Safe-for-Space Linked Environments

Matthew Flatt
University of Utah
Salt Lake City, USA
mflatt@cs.utah.edu

Abstract

Techniques for implementing a call-by-value A-calculus are
well known, including Reynolds’s definitional interpreter
and techniques that Danvy developed for moving between
reduction rules and abstract machines. Most techniques fo-
cus on ensuring that an implementation produces the same
evaluation result as a model, but time and space properties
are also within reach. Proper tail-call handling falls out of
Reynolds’s approach, for example, but the stronger property
of space safety is less readily available, particularly if worst-
case time complexity matters. In this paper, we explore an
approach to space safety that is realized through the garbage
collector, instead of the interpreter loop, in the hope of find-
ing a convenient implementation technique that matches
the asymptotic time bounds of fast evaluation models and
the asymptotic space bounds of compact evaluation models.
We arrive within a size-of-source factor of achieving those
bounds. Our implementation technique is comparable in
complexity to some other interpreter variants; specifically, it
requires some library functions for binary trees, specialized
environment traversals in the garbage collector, and a com-
pilation pass to gather the free variables of each expression
and to rewrite each variable reference to its binding depth.

CCS Concepts: « Software and its engineering — Seman-
tics.

Keywords: definitional interpreters, asymptotic complexity

ACM Reference Format:

Matthew Flatt and Robert Bruce Findler. 2025. Safe-for-Space Linked
Environments. In Proceedings of the Workshop Dedicated to Olivier
Danvy on the Occasion of His 64th Birthday (OLIVIERFEST °25), Oc-
tober 12—18, 2025, Singapore, Singapore. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3759427.3760379

1 Interpreters in Time and Space

Reynolds’s approach to a definitional interpreter [21] pro-
vides a clear roadmap to a language implementer who aims
to build a simple but practical functional language that runs

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

OLIVIERFEST °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2150-2/25/10
https://doi.org/10.1145/3759427.3760379

Robert Bruce Findler
Northwestern University
Evanston, IL, USA
robby@cs.northwestern.edu

O(Sstack)

O(Se)
O(IStail)

O(Sevlis) O(Slinked)

O(Sfree)
(o5

. O(szsflinkcd)

Figure 1. Space-complexity lattice from Clinger [7], where
Siinkeq 1S described informally there (section 13), while
Sefs-linked 18 our addition that is below Sy and Sy jinreq given
a bound on program-source size.

on conventional hardware. Danvy and collaborators [10, 1,
5,4, 9, 8], as well as others [20, 24, 12, 14], have explored
and generalized the technique, providing implementers with
multiple paths to success, as well as some formal assurance
that an interpreter following the recipe will compute results
that are faithful to a starting model as a specification.

Those guarantees generally concern only the result value,
and not the time or space consumption of an implementa-
tion that produces the value, however. At a minimum, a pro-
grammer following Reynolds’s roadmap must supplement
his eval, apply, and cont functions with memory manage-
ment. Fortunately, a semispace copying collector is simple
to write and fits naturally with the register-oriented loop
of a Reynolds-style interpreter. Even better, a call-by-value
A-calculus implementation will get tail calls right.

Alas, the interpreter might still use more space than a
programmer might reasonably expect. In particular, if a vari-
able x, bound to a value v, is not referenced after a certain
point, then v should not be retained after that point. An in-
terpreter is safe for space if it retains the values of only those
variables that appear in a continuation—or, at least, if its
asymptotic space consumption is consistent with such an
evaluation. Safe for space was first described by Appel [2] and
was formalized by Clinger [7], who defined a lattice of space
complexity shown in Figure 1. The behavior that falls out
of Reynolds’s approach corresponds roughly to S,,;;, which
includes correct handling of tail calls, but not Sy, which is
safe for space. For many practical purposes, S,,; is fine, but

https://doi.org/10.1145/3759427.3760379
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759427.3760379

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

its space leak relative to Sy, can sometimes matter, such as
for applications that use thunks to implement lazy streams.

A Reynolds-style implementation will tend to achieve S,;
but not Sy, because a closure or continuation frame created
by eval retains the full environment at the point where a
A abstraction is encountered or a push frame is created. An
implementation that achieves Sy, must keep environment
entries for only variables that are mentioned in the function
body or pushed expression. The difference is illustrated by a
program that uses

(let ([f (A () (A (y)
(H KM@ M)
((fH A 0)

where retaining y in the closure for (A (z) z) will cause space
use to grow without bound, while a S, implementation will
loop in constant space. A typical Sy, implementation copies
the environment to flatten it into one that contains only
needed variables whenever a closure value is produced or an
argument expression is pushed onto the continuation. That
strategy is simple, but it comes with a new cost: flattening
takes time proportional to the size of the flat environment.

Before we move on to a new approach, we must consider
yet one more wrinkle. Depending on the way that envi-
ronments are represented, a Reynolds-style interpreter may
actually perform better than S,,; and in a way that can be
better than Sy, but that is not consistently better than S.
Specifically, a S,,; variant with linked environments (such
as implemented by a linked list), which we designate S ycq,
can use less space [7 section 13]. With linked environments,
each extension of an environment shares storage with the
extended environment. Linked environments are particu-
larly natural when building on a low-level language, because
allocating to the front of a linked list is a constant-time op-
eration. Implementing Sy, by flattening loses that sharing,
so it potentially increases space usage, after all, compared to
Siinked- The difference is illustrated by a program that uses

(A o (A o) (A () (A (2) (33 - X))

and passes curried arguments up to the function that ac-
cepts y, then calls the function that accepts y N times. The
N (A (2) (x; ... xy)) results are all derived from the same envi-
ronment that has x, through x, so the results will together
use O(N) space with linked environments, but O(N?) space
with flat closures. Overall, Sy, and Sj;.q are both better than
Siails but this example illustrates how Sy is sometimes worse
than Sy .. While the earlier example is a case where Sy, is
better than Sy y.q-

Shao and Appel [23] describe an optimization approach
that starts with Sy but improves sharing. The optimiza-
tion moves an implementation closer to the best of Sy, and
Siinkeds Dut it is not guaranteed. More generally, since sharing
through the optimization is limited to two layers, it cannot
achieve enough sharing to ensure that space consumption
matches Syjpyeq-

Matthew Flatt and Robert Bruce Findler

In this paper, we describe an implementation of the call-by-
value A-calculus that is safe for space and that also preserves
sharing for linked environments. We get close to an imple-
mentation whose asymptotic space and time consumption,
Ssfs-linkeds 18 bounded by both S and Sy .q With linked envi-
ronments.! We do not quite achieve that ideal, because our
strategy in the worst case involves an extra factor on both
time and space that corresponds to a source program’s size.
In practice, programs are relatively small, and the relevant
factor is usually much smaller.

Instead of flattening environments as part of an interpreter
step, which is the way that S is defined, we achieve Sy inked
by viewing space safety as a garbage-collection problem. In
the same way that a scavenging garbage collector refrains
from keeping data that is not reachable structurally, our col-
lector refrains from keeping an environment entry when no
expression paired with the environment refers to the entry’s
variable. The garbage collector may need to traverse the
same environment multiple times when the same environ-
ment is paired with multiple expressions, but the number
of distinct, relevant free-variable sets is bounded by the size
of the program’s source text. Meanwhile, random access
to variables is made logarithmic-time (which we consider
effectively constant) by representing an environment or free-
variable set as a binary tree; each variable is represented and
located in the tree by its binding depth.

