
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated
*

O
O
P
S
LA
*

Ar
tifact *

A
E
C

Option Contracts

Christos Dimoulas

Harvard University

chrdimo@seas.harvard.edu

Robert Bruce Findler

Northwestern University

robby@eecs.northwestern.edu

Matthias Felleisen

Northeastern University

matthias@ccs.neu.edu

Abstract
Many languages support behavioral software contracts so
that programmers can describe a component’s obligations
and promises via logical assertions in its interface. The con-
tract system monitors program execution, checks whether
the assertions hold, and, if not, blames the guilty component.
Pinning down the violator gets the debugging process started
in the right direction. Quality contracts impose a serious run-
time cost, however, and programmers therefore compromise
in many ways. Some turn off contracts for deployment, but
then contracts and code quickly get out of sync during main-
tenance. Others test contracts randomly or probabilistically.
In all cases, programmers have to cope with lack of blame
information when the program eventually fails.

In response, we propose option contracts as an addition
to the contract tool box. Our key insight is that in ordinary
contract systems, server components impose their contract
on client components, giving them no choice whether to trust
the server’s promises or check them. With option contracts,
server components may choose to tag a contract as an option
and clients may choose to exercise the option or accept it, in
which case they also shoulder some responsibility. We show
that option contracts permit programmers to specify flexible
checking policies, that their cost is reasonable, and that they
satisfy a complete monitoring theorem.

Categories and Subject Descriptors D.2.4 [Software Veri-
fication]: Programming by contract

Keywords programming language design; behavioral soft-
ware contracts; random testing; probabilistic spot checking

1. The High Costs of Contracts
Large programs consist of many collaborating components.
Interfaces describe these collaborations, specifically the
promises that each component makes and the obligations
that it imposes on its clients for use of its services. The sim-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’13, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright © 2013 ACM 978-1-4503-2374-1/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509136.2509548

plest interfaces specify statically checked types. One step up,
programmers employ behavioral—also called functional—
software contracts to supplement types [2].

Conceptually, a behavioral contract refines the domain
and/or range types of a method with logical constraints.
Most contract systems allow programmers to express these
constraints as boolean-typed expressions in the underlying
programming language itself; a few also include additional
logical connectors [22]. While some research-oriented com-
binations of languages and IDEs support a degree of static
verification of contracts [1, 13, 32], most systems com-
pile the logical assertions into run-time checks. When these
checks discover a contract violation, they raise an excep-
tion to stop the program and send along information that
explains which component violated which contract and how.
This information provides programmer with a starting point
for their debugging efforts.

Run-time monitoring means run-time cost. Thus, while
contracts allow programmers to express the obligations and
promises of a method in as much detail as desired, they also
impose a serious cost. To avoid these costs, programmers
compromise in two major ways.

One common compromise is to turn off contracts for de-
ployment. Compilers tend to support appropriate switches
for this purpose. Unfortunately, when—not if—the program
fails eventually, the maintenance programmer will not re-
ceive any information from the contract system to narrow
down the search for the error. Consider this system fragment:

The Board component exports graphs arranged on a grid that
satisfy certain conditions. The State component includes
the grid, together with other game elements, in an internal
state representation, which the game Admininstrator uses
to track a play. Player components, contributed by third-
party programmers, get to manipulate a part of the game

state via an appropriate interface, though they probably hand
on their arguments to strategy components.

To ensure the integrity of the central game piece, a pro-
grammer may impose a contract on the grid. This contract
makes sure that the grid preserves its invariants as it flows
through State and Administrator to Player and Strategy.
Turning off this contract for deployment implicates all five
components when something goes wrong. Also, when main-
tenance programmers fix code, they may forget to update
the contracts. Alternatively, the programmer moves the con-
tract from board to the border between Admininstrator and
Player and keep it around during deployment. This arrange-
ment, however, violates basic design principles—keep the
contract with the matching component—and it may harm de-
bugging during development when State or Administrator
accidentally violate the grid’s invariants.

Another common compromise is to use random testing in
contracts. Consider this contract for a binary search method:

<T> Maybe[Integer] bS(T v, T[] d)
pre for all i < d.size-1 : d[i] <= d[i+1]
post @bS.isJust() ==> 0 <= @bS && @bs < d.size()

It specifies that the component supplies the bS function. Its
pre-condition says that the second argument d is an array of
values sorted by <= (for type T). The post-condition promises
that the result @bS is an optional integer and, if it is an integer,
it is a valid index into d. The latter suggests d[@bS] == v,
though the programmer chooses not to promise this fact.

