then GeV1)
n o else error "p"
Figure 16. Flat Reductions
contract(Vs),p,n —
ppygontract(va).p.ny = C(P)[Wrap (Ce(V1) — Ce(V2)) (A x. Ce(e)) "p" ™n"]

1, plif V(Vy) then V; elseblame("p")] and

C(P[)\ y. (()\ X. e) yvlv"p","n")vzl"n"lllpn])

The compiled versions of those two programs are
P prog = C(P)[A y. wrap (Ce(V2))

c(ppveontract(va).p.my, (A x. Cele)) (Wrap (Ce(Ve)) y "n" "p")
= C(P)[wrap contract(Ce(V2)) Ce(V1) "p" "n"] "p"]
"n"
and

and the first compiled expression above reduces to the second, as

C(P[if Vo(V1) then Vy elseblame("p")]) shown in figure 17. Therefor®& = £5,. O

= C(P)[if Ce(V2)(Ce(V1)) then Ce(V1) elseblame("p™)]

and the first compiled expressions above reduces to the second, asEMMA 6.9. Eqy = Egy
shown in figure 16. 5 o
) _ o ~ Proor Intuitively, the difference betweeA™ and— is that the
Second, conS|de_r the _result of reducing a.n obligation eXpressions hoc o o ionsin ™, are split into two steps f fw a” andan
whose exponent is a higher-order contract: o wrap) o
Vi Voo application, where the— reduction may come much earlier in the
P[(A x. e) V1 2:p.11)

- reduction sequence than the application.
L Py (A x. e) y V"R "N V2," ", "p)

This proof formalizes that intuition via a simulation relation X
The compiled versions of these two programs are betweenEg, and Ex,, defined in figure 18. It related™: reduced
C(P[(A x. e)Vl — V2*p’“]) programs that have taken the first half of% reduction with their

((((Act. (((wap (GeM1) ~ GeM2)) let d = dom(GeV1) ~ GelV2)
Ax. (Ax. r=rng (GN1) - GM2)
Ap. Cel)) Ay.
"”_- "p") (((wrap r) ((Ax.
if flatp ct . Cele)
thenlftﬁzrne: ct) x (((Sf;m d) y)
el se blane p if fal se "p")))
else let d = domct then if (pred (CeV1) — CeMN2)) "p")
\ r =rng ct (rx. e
y.
(((Wap 1) (x ((((wap o) y) cete)
n) then Ax.
p))) | y Ce(e/”) let d = V1)
el se blame "p
n;j) else let d = dom (GN1) ~ CelV2) A TN (M) - GelV2)
(GeN1) - GeV2)) =g (GeVi) — GelV2)) (O
(A x. o Ay, Cele))
Cel® (((wrap r) ((Ax. —
") o) (((E:E)ap d) y)
“n" ((((wrap d) y) "p")))
) "p")
(O, o) p"))) "o
Ap. e
An.
if flatp (GMN) - GV2)
then if (pred (GN1) - GMN2)) let d = GV)
X if flatp (GeV1) ~ CeM2) r= CelV2)
then x then if (pred (CGeN1) ~ GeV2)) Ay.
el se blane p (Ax. (((wrap r) ((Ax.
else let d = dom (G ~ CGeMV2) Cele) Cele)
r=rng (GV1) - GlV2) then Ax. ((((wrap d) y)
Ay L Cele) "n")
(((wrap r) (x ((((wap d) y) el se blanme "p” ")
n) else let d = dom (GNV1) ~ GelV2) p)
0 m)) r=r1ng (GN) - GMN2) "
n) Ay. -
(Ax. (((wap r) ((Ax.
Cele)) Ceh
“py ((((wrap d) vy) Ay
e "n") (((wrap GeV2)
"p"))) ((Ax.
"p") Cele)
e 7
(Orp. ((((wrap Vi)
An.)
it flatp (CeM) ~ ColV2) ..p..");)
then if (pred (GeNV1) - CeV2) (An. “p")
(Ax. if flatp (GeMy) - CGelV2) "
Cele) then if (pred (GeM1) - CGeV2)
then Ax. (Ax.
Cele) Cele)
el se blame p then Ax.
else let d = dom (GNV1) - GeV2) Cele)
r=rng (GMN) - CM) el se bl ame "p"
Ay. else let d = dom (GNV1) -~ CeMN2)
(((wrap r) ((Ax. r=rng (GN) - GN2)
Cele) Ay.
((((wap d)) (((wrap r) ((Ax.
n) Cele)
) ((((wrap d) y)
p) n)
n “p)))
o) 5)
e 0
e