We offer the following results:

e an executable abstract-machine model of evaluation
and garbage collection that can be used to define both
space complexity and time complexity; and

e a machine variant whose asymptotic time and space
complexity Sy jinkeq 1S bounded by both Sy and Sj;pyeqs
at least for a bounded program size.

As an evaluation of these results, we offer

e an example implementation in C as the kernel of a tiny
variant of Racket, illustrating that the implementation
is practical at a low level of abstraction; and

e empirical measurements of the step count and heap
size of the model whose curves have the desired shapes.

2 Practical Motivation

A language implementation like Chez Scheme or Racket,
which has an optimizing compiler and a sophisticated run-
time system, can use various techniques to properly imple-
ment tail calls and space safety. The build process for Chez
Scheme and Racket, however, relies on Zuo, which is an ad-
ditional, tiny variant of Racket that is implemented as an
interpreter in C. Our work here is motivated by the question

'We’re repurposing space categories like Sy as characterizing both time
and space. The abstract machines that Clinger uses to define S;,;; and S
have a natural interpretation as time complexities by counting reduction
steps, except that an environment-closing step in Sy, needs to be expanded

to multiple steps. We provide a machine to make that explicit in section 5.

Safe-for-Space Linked Environments

ex=(A(elxl(eel'lit K:u=[]lk:K o:=integer

v ::=(obj o) | {prim lit) ko=<{tm pu=olmt
mu={e,plv tu=arglapp ZXu={o=b ...}

x ::= variable | ret b:={envix, v, p))

| {clos <e, p»>
(let ([x ems]) evoay) = ((A (%) €voay) €rms)

Figure 2. Expressions, continuations, and store

of whether a simple interpreter at the C level of abstraction
can be made safe-for-space in a way that is well-founded and
still simple—analogous to the way that Reynolds’s approach
provides proper tail-call handling for such interpreters.

Simplicity in this context is particularly practical and spe-
cific: Zuo’s kernel is implemented in a single C file with no
header files other than standard C and system headers, and it
needs no libraries other than default C and system libraries.
Zuo can be compiled with a C compiler with no command-
line arguments other than the source file’s path. From there,
Zuo scripts build Chez Scheme and Racket. Maintaining yet
another Scheme implementation for a build system may
sound like overkill, but orchestrating the build of Racket on
top of Chez Scheme—each of which has some C-implemented
portions and complex dependencies on third-party libraries—
has proved challenging. Using Racket itself would be ideal,
but relying on a language to build the same language has
well-known drawbacks. Our modest investment in Zuo has
paid off, as Zuo scripts have successfully replaced more than
10k lines of fragile makefiles and Visual Studio project files
that formerly comprised the Racket build process.

Building Chez Scheme and Racket is the only definite use
of Zuo. To minimize effort and maintenance, Zuo is a text-
book, Reynolds-style interpreter with a semispace collector.
The implementation has been stable and perfectly adequate
for a build system. At the same time, Zuo seems potentially
useful for other purposes, and for a language that is carefully
constructed otherwise, it seems a shame that it doesn’t get
asymptotic space consumption right.

3 Interpreter

Following Clinger [7], we model program evaluation as a
small-step operational semantics, which allows us to clearly
characterize both the time and space needed to evaluate a
program. Clinger’s model includes branching, assignment,
and multiple-argument functions, which we omit here. We
defer branching to primitives, while assignment and multiple-
argument functions are not essential for our purposes.

The leftmost column of Figure 2 shows the expression and
value grammar for our model’s A-calculus variant:

e For an expression e, in addition to function abstrac-
tion, variables, and function application, we include an
unspecified set of primitive values that are written as
quoted literals, 'liz. Primitives include operations like

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

addition and multiplication, which always accept only

primitive arguments but may return bounded, closed

function abstractions to implement control flow (e.g.,

returning (A (x) (A (y) x)) to represent “true”).

A value vis distinct from an expression e. Our model in-

cludes a step to convert a function or literal expression

form to a value. Closures for functions are allocated
and represented by (obj) and primitive values are
represented as (prim lit).

e Aninterpreter mode mis (for now) either an expression
with an environment, (e, p), or a value, v. The (e, p)
mode corresponds to “evaluate” mode in Reynolds’s
interpreter, while v corresponds to “continue” mode.

The middle column of Figure 2 shows the representation
of continuations used by the model. A continuation K is a
list of frames k, where every frame has the same shape: a tag
t paired with a configuration m. The primary continuation
tags are arg and app, which represent a pending argument
expression while a function expression is evaluated, and a
pending application of a function value while an argument
expression is evaluated, respectively. The ret tag will be used
for garbage collection. We grow a continuation K by adding
a k to the front of the list. We do not allocate continuations
or continuation frames, since we do not include an operation
to capture a continuation, but the length of a continuation
does count toward space consumption.

The rightmost column of Figure 2 shows the store:

e A ois an allocated address, represented as a natural.

e An environment p is either the address of an allocated
environment frame, or it is empty: mt.

e A store X maps allocated addresses, o, to records, b.

e An allocated record b is either an environment frame
or a closure, since those are the only two entities that
we need to allocate explicitly. An environment frame
(env (x, v, p)) binds x to v and chains to the rest of the
environment p. A closure (clos (e, p)> pairs the expres-
sion e with its environment p.

These pieces (or, at least, most of them) are assembled in
the interpreter shown in Figure 3. The evaluation rules in the
left-hand side of the figure generally follow Clinger’s model.
The first four rules are the “reduction” or interp steps, while
the last three rules are the continue steps. The right-hand
side of each rule clearly matches the left-hand side of either
an interp rule or a continue rule, so evaluation could be
written as tail calls, as in Reynolds [21]’s presentation.

The rules of Figure 3 are mostly standard:

e [lam] allocates a closure for a function expression,
which updates the store > and moves to continue
mode. The current size of the store X can be used as
the newly allocated address.

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

Matthew Flatt and Robert Bruce Findler

(m K, %) —e (m, K, X"

U () e), p, K, X) —>:obj o), K, 2 [lam]
Y where (o, X') = close[[(A (x)), p, 2] close[e, p,] = <o, X + {o=(clos e, p»)}
E (e €ur). P Ko E) —5 e 3, <Arg Ceums) 1 K. 2> [push] where o7~ ||
<
5 «lit, p), K, X —>¢ (prim lit), K, X) (it lookup[x, 0, 2] = v
where <env (x, v, p») = X(0)
(x, ,D>, KX)—:WK X) [var]
where v = lookup[x, p, X lookup[x, 0, 2] = lookup[x, Gexs 2]
- - pLx P where (env (Xother, Vothers Onext?) = 2(0)
(v, (app (obj o)) :: K, X) —> (e, ,D'>, KX [app])
° where (clos (A (x)), p») = X(0), {p’, ') = bind[x, v, p, Z] bind[x, v, p, X] = (o', Z + {o=env (x, v,)}
E . L where ¢’ = |3
;;_.:‘ Kprim lityy, Capp (prim litg) i+ K,) —> 5 ews, mt), K, T [prim]
S where €. = primcall[litfun, lita]
L Vpun, €Arg (earg,) 12 K, XY —> £ {€args p), <app vm = K, 2 [arg]

Figure 3. Interpreter

o [push] starts evaluation of the function part of an ap-
plication form, moving the argument expression into
the continuation, and stays in interp mode.

e [lit] converts a primitive-literal expression to a primitive-
literal value and moves to continue mode.

e [var] locates a variable’s value in the store and moves
to continue mode. Internally, the lookup metafunction
recurs to follow the environment-linked list to locate
a value for the variable x.

e [app] begins evaluation of an applied function’s body,
binding an argument value through a freshly allocated
environment frame, and then moves to interp mode.

o [prim] applies a primitive function to a primitive value.
The result can be any expression, but it is paired with
the mt environment, so we are assuming that prim-
itives produce only closed terms. For example, the
result might be a quoted literal for an arithmetic re-
sult, a primitive adder that has received its first ar-
gument and needs a second, or a function form such
as (A () (A (y) x) to represent a boolean result. In any
case, we assume that the representation of primitive
values is simple enough to be irrelevant to space and
time consumption. Evaluation moves back to interp
mode to handle the result of the primitive operation.

e [arg] ends evaluation of an applied function expres-
sion, and starts evaluation of the argument expression,
shifting the function value into the continuation and
moving back into the interp state.