Of course, ensuring that the entire vector d is sorted
changes the algorithmic complexity of bS. In response, a
programmer may weaken the contract as follows:

<T> Maybe[Integer] bS(T v, T[] d)
pre for some random 0 < i && i < d.size()-1:

d[i-1] <= d[i] && d[i] <= d[i+1]
post @bS.isJust() ==> 0 <= @bS && @bs < d.size()

The randomly checked pre-condition is an algorithmic spot
checker [9]. Programmers tend to use such sophisticated
algorithms in lieu of an expensive contract to reduce the cost
of contract checking and to obtain some assurance that the
contract’s specification holds.

Like turning off contracts for deployment, weakening as-
sertions via random testing or spot checking poses prob-
lems when programs or contracts eventually fail. If compo-
nent A uses a service from component B with a randomly
checked result and A then passes the result to C, a contract
failure between these two will blame A in all existing con-
tract systems—even though B’s randomly checked contract
does not truly absolve it from its obligations.

2. Reducing Costs with Option Contracts
When Meyer proposed behavioral software contracts [24],
he described contracts with analogies to the business world.
In a nutshell, a component offers its services together with a
contract that makes promises about its services and obliges

client components to behave in certain ways if they wish to
use these services.

Our linguistic solution to the above problems is to bor-
row another idea from the business world: option contracts.
When a server component supplies its services with an op-
tion contract, a client component may accept it in two ways.
On the one hand, it can exercise the option and live up to its
conditions. If something goes wrong with the services, the
contract system continues to blame the server component as
if it had chosen a conventional contract. On the other hand,
clients may accept objects monitored by an option contract
on an “as is” basis. If a client transfers such an object to a
third party, the contract system tracks this flow and names
the client as a party to any future contract violation con-
cerning this contract. With option contracts, programmers
have the infrastructure to mark spot checking in contracts,
and they can codify one contract checking policy for devel-
opment and another one for deployment. Indeed, program-
mers can develop dynamic changes to the contract monitor-
ing policies so that systems can reduce monitoring activities
as core components learn to trust some components.

The rest of the paper introduces option contracts, first
with an informal specification and then in the context of
some non-trivial examples. The fifth section uses experimen-
tal setups to demonstrate the performance benefits of option
contracts. The sixth section presents a formal specification in
the form of a semantic model; the semantics satisfies a com-
pleteness theorem [7], the key property of contract systems.
The last two sections place our work in context.

3. Exploring Option Contracts
Option contracts extend contract systems in a straightfor-
ward manner; they introduce one new mechanism for stating
contracts in an interface and several different client-side op-
erations. In this section, we first introduce option contracts
abstractly, in a language-neutral manner, and then make this
presentation concrete with Racket code snippets; for a pre-
cise semantics, see section 6.

3.1 Option Contracts, Abstractly
Adding options to an existing contract system requires at
least three changes. The first one allows programmers to
annotate a contract for objects—not basic values such as
booleans or numbers—in a server component as an option.
When an object O flows through such an option contract C,
the contract system checks the applicable portions of C and
then wraps O in an option-contract object, which includes C.

The second change allows an importing client to exercise
an option contract. Doing so extracts O and C; it combines
these two in a regular contract wrapper that checks every
access to O according to C. If the option is not exercised, O
is accessed as if it had no wrapper.

The third change concerns the relationship among clients.
When a client accepts an object with an option-contract

Figure 1: Option contracts by example

wrapper, it may re-export it in two different ways. First,
it may transfer the wrapped object to its own clients. If it
chooses this alternative, it and its client avoid an additional
contract wrapper object but they both accept some respon-
sibility for the object’s behavior. Second, the client may
re-export the object through a regular contract boundary in
which case it shoulders no responsibility for the object’s be-
havior but imposes a performance penalty on its clients.

Let us illustrate option contracts with the first example
from the introduction. Figure 1 presents the revised view.
As discussed, the Board component exports a grid object. It
choose to offer an option contract and State transfers grid
to Admin. This arrangement significantly reduces the cost
of contract checking for Board and Admin because grid is
wrapped in just one contract layer. Since Player is “foreign”
code, it is natural that the option contract is exercised and
passed on to Strategy via a regular export. That way Player
and Strategy do not need to accept any blame if the grid
object misbehaves.

In addition to these operations, our option contract system
also provides a mechanism for stripping, which extracts the
underlying object from an option-contract wrapper. While
stripping removes all contract overhead, it also prevents fu-
ture clients from exercising the option and protecting them-
selves. In short, stripping chooses raw performance over any
form of protection.