Figure 17. Higher-Order Reductions

LR counterparts. The first clause establishes the connection be-In addition, we define a notion of strict simulation, written< p/

16 reduction has occurred and their If One of these conditions holds:

tween sub-terms where the—

L fh
counterparts in the— world. e p andp are both values or errors apd~ p/, or

vilVar—Va)pn) vy xV20p)Va.pon

2%y~ e/le’z,x,y if e1 ~ ¢} andey ~ ¢,
valrecx:ep=e--- ~ valrecx:ej=¢, - ifer~e) - ea~ie, -,
e ¢ ande ~ ¢
Ax.e ~ Ax.¢ if e ~é
(ere) ~ () ¢€y) if e1 ~ ¢} andey ~ ¢,
n ~ n
(eraoper) ~ (¢} aop €)) if e1 ~ ¢} andey ~ ¢,
(exrope) ~ (ejropey) if e1 ~ ¢} andey ~ ¢}
(eg = 62[]) ~ (e ey if e1 ~ €] andey ~ ¢},
hd(e) ~ hd(€) if e ~¢
te) ~ t(€) if e ~¢
if e1 ~ ife if e1~éj,e2~e,,andes~ef
then ex thene,
elsees elsec)
true ~ true
false ~ false
str ~ str
ep—rex 2~ 6 if e ~ ¢} andey ~ &,
dom(e) ~ dom(¢) if e ~¢
mg(e) ~ mg(€) if e ~ ¢
pred(e) ~ pred(¢) if e ~¢
flatp(e) ~ flaip(¢) if e ~¢
blame(e) ~ blame(€) if e ~ ¢
error(x) ~ error(x)

Figure 18. Simulation betweenEg, and Eg,,

o for valid decompositiong = P[e], p’ = P/[€/], when we ex- Accordingly, by lemma A.1 we know that the complete expressions
tend~ suchthaO ~ O, P ~ P ande ~¢'. reduce to each other in the same manner, and to some expression

) . . ~ that simulatess.
The proof first establishes that all reductions steps match this dia-

gram: Finally, to prove the lemma, we must examine the overall reduction
" sequences by piecing together the above diagram. There are three
ep — €3 situations to consider:
¢ e g e The program runs forever unde?s. Clearly, by the piecing
1 3 together the above diagram many times, the same program
First we consider the reductions in figure 6. Each of them preserves runs forever undes™s.
the simulation relation, so we know theg ~ ¢, whereé, is the
term resulting by taking a single stepﬁﬁva frome}. By lemmaA.1 e The program reduces to an error unee. From the defini-
we know that there exists, to satisfy the above diagram. tion of the~ relation, we can see that the program must also

f
, reduce to the same error undéeb.
The only other reduction to considerds — es. In this case, we

have: e The program reduces to a value unddk. If the value is
o1 = Pl[(VVZ — V3,p,n Va)l not a procedure, we know that the program must reduce to the
= 1 _ .
same value underf&, by the definition of~ . If the value is
and a procedure, it might reduce to a different procedure, but the
es = Pi[(V1 Vyz’n’p)V&P'“] definitions ofEg, and‘Eg, identify any procedure values, and

thus produce the same result.
By the definition of~", €] must either be:

d d
P’:L[(V& Va Va.p.n VZ)] 0
> LEMMA A.1. If e1 ~ eo, then there existeg such thate; < e3 and
P) (v} y 2Py VaPany) o " o

The expression in the hole of the context of the first expression PROOF. If e1 is a value, thery < ey, so takinges = e2 completes
above reduces to the expression in the hole of the second expressiothe proof.

above bym’. The expression in the hole of the second expression

reduces to If e1 is not a value then it must decompose into an evaluation con-

Vo text and an instructiorg; = P1[i]. Along the spine ofP; are some
(Viv, 2 ’p)V3'Pv“) number of higher-order contract obligation values. We proceed by

an inductive argument on the number of these expressions to prove
the lemma.

If there are zero such values, thenmust decompose into an eval-
uation context and an instruction, identicallyeto This follows be-
cause the definition of and the definition of evaluation contexts

and values for™ and -™.. Together these definitions mandate
that the terms are structurally the same. So, we can justetake
€.

If there aren such values, thegp reduces via—% replacing the out-
ermost higher-order contract obligation witthaéxpression. This
new term still simulates; and has one fewer higher-order contract

value. Therefore, we can conclude by induction that there exists
wrap

andes such thaty, — * ez ande; ~ e3. [