The right-hand side of Figure 3 provides helper meta-
functions for the interpreter. Each metafunction is meant to
represent a constant- or O(log n)-time operation. As writ-
ten, lookup suggests an O(n)-time operation, since it walks
through a linked list of environment frames, but we return
to this point and describe a tree-based representation of
environments in section 7.

4 Garbage Collection

Clinger [7] models garbage collection abstractly by the de-
scribing the result heap it must produce. Much other past
work similarly characterizes garbage collection [18, 3], some-
times to prove correctness of an implementation [16, 19,
22]. Here, we take the specification as given and focus on a
specific implementation in terms of small-step reductions.
This choice enables us to measure the concrete state size to
characterize space consumption and to count the number of
steps to characterize time consumption.

To keep the overall interpreter as simple as possible, we
implement a stop-the-world, semispace copying collector [17
section 4.1], and we treat its performance as an upper bound
for any reasonable implementation of garbage collection. We
do not need to worry about bit-level of encodings of objects,
tags, and pointers; a representation of the store as a map
from addresses to records is sufficient.

A reminder of how garbage collection is characterized
in the tricolor model [11, 17 section 2.2]: garbage collection
starts by painting all objects white, and only the objects that
end up black at the end of garbage collection are retained.
During a collection, white objects are ones that have not
yet been found as reachable, objects are reachable with
outgoing references that have not yet been swept, and black
objects are reachable and reference only objects that are
also or black. The garbage collector starts by painting
objects reachable from roots as . It then iterates by se-
lecting a object, painting it black, and painting as
every white object that is immediately referenced by the
newly black object (leaving as or black any immedi-
ately referenced object that is not still white).

In our semispace copying collector, objects are copied from
Zom tO Xy, Obtaining an address o, in X, that may be different
from the original address o, in X5, Objects that are only
in X4, count as being painted white. An object at opom i Zjom

Safe-for-Space Linked Environments

collect

retain-env[mt, A, S]
retain-env[apom A, S]

(mt, A, S)
retain[cpom A, S]

g
n:

{roots <t<e, ppom 3 Kuoo?s K, Zrom, A, Zioy S) —> 6 {{roots Ky, K ++ [{t <€, po)], Zpoms A’ Zi0y ST
where {p,, A’, S") = retain-env[psom A, S]

{roots (t V) =2 Koo, K, Zoms A, Zioy §) —> 6 Croots Ko, K ++ [t V)], Zpom, A', X1, ST
where (v, A, S") = retain-val[[v, A, S]

(roots [0, K, Zpom A, Ziow S) —>c (sweep, K, Zpom A, Zio,)

retain-val[{prim lit), A, S] = (prim lit), A, S)
retain-val[{obj dpom, A, S] = {obj g, A, S
where (g, A, S*) = retain[cpom A, S]

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

= (roots K | sweep
= integer

(& K, Zpiom A, Zio S) —6 <€ Ky Zpoms A, Zioy ST

[root-env]

[root-val]

{pry A", S”') = retain-env[ppom A, S']

[roots-done]

(sweep, K, Zpom A, Zioy Opom 2 S —>6 (sweep, K, Zpom, A", Ty + {or=(env (x, v, p)}, S [sweep-env]
where 6y, = A(Gom), €NV (X, Y, Prom?? = Zgom Opom), (v, A, S*) = retain-val[v, A, S],

(sweep, K, Zgom A, oy Oprom 12 S) —> {sweep, K, Zom, A, Xy + {0=(clos {e, p)}, S [sweep-clos]

where 6, = A(Gfiom), {clos (€, Prom)) = Zpon(Tprom), {Pros A’ S*) = retain-env[ppom A, S]

retain[Gpom A, S] = (0w, A, S)

where 0, = A(Gfiom)

retain[opom A, S] = (0w A + {Opon=0w}, S ++ [Opom
where 0o ¢ dom(A), o, = |A|

Figure 4. Garbage collector

is painted by reserving an address o,, in X,.. An object at
opom is conceptually painted black by ensuring that ¢, has a
copy of the object, and by updating the immediate references
in the copy to also point into X,—which may involve painting
some of those referenced objects by allocating addresses
for them. A low-level implementation of a copying collector
uses some of the space at oo in Zjom to store a corresponding
o, for a object, but our rules instead record forwarding
for gray objects in an “allocation” map, A. Also, a low-level
implementation finds a next gray object by iterating through
Ysom [6], but our evaluation uses a separate “sweep” queue, S.
Figure 4 defines A and S.

Overall, the garbage collector’s state has six components:

e g: The current mode of the collector, which is either
roots for finding initial
ing objects to black. A garbage collection starts in
roots and eventually moves to sweep, and it completes
when sweep is done.

The roots mode has a list of roots yet to process, which
can be represented simply as a continuation K. The
interpreter’s current environment or value as m must

objects, or sweep for sweep-

also count as a root, but our model will shift that com-
ponent into the continuation as a ret frame and then
move it back out afterward, so we only need to con-
sider a K as the roots of a garbage collection.
The sweep mode will continue as long as the S queue
of gray objects is non-empty.

e K:Reconstructed roots (i.e continuation frames), which
have store references changed from oj,n to o

This component starts out as the empty continuation.
As roots mode processes each continuation frame, it
accumulates an updated frame. After sweep mode, the
K component changes no further, and it can be used
directly at the end of sweep mode to resume evaluation.
Ysom: The store from before garbage collection starts.
This component does not change, and it is consulted
to find the content of a object as it is copied into
X, to paint it black.

A: The forwarding map from j,, addresses to %, ad-
dresses. This component changes each time an object
goes from white to . Although adding to A con-
ceptually corresponds to allocating in X,, our model
defers updating ¥, until the corresponding object is
copied in transition from to black.

X.. An accumulating store to use after garbage collec-
tion completes. This new store contains an entry for
each object that has been painted black, and it changes
asa object is swept to paint it black.

S: A queue of objects yet to be painted black. The
queue contains addresses in Xj,, so that an object’s
content can be copied to X, at an address previously
recorded in A. Every address in S represents a unique
object, since an object is painted at most once.
Garbage collection competes when § is empty.

Figure 4 shows the garbage-collection rules. Aside from
the transition rule [roots-done], there are two roots rules and
two sweep rules, because we have two kinds of allocated
objects. The retain-env metafunction must ignore mt, and

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

retain-val must similarly ignore primitive literals, otherwise
they both defer to retain. The retain function checks whether
the given address is already allocated, returning the new
address if so. Otherwise it allocates an address for the object
and paints it by adding to both A and s.

Since allocated objects have a fixed immediate size, each
step in the garbage collector can be straightforwardly imple-
mented as a constant-time operation. Each root is processed
once by a roots rule, and each reachable object is processed
once by a sweep rule, so the total time is limited by the contin-
uation length plus the store size. The use of S as a queue jus-
tifies its low-level implementation as a pointer that advances
through newly allocated addresses o, within X,. In that case,
each record at oy, in %, must be copied eagerly into %,
by retain, so that the content is available for [sweep-rule] or
[sweep-clos] using only o,,; we leave that adjustment as an
exercise for the reader.

Figure 5 combines the interpreter and garbage-collector
rules. On each interpreter step, a counter is decremented,
and when the counter reaches -1, the reduction rule switches
to garbage-collection mode. In garbage-collection mode, the
counter increments with each step. The counter value at the
end of a garbage collection becomes the fuel for the next
evaluation phase, which means that garbage collection does
not change a program’s asymptotic time complexity: garbage-
collection work can be charged to a matching evaluation step,
so the number of steps is at most doubled. Meanwhile, each
allocation during evaluation costs a step, so space complexity
Siail s defined by Clinger is also preserved: the store can
grow to no more than twice as large as constantly performing
a zero-cost abstract garbage collection.

Since environments are explicitly linked in our represen-
tation, asymptotic space complexity is actually better than
O(Stai), and we call it O(Sjipreq)- The example from the in-
troduction illustrates a case where Sj;.q is better than S,;.
Here is the example again, written more fully using library
abbreviations that are defined in the appendix:

(let ([D (A (x)) ... (A (e9) (A (y) (A @) (1. x0)N])
(let ([R (D '1) ... "N)])
(((foldn 'N) (A (a) ((cons a) (R '0)))) empty)))
The closure for R will have an environment with N variables,
and the result of calling R will be a fresh closure that extends
that environment. If the environment is duplicated for every
closure, as implicitly in the S,;’s model [7], then the N-
element list constructed by the fold will use O(N?) space.
When the same allocated environment for R is used for every
result of R, then the list will use O(N) space.

5 Safe-for-Space Evaluation

The interpreter defined by Figure 5 benefits from using linked
closures, but it is not safe for space. The [lam] rule in Figure 3
keeps the full environment p in the newly allocated closure,
and the [arg] rule in Figure 3 keeps the full environment p in

Matthew Flatt and Robert Bruce Findler

the newly allocated arg continuation frame. A typical strat-
egy for space safety is to flatten an environment to keep only
the free variables of an expression when the environment is
paired with the expression.

Figure 6 provides replacement [lam] and [arg] rules to
flatten environments. Flattening cannot be performed in a
single step, because it can involve an arbitrary number of
free variables. Evaluation by other rules is therefore paused
by wrapping the current expression with flat, combining it
with a set of variables that starts out as the expression’s free
variables. We assume that free variables have been computed
once before evaluation starts, and the free-vars metafunction
looks up the free variables of a particular expression.

In addition to the original expression and a set of variables,
the flat state (added to m at the top of Figure 6) includes two
environments: one that starts out as the relevant portion
of the original environment and shrinks as variables are
processed, and another that starts as the empty environment
and accumulates new bindings as variables are processed. At
each step, the skip-to metafunction jumps to the remaining
portion of the relevant environment based on the remaining
variables to process. The [lam] and [arg] rules use skip-to to
find p,.., which is the relevant portion of the original p. The
[arg] rule starts flattening for the argument expression to
eventually move it into the continuation, but the function
expression’s evaluation (which happens before the argument
expression’s evaluation), will continue to use the current p,
so it it saved in a ret continuation frame.

Overall, this handling of flat mode is implemented by three
new reduction rules:

o The [flat] rule peels off one variable from the set that
started out as all free variables. It finds the value of
that variable in the remaining relevant portion of the
original p, and it creates a new environment frame to
accumulate onto py.. It also advances p to p,.. based on
the remaining variables to process.

o The [flat-lam] rule recognizes when bindings for all free
variables have been copied for a function expression,
and it allocates the closure with the flattened py,.

o The [flat-push] rule similarly recognizes when bindings
for all free variables have been copied for an argument
expression. It creates an arg continuation frame using
the flattened py,, and then it shifts evauation back to
the saved function expression with its saved original
environment, p.

Reducing the pin a flat form while also reducing the set of
variables is not strictly necessary. In the case of a flat form
created by [arg], the original pis retained in a ret continuation
frame, anyway. In the case of a flat form created by [lam],
the original p would be kept only a little while longer as pg,
is built up. We nevertheless use skip-to to reduce p in flat
because it sets up an idea for our next interpreter. Like the
lookup metafunction of Figure 3, skip-to is shown in terms of

Safe-for-Space Linked Environments

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

config ::=<eval, n, m, K, X)
I{gc,n g K X AZS

‘ config —> config’ ‘

(eval, n, m, K, X)) —> <eval, n-1, m’, K, X°) [eval]

where n=0,(m K,~) —: (m K, X"

(eval, -1, m, K, X) —> {(gc, 0, {roots {ret m) = K), [], 2, @, @, [[) [start-gc]

(ge, n, 8 K, Zpom A, Zioy S) —> (gc, n+1, g, K, Zjom, A, 21y ST [ge]
where (g, K, Zpom A, Zi, S) —>6 (g’ Ky Zfoms A, Zioy ST

{(gc, ng., sweep, (ret m) :: K, Zpom, A, i, [1) —> (eval, ng, m, K, X, [end-gc]

Figure 5. Combined interpreter and garbage collector

m:=...|(flat e, {x, ..}, p, p»)
(m K, X) —e(m K, X"

° i KA (x)), p, K, Z) —> e (flat (A (%) €), {Xfiees -} Piives M), K, X [lam]
§ where { X, ...} = free-vars[(A (x) €)], pie = skip-to[p, {Xpees ...}, Z]
Tg L(€un €arg)s P2, K, 2> —> & (Lflat {(€fun €arg)s {Xfrees -}, Plives ML), ret {epum, p)) :: K, X) [push]

L where { X, ...} = free-vars[[ea], pive = skip-to[p, {Xpee ...}, Z]

B (flat <e, {X, Xiests .- 1s Py Py K, 2> —> e (flat <&, {Xrests -} Prews PO K, 27 [flat]
° where v = lookup[[x, p, X, {p’, Z*) = bind[x, v, ppats X], Prext = skip-to[[p, {Xvests ...}, Z]
=
'é (flat (A (%) e), @, mt, ppa), K,) —> (obj o), K, Z7) [flat-lam]
g where (g,) = close[(A (x) e), ppas]

(flat {(efun €ars), D, Mt, pad), <ret (um P it K, XY —> & {Lepun p), (arg ag ppa> : K, X [flat-push]

skip-to[mt, @, 2] = mt

skip-to[[o, {Xiie, ..}, Z] = 0 where {env (x, V, puex)) = 2(0), X € {Xiives ...}
skip-to[[o, {Xie, ...}, X] = skip-to[puee, {Xises ...}, X] Where {env {x, v, prex?) = 2(0), X & {Xiiver ...}

Figure 6. Space safety by environment flattening, replaces first two rules of Figure 3 and adds three rules

collect

(roots (t(flat <e, {x, ...}, p, pra’?) :: KD, Kitones Zjoms A, Zioy S» —>c ({roots K), Kuone ++ [t (flat <e, {x; ...}, P, pa)]s Zppoms A" Zioy S”) [root-flat]
where (p’, A", S") = retain-env[p, A, S], {pps A", S”) = retain-env[pp., A, S']

Figure 7. Rule to extend Figure 4 for flat

a linked list, so it can take time proportional to the number
of bindings in the original p. Later, we will show a binary-
tree representation that allows skip-to to work in logarithmic
time.

In case the garbage collector is triggered during flat mode,
the rule in Figure 7 adds support for processing a flat form
as a root. At this point, the garbage collector does not try
to take into account that the p in a flat form (as opposed to
pra) May retain more bindings than will be needed. The idea
that it could take the scheduled set of variables into account
leads us to an alternative implementation of space safety in
section 6.

The new evaluator rules, when combined with the aug-
mented garbage-collection rules as in Figure 5, improve the
space performance of some programs. The example from the
introduction,

(let ([f (A () (A (y)
((FH (A @ 2]
((FH (A (0)

uses unbounded space with the evaluation rules of Figure 3,
because the closure formed for (A (z) z) will capture the argu-
ment y, which is bound to the closure formed the previous
time around, and so on. The new rules in Figure 6 form the
closure for (A (z) z) with an empty environment, since (A (z) z)

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

has no free variables, and so the example runs in bounded
space.

The example at the end of section 4, however, is back
to O(N?) space instead of the O(N) space used by linked
closures. With flattening, each time that R is called, a closure
is formed for (A (z) (x; ... xv)), which has N free variables that
are copied out of R’s environment, and keeping N of those
new closures uses O(N?) space. Space performance in this
particular example could be improved by noting that the
closure will capture all variables in the environment except
for y, which was just added; therefore, using the rest of
the environment as referenced by the current environment
would be safe and avoid copying. Leaving out a small number
of other xs from (A (z) (x; ... xy)) could have asymptotically
sufficient sharing by using a tree structure instead of a list
structure for environments. Even that strategy will fail if
the number of omitted x;s is around N/2—at least, if they are
in an interleaved order in the tree relative to preserved xs.
To defeat any strategy that involves ordering carefully, D
could be changed to have multiple possible results from R
that each capture arbitrary subsets of the xs.

The potential space regression of this safe-for-space im-
plementation is mirrored by a time regression. Forming a
closure over N free variables takes O(N) time.? Although
that time could be reduced in some cases by the same strate-
gies that improve sharing, the general case is resistant to
improvement in both space and time.

Overall, the problem with space safety through closure
flattening is that a flattening rule does not have enough
global context about what closures have been created or
could still be created in the future, and so it cannot determine
optimal sharing. Gathering the needed global context is the
job of garbage collection, instead of evaluation.

6 Space Safety with Linked Environments
via Garbage Collection

We can obtain space safety while preserving sharing of envi-
ronments among closures by implementing a form of flatten-
ing in the garbage collector instead of the evaluator. Instead
of flattening to create a fresh environment with only the free
variables of an expression, the garbage collector can prune a
shared environment by dropping bindings for variables that
are not among the free variables of any expression paired
with the environment. Operationally, the garbage collector
can tentatively map a chain of environment frames to a new
chain that omits bindings for so-far unreachable variables. It
can later add back frames if they are discovered to be usable
from some other closure.

ZSimilar to lookup, skip-to as written suggests time proportional to the
size of the source environment, not the copied environment, since it has to
traverse a linked list. We explain a tree alternative in section 7.

Matthew Flatt and Robert Bruce Findler

For example, suppose that a garbage collection starts with
a store that contains a set of closures that share a set of
environment frames:

(clos (A (d) (w z)),) <{clos {(A (d) (W y) 2)), @ <clos (A (d) y), e

(env (w, v,,, @) >{env (x, vy, @) >(env (y, v, @) >{env (z, v,, mt))

When the first closure is found reachable, then sweeping
will follow the environment reference knowing that only w
and z are used by the closure’s expression:

(clos {(\ (d) (w 2)). & <{clos (O (d) ((wy) z)), o) <(clos (A (d) y), o
w, z}

3 {env G, W, o)) emv (y, ¥,) >(env (z, v, mit))

When sweeping the environment frame for w, since only z is
left, the reference to the next frame is updated to skip over
the variables that are unused, so far:

(clos (A (d) (w 2)), @ <{clos (A (d) ((wy) z), 00 <{clos (A (d) y), o»
W, z}

Wenv (w, Viy, @) €NV {5, B, 0)) {env (Y, Wy, O)) lenv (z, v, mt))

When the second closure is found reachable, sweeping will
again consider the first environment frame, but this time with
w, y, and z. Since y is relevant after all, the first environment’s
frame is adjusted again so that it only skips x:

(clos (A (d) (w 2)), o“>/ <czlos (A (d) (wy) 2)), @ <clos (D (d) y), o

£<env W, v,) (env (X, %, o)) slenv ly, v,, &) >(env (z, v,, mt))

"
When the third closure is found reachable, sweeping consid-
ers the third environment frame with just y. Although z is
not in the relevant set for sweeping, the environment frame
for z has already been found reachable, so it is kept:

@m@@gﬂﬁﬁgﬁﬂﬂﬁmm@mmmmw

£<env (W, vy,) (v $55, W,) lenv ly, vy, @) >(env (z, v, mt))

g

After garbage collection completes, the unreached frame for
x can be discarded:

(clos (A (d) (w z)),) <{clos (A (d) (W y) 2)), @ <clos (A (d) y), e

{env<w, v,,, @) (env (y, v, @) >env (z, v;, mt))

Unlike flattened closures, the first closure with free variables
w and z still has y in its environment—but that doesn’t create
a space leak, because y is needed for the second and third
closures. Meanwhile, the first two closures usefully share
the environment chain that has both w and z, instead of
duplicating that combination.

For the garbage collector to take into account free vari-
ables when sweeping environments, the sweep queue S will
need to keep a set of variables with each address to sweep.
As shown at the top of Figure 8, we adjust S to be a queue of
tuples, instead of a queue of plain addresses. Along similar
lines, we must no longer skip sweeping of an environment
merely because it has been reached before, but only when it

Safe-for-Space Linked Environments OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

Su=[]1<a, {x,..}) == S

A:={o=(o, L), ...} mtvp=p
L:a={{x ..}, ..}

ovp =0

kept-skip-to[mt, @, X, A] = (mt, mt, mt)

kept-skip-to[o, {Xiue, ...}, Z, A] = <o, mt, o)

where <{env {x, v, puex)) = 2(0), X € {Xijves ...}

kept-skip-to[o, {Xiue, ...}, Z, A] = kept-skip-to[puext, {Xier ...}, 2, A]

where o € dom(A), <env {x, v, Puex)) = 2(0), X & {Xiives ...}

kept-skip-to[o, {Xine, ...}, 2, A] = G, Pprev V O, Plive?

where o € dom(A), <env {x, ¥, Puex)) = 2(0), X & {Xiives ---}» {Prepts Pprevs Piives = kept-skip-to[puexss {Xiives -}, 2y Al

retain-skip-env[mt, &, Xom A, X, S] = (mt,mt, A, 2, S)

retain-skip-env[opom D, Zpom A, Zis ST = {Prepr-ts Mt, A, Xy, S)

where {Piept-fioms Pprers M) = kept-skip-to[pom D, Zpoms Al Prept-to = A(Pkept-from)

retain-skip-env[o, {x, ...}, Zpom A, Zio, ST = {Okepttos Ttive-toy A’y oy S7)

where {Giept-fioms Pprevs Ttive-from? = kept-skip-to[a, {x, ...}, Zpom Al {Otiveros A’ S = retain-for[Gue-from: 1%, ...}, A, S,
Zio = refine[Pprews Olive-tor A’y Ziolls Okeptto = A (Ckept-from)

retain-for[ajom {x, ...}, A, S] = {ow, A, S)

where <y, L) = A(Gpom), {X, ...} €L

retain-for[ajom {% ...}, A, S] = (G A + {Gpon=(0i0s LU {{x, ..})}, S ++ [(Tppoms {%, .. D]
where (0, L) = A(Gpom)

retain-for[opom {X, ...}, A, S] = (G0, A + {Tpon={T10, {{% ...})}, S ++ [{Tproms {%, ... DD
where 0jn ¢ dom(A), o;, = |A]

refine[mt, 0., A, X] 2
refine[Gpres-prom 0w, A, 2] = X where A(Gprerfron) € dom(X)
refine[Gyres from O A, L1 = Z + {Gprevic=(enV (X, v, 0100)} Where Oprevto = A(Gprev-from)s €NV (X, ¥, p)) = 3G prevto)

& K, Zjoms A, iy S) —>6 {g K Zpoms A’ Zioy ST

roots (t<e, prom i Kioo’s K, Zfioms A, Zioy S) —>6 {{roots Kooy, K ++ [t L€, p)], Zpoms A', Zioy ST
where {x, ...} = free-vars[e],
{Prept-tor Prov A’y Zioy 87> = retain-skip-env[ppom {x, ...}, Zpom A, Tt S]

(roots <t v) :: Ko, K, Zpom A, Zioy S) —> 6 {{roots Ko, K ++ [t V)], Zjoms A, 2o ST [root-val]
where (v, A’, ") = retain-val[v, A, S]

(roots [, K, Zpom A, Zio, SY —>c(sweep, K, Zpom A, o, S)

[root-env]

[roots-done]

(sweep, K, Zpom Ay Zioy {Cproms { Xiives .- 3> 12 Sy —>c {sweep, K, Zpoms A, Zi, ST
where 0, = A(Gfiom), €NV (X, Y, Prrom?) = Zgom(Tprom), V', Ay, S = retain-val[v, A, ST,
{Xnexts oo = { Xiives - 3 \{X},
{Prept-tos Pros A’y Zioy S7 = retain-skip-env{[ppoms {Xnexts -3 Zfioms Avs Ztos Sulls
i = T+ {oi=env (x, V', Preprio?)}

[sweep-env]

collect

(sweep, K, Zgom, A, Zioy {Ofrom, @) 3 S) —>c (sweep, K, Zpom, A, Zio + {017=(clos e, p))}, S') [sweep-clos]
where 0, = A(Gfom), {clOs (€, Ppom)> = Zgom(Tprom), {X, ...} = free-vars[e],
{Preptios Prov A’y Tty S7) = retain-skip-env[ppoms {%, - }> Zpoms A, Zioy S

Figure 8. Space safety via garbage collection

has been reached with enough free variables. We therefore
update A as at the top of Figure 8 so that it maps a o, to
a tuple with o, and sets of variable sets. We use L to rep-
resent such a set of sets. As a convenience, we continue to
sometimes match A(op..) to o, instead of a tuple, which is a
shorthand for matching a tuple whose first component is g,

It may seem natural to keep a single set of variables for
each oy, in A, because we do not need to resweep oy, for a
set of variables if it has already been reached with a larger set
of variables. On this point, however, we run into a limitation
of sets as a data structure. Checking for a subset would take
O(N) time for a candidate subset of size N, but we need
an operation that is at worst O(log N) time. Fortunately, the

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

relevant sets will all be tails of free-variable sets, and the free-
variable sets of a program can be gathered and enumerated as
part of a compilation pass before the program runs. Checking
for a set in a set of sets will therefore reduce to checking for
a number in a set of numbers, which takes O(log N) time
with a binary-tree representation.

To handle the new variants of A and S, we need replace-
ments for skip-to, retain-env, and retain. The new metafunc-
tions are shown in Figure 8:

® kept-skip-to is like skip-to, but it returns three environ-
ments: peps Pprew and py.. The py, environment is the
same one that skip-to returns. The p;., result can be the
same as pj., Or it can be an environment seen along the
way that has already been determined as reachable,
so it should be kept in the overall environment chain.
The p,., result is a store address when p,,,, and p;,. are
different addresses, in which case it is an environment
frame (either py, or a later frame) just before p;,. that
may need updating to refer to py.; the refine helper
performs that update.

e retain-skip-env replaces retain-env. Instead of keeping
all frames in an environment like retain-env does, it
uses kept-skip-to to determine the earliest (in the chain)
environment frame to keep as well as the next frame
relevant for a set of variables.

o retain-for is like retain, but used by retain-skip-env. It
accepts a set of variables in addition to an address oy
Like retain, it adds to A and S when an address has not
been allocated before, but retain-for also updates A and
enqueues to Sin the case that ,, has been allocated but
the set of variables was not previously encountered
with Ofrom

o refine is used by retain-skip-env to update an already
copied environment frame. It has no effect if p,., as
matched in retain-skip-env is mt or if it is an address
that has not yet been copied (due to the order that the
collector happens to visit allocated objects). If p,.., is
copied later, that copy will incorporate p;, as kept in
the first place.

The updated reduction rules in Figure 8 are essentially
the same as the ones in Figure 4, but using free-vars and the
new A, S, and metafunctions. When a closure is swept, the
“kept” environment is ignored, and the closure references
the first relevant environment frame directly; this is a minor
optimization that has no consequence for space usage.

The combination of the original interpreter and this garbage
collector is safe for space, because an environment frame
is never retained unless the frame’s variable appears in a
closure or continuation frame that references the environ-
ment. The example from section 5 runs forever in constant
space. At the same time, all environment linking is preserved,
since a frame is allocated and added to A at most once. The
example from section 4 runs in O(N) space, not O(N?) space.

Matthew Flatt and Robert Bruce Findler

In the garbage-collection steps, A needs to store not just
a forwarding address, but also a set of sets. The number of
sets is bounded for a particular program, like the examples
in section 4 and section 5, but it is not a priori bounded for
all programs. In the worst case, the number of different sets
associated with a a5., in A is proportional to the original
program’s size, M. Along the same lines, a oj;,» can appear
multiple times in the queue S with different variable sets, so
S could be a factor of M larger in the worst case. Thus the as-
ymptotic complexity of space safety of this implementation,
O(Sifs-tinked)> 18 not dominated by O(S,g,) or O(Sjireq); We can
construct a program that is large and uncooperative enough
s0 that S jinkeq €XCeeds Sy OF Sjinreq Dy an arbitrarily large
constant factor. We can only do that, however, by allowing
the program itself to be arbitrarily large.

Time complexity similarly may depend on the program
size. The number of steps taken by a garbage collection can
be larger than for the a non-safe-for-space collector, because
an environment can be swept multiple times. This longer
time translates into a higher fuel that is given to evaluation
mode. More fuel for evaluation implies a higher peak for
memory use before a garbage collection is triggered. Thus,
the safe-for-space collector not only needs extra memory
during the collection phase to store A and §, but it can incur
a similarly larger space complexity even when considering
only the evaluator’s allocation. These effects do not spiral
out of control, however, because the extra time and space
factor is based on live data and sharing at the point where
a garbage collection starts, not based on on the total size of
the store when a collection starts.

7 Environments as Trees

Environments in our model are allocated as linked lists.
Searching a linked list for lookup or kept-skip-to would take
time proportional to the length of the list—but for character-
izing time complexity of evaluation, we have been assuming
that metafunctions take effectively constant time.

Using a balanced-tree representation instead of a linked
list can support O(log N) access time. We count that as effec-
tively constant, since the number of bindings N is bounded
on realistic hardware. In particular, if each variable is re-
placed with an integer that represents its binding depth, then
a simple binary-tree representation supports efficient access
and update. Some sharing will be lost in a tree representation,
either through rebalancing or just through reconstruction of
a spine to add or update and entry, but for many functional
tree implementations, most sharing is preserved for individ-
ual operations. On a large enough tree, the asymptotic space
complexity of a balance tree can match that of linked lists.

Concretely, consider the representation

tree ::= empty
lv
| (branch n, tree, tree)

Safe-for-Space Linked Environments

where all values are placed in leaves, the n in a branch con-
structor indicates that the left subtree has 2" values, and
a subtree with no values is always represented by empty.
This representation straightforwardly supports functional,
single-element access, addition, update, and removal oper-
ations in O(log N) time. The same representation can be
used for environments, variable sets (where membership in
the set is represented by an arbitrary value at a leaf), and
sets of variable sets (assuming that each relevant variable
set is mapped to a unique index). Furthermore, the shape of
the tree for a set of variables will match the shape of a tree
for environments, which simplifies the operation of finding
environment entries relevant for a set of variables.

Iterating through environment entries as in [sweep-env],
retain-for, Or retain-skip-env is not as convenient in a model
as linked lists. That iteration is convenient using recursion,
and recursive calls will nest only up to log N depth. We take
advantage of that limited recursion in our C implementa-
tion of space safety via garbage collection for Zuo. When
traversing an environment tree with a variable set, our imple-
mentation recurs instead of adding to an S-like queue. That
recursion implements a stack-based exploration of en-
vironment objects instead of a queue-based exploration, but
either exploration works; we previously emphasized queue-
like exploration only to accommodate a semispace collector
that represents Sby a pointer in X, and that strategy is easily
combined with a specialized, limited-recursion strategy for
exploring environment trees.

8 Implementation and Sanity Checks

We have implemented space safety via garbage collection for
Zuo using a translation of section 6 with the tree representa-
tion of section 7.> The implementation was successful in the
sense that garbage-collection and interpreter additions are
only about 150 lines of C code, assuming a set of binary-tree
functions. The implementation remains somewhat unsatis-
fying, however, because it required the addition of a 300-line
compilation pass to convert variables to binding-depth in-
tegers and to gather free-variable sets; Zuo otherwise can
interpret abstract syntax directly, the same as Reynolds’s in-
terpreter or a CEK machine. Also, the binary-tree data struc-
ture required an additional 200 lines of code, and supporting
extra administrative allocation during a garbage collection
required roughly 50 more lines. All together, these additions
increased Zuo’s implementation size by about 10%.
Executable versions of this paper’s models in PLT Re-
dex [13] are available with the Zuo implementation,* and
this paper’s figures are typeset from that executable model.
The model also offers us the opportunity to measure the
space and time complexity for various examples, because we

3 Available as the sfs branch of https:/github.com/mflatt/zuo.
4The model directory in the same repository and branch.

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

| Il | Il | Il | Il

T T ' T ' T T T
300 | Linked (Fig. 3, 4, 5) ° oL
SES by Flattening (Fig. 6, 7) +
1 |SFS by GC (Fig. 8) % ® 1
S 2004+ o -
w
3 [J
@
]
§ [
A~ °
100+ 4
°
“+ . -+
)
ok Hyk H b bk H bk ok f
500 1000 1500 2000

Evaluation Steps (including GC)

Figure 9. First example in introduction, peak memory use

| | | | | |

' | ' | ' |
Linked (Fig. 3, 4, 5) ° t
4000——| SES by Flattening (Fig. 6, 7) + + i
SFS by GC (Fig. 8) % N
+
.§ 3000 4
© +
S 4
& +
S 2000 + -
= + 1
+
1000 + 4
+
+ 7t a9 ®
0 e RR " ® |’ o ’ * |
| ! | ! |
20 40 60

Expression Size

Figure 10. Second example in introduction, peak memory
use

can use Racket to drive Redex and then count the number of
steps and the peak size of the store during the execution.
Figure 9 shows the peak memory consumption for the
first example from the introduction for all three machines,
stopping the machine after different numbers of steps, as
shown along the x-axis. The y-axis shows the maximum heap
size that the computation achieved at those points. The black
dots are the original machine from Figure 3 and Figure 4. The
red pluses are the safe-for-space machine that amends those
figures with the rules in Figure 6 and Figure 7. The green stars

https://github.com/mflatt/zuo

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

| | | | | |

' T ' T ' T
: : +
20000~ Linked (Fig. 3, 4, 5) ® R
. SFS by Flattening (Fig. 6, 7) +
3 T |SFS by GC (Fig. 8) % T
joTy]
=]
£ 15000+ 4
B=
Q
& T + + T
&, +
L —_— —_—
£ 10000 N
& 1 + 1
3
E +
g 5000+ 4
" aned®
1 N PPN 1
+ ® ® ®
&%
b @R | ; | ; |
20 40 60

Expression Size

Figure 11. Second example in introduction, time measured
as interpretation steps

are the safe-for-space machine that uses the garbage collector
to eliminate unused parts of the closures, from Figure 8. The
original machine’s space usage grows without bound, and
both safe-for-space variants use a constant amount of space.

Figure 10 shows the peak memory use for the second exam-
ple from the introduction as N grows. The original machine
and the garbage collection-based safe-for-space machine use
about the same amount of space, but the flattening-based
safe-for-space machine takes asymptotically more space.

Figure 11 shows the number of steps needed to evalu-
ate the second example from the introduction as N grows.
These times are step counts that include both evaluation
and garbage-collection steps. The original machine and the
garbage collection-based safe-for-space machine take lin-
ear time. The flattening-based safe-for-space machine takes
asymptotically more time due to its eager copying of envi-
ronments; the curve is easier to discern in Figure 12, which
shows only evaluation steps, omitting the jitter that is cre-
ated by shifting garbage-collection triggers.

9 Future Work

Our models are intended to enable precise reasoning, but we
have not yet attempted any formal proofs of correctness or
asymptotic complexity, and we offer only sketches of argu-
ments here. Formally completing the idea is a clear direction
for future work.

This work was motivated by an implementation context
where the garbage collector can be tightly integrated with
the interpreter and specialized to the interpreter’s repre-
sentations of expressions and free-variable sets. The same
approach could be useful to interpreters that are written in a

Matthew Flatt and Robert Bruce Findler

| Il | Il | Il

' 1 ' 1 ' I
8000 Linked (Fig. 3, 4, 5) o +

8‘ SFS by Flattening (Fig. 6, 7) + +
0 1 | SES by GC (Fig. 8) v " T
g 6000 + -
o
S +
“5 £ £
£ +
% 4000 + -+
w
=1 —+ + —+
g +
g +
= — —
z 2000 +
9] + *®

T + F t.oat"" i

® ®
0—"—'—4* o ® } . | i }
20 40 60

Expression Size

Figure 12. Second example in introduction, evaluation steps
only, without including garbage collection

high-level language, such as Chez Scheme or Racket, which
already has a general-purpose garbage collector. In that case,
the high-level language would need to provide a suitably
general abstraction that is both supported by the garbage
collector and available as a primitive datatype to programs;
such a mechanism for “masked” reachability could be similar
to the way that ephemerons [15] provide a general mech-
anism for “and” reachability. That interface might involve
binary trees and a special pairing constructor, which can be
used to combine a free-variable mask and an environment
map that are each represented by binary trees.

Appendix

true = (A (x) (A (y) x))
false = (A (x) (A (y) y))
sel = (A (q) (A (%) (A (y) (((q x) y) '0))))
pair= (A (2) (A (d) (A (s) ((s) d))))
empty = ((pair false) false)
cons = (A (a) (A (d) ((pair true) ((pair a) d))))
foldn = (A (N)
(A (R)
(A (@
((A(H)
(((fHa)N))
(A (D
(A (@
A (m
(((sel ('zero? n))
(A (d)a)
(A (d)
(((fH) (Ra)) ((minus n) "))

Safe-for-Space Linked Environments

References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and
Jan Midtgaard. A Functional Correspondence Between
Evaluators and Abstract Machines. In Proc. Princi-
ples and Practice of Declarative Programming, 2003.
doi:10.1145/888251.888254

[2] Andrew W. Appel. Compiling with Contin-
uations. Cambridge University Press, 1992.
doi:10.1017/CB0O9780511609619

[3] David F. Bacon, Perry Cheng, and V. T. Rajan. A Uni-
fied Theory of Garbage Collection. In Proc. Object-
Oriented Programming, Systems, Languages and Appli-
cations, 2004. doi:10.1145/1028976.1028982

[4] Malgorzata Biernacka and Olivier Danvy. A Con-
crete Framework for Environment Machines.
Transactions on Computational Logic 9(1), 2007.
doi:10.1145/1297658. 1297664

[5] Dariusz Biernacki and Olivier Danvy. From Interpreter
to Logic Engine by Defunctionalization. In Proc. Logic
Based Program Synthesis and Transformation, 2003.
doi:10.1007/978-3-540-25938-1_13

[6] C. J. Cheney. A Nonrecursive List Compacting Al-
gorithm. Communications of the ACM 12(11), 1970.
doi:10.1145/362790.362798

[7] William D. Clinger. Proper Tail Recursion and Space
Efficiency. In Proc. Programming Language Design and
Implementation, 1998. doi:10.1145/277650.277719

[8] Olivier Danvy. Defunctionalized Interpreters
for Programming Languages. In Proc. Interna-
tional Conference on Functional Programming, 2008.
doi:10.1145/1411204. 1411206

[9] Olivier Danvy and Kevin Millikin. On the Equiv-
alence Between Small-Step and Big-Step Abstract
Machines: a Simple Application of Lightweight Fu-
sion. Information Processing Letters 106(3), 2008.
doi:10.1016/j. ipl. 2007.10.010

[10] Olivier Danvy and Lasse R. Nielsen. Defunctionaliza-
tion at Work. In Proc. Principles and Practice of Declara-
tive Programming, 2001. doi:10.1145/773184.773202

[11] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C.S.
Scholten, and E. F. M. Steffens. On-the-Fly Garbage Col-
lection: An Exercise in Cooperation. Communications
of the ACM 21(11), 1978. doi:10. 1145/359642. 359655

[12] Matthias Felleisen. The Calculi of A-v-CS Conversion:
A Syntactic Theory of Control and State in Imperative
Higher-Order Programming Languages. PhD disserta-
tion, Indiana University, 1987.

[13] Matthias Felleisen, Robert Bruce Findler, and Matthew

Flatt. Semantics Engineering with PLT Redex. MIT
Press, 2009.

OLIVIERFEST ’25, October 12-18, 2025, Singapore, Singapore

[14] Jeremy Gibbons. Continuation-Passing Style, Defunc-
tionalization, Accumulations, and Associativity. The
Art, Science, and Engineering of Programming 6(2), 2022.
doi:10.22152/programming-journal . org/2022/6/7

[15] Barry Hayes. Ephemerons: a New Finalization Mecha-
nism. ACM SIGPLAN Notices 32(10), 1997.

[16] Paul B. Jackson. Verifying a Garbage Collection Al-
gorithm. In Proc. International Conference on Theorem
Proving in Higher Order Logics, 1998.

[17] Richard Jones, Antony Hosking, and Eliot Moss. The
Garbage Collection Handbook: The Art of Automatic
Memory Management. Chapman and Hall/CRC, 2023.

[18] Greg Morrisett, Matthias Felleisen, and Robert Harper.
Abstract Models of Memory Management. In Proc. Func-
tional Programming Languages and Computer Architec-
ture, 1995. doi:10.1145/224164.224182

[19] Magnus O. Myreen. Reusable Verification of a Copying
Collector. In Proc. International Conference on Verified
Software: Theories, Tools, and Experiments, 2010.

[20] Gordon D. Plotkin. Call-by-Name, Call-by-Value and
the A-Calculus. Theoretical Computer Science 1(2), 1975.

[21] John C. Reynolds. Definitional Interpreters for Higher-
Order Programming Languages. In Proc. ACM Annual
Conference, 1972. doi:10.1145/800194 . 805852

[22] Adam Sandberg Ericsson, Magnus O. Myreen, and Jo-
hannes Aman Pohjola. A Verified Generational Garbage
Collector for CakeML. journal of Automated Reasoning
63(2), 2019. doi:10.1007/s10817-018-9487-z

[23] Zhong Shao and Andrew W. Appel. Efficient and
Safe-for-Space Closure Conversion. Transactions on
Programming Languages and Systems 22(1), 2000.
doi:10.1145/345099.345125

[24] Mitchell Wand. From Interpreter to Compiler: a Repre-
sentational Derivation. In Proc. Programs as Data Ob-
jects, 1986. doi:10.1007/3-540-16446-4_17

Received 2025-06-09; accepted 2025-07-31

https://doi.org/10.1145/888251.888254
https://doi.org/10.1017/CBO9780511609619
https://doi.org/10.1145/1028976.1028982
https://doi.org/10.1145/1297658.1297664
https://doi.org/10.1007/978-3-540-25938-1_13
https://doi.org/10.1145/362790.362798
https://doi.org/10.1145/277650.277719
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1016/j.ipl.2007.10.010
https://doi.org/10.1145/773184.773202
https://doi.org/10.1145/359642.359655
https://doi.org/10.22152/programming-journal.org/2022/6/7
https://doi.org/10.1145/224164.224182
https://doi.org/10.1145/800194.805852
https://doi.org/10.1007/s10817-018-9487-z
https://doi.org/10.1145/345099.345125
https://doi.org/10.1007/3-540-16446-4_17

	Abstract
	1 Interpreters in Time and Space
	2 Practical Motivation
	3 Interpreter
	4 Garbage Collection
	5 Safe-for-Space Evaluation
	6 Space Safety with Linked Environments via Garbage Collection
	7 Environments as Trees
	8 Implementation and Sanity Checks
	9 Future Work
	Appendix
	References