3.2 Racket Contracts, a Refresher
The Racket programming language [14] comes with a com-
prehensive contract system, including contracts for higher-
order values [12]. While contracts for first-order values and
methods require little support from the programming lan-
guage or its implementation, higher-order contracts force
language designers to think of contract specifications as bor-
derlines between two parties [28].

In this section, we introduce Racket’s contract system via
a DrRacket component. DrRacket is Racket’s IDE, and its
code base is already enriched with contracts. DrRacket’s
text coloring component interactively colors programs as
the user edits the program. It differentiates lexemes such as
strings and identifiers with different colors and even identi-
fies misspelled words. The implementation uses stream pro-

cessing functions that accept an input port. Unlike ordinary
input ports, these ports are built from the contents of the ed-
itor to get efficient and re-usable stream processing. The fol-
lowing function contract specifies how lexers behave:

(define plain-lexer/c
(-> input-port?

any/c
(values symbol?

(maybe/c natural-number/c)
(maybe/c natural-number/c)
any/c)))

Lexers are functions that accept two inputs: the input port
and a “mode” value that the lexer can use as an accumulator
to transmit information forward in the stream. The result
consists of four values: a symbol that describes the token,
two numbers that determine the position of the token in the
input stream or #f if EOF has been reached, and a new mode
value, which is passed back into the lexer when processing
the next token.

While this contract specifies the basic behavior, lexer
functions satisfy a number of additional invariants and the
specifications of those require dependent contracts.1 Racket
uses ->i for dependent contracts; its syntax is similar to that
of ->, except that each place where a contract appears in a
-> expression, an ->i expression has a name and a contract:

(define dep-lexer/c
(->i ([in input-port?]

[mode any/c])
(values
[tok symbol?]
[start (tok end)
(and (not (equal? ’eof tok))

(and/c natural-number/c (</c end)))]
[end (tok)
(and (not (equal? ’eof tok))

natural-number/c)]
[new-mode any/c])))

1 This contract is significantly simplified from the actual contract for lexers.
The curious reader may want to inspect the full contract in Racket v.5.3.5.

In essence, this contract says that the function still accepts
the same two arguments, but now gives them names: in and
mode. Similarly the results are now named tok, start, end,
and new-mode.

The ->i combinator specifies a dependency of one part of
the contract on other parts by placing the names of the latter
in parentheses between the name and the associated contract.
Here end’s contract depends on the value of tok and specifies
that returning #f is acceptable if tok is the symbol ’eof.
Otherwise, end is a natural number. Similarly, start can be
#f only if the tok symbol is ’eof, and start is additionally
constrained to be strictly less than end.

The flow of a higher-order value (closure, object) through
a contract establishes a boundary between the value and its
surroundings. Each one of the two parties, the server and the
client, become responsible for some pieces of the contract.
For first-order contracts, such as dep-lexer/c, the client
is responsible for providing arguments that meet the pre-
conditions of the contract and the server is responsible for
producing results that meet the post-conditions.

Consider the following simple lexer:

(define (bogus-lexer in mode)
(values ’bogus 10 2 #f))

We use the define/contract construct [27] to attach a con-
tract to bogus-lexer:

(define/contract bogus-lexer-with-contract
dep-lexer/c
bogus-lexer)

Evaluating this definition sends bogus-lexer through dep-
lexer/c. The resulting value is associated with the name
bogus-lexer-with-contract. Its wrapper monitors all flow
of values between it and its context, the rest of the module. If
the context of bogus-lexer-with-contract does not respect
the pre-condition, the contract system raises a contract error
that assigns blame to the caller of the function:

> (bogus-lexer-with-contract "[" #f)
bogus-lexer-with-contract: contract violation

expected: input-port?
given: "["
in: the in argument of

(->i
((in input-port?) (mode any/c))
(values
(tok symbol?)
(start (tok end) ...)
(end (tok) ...)
(new-mode any/c)))

contract from:
(definition bogus-lexer-with-contract)

blaming: top-level

In case the context respects its obligations, this lexer does
not live up to its post-condition. Hence, the contract system
points to bogus-lexer-with-contract for the violation:

> (bogus-lexer-with-contract
(open-input-string "[")
#f)

bogus-lexer-with-contract: broke its contract
promised: (and/c natural-number/c (</c 2))
produced: 10

which isn’t: (</c 2)
in: the start result of

(->i
((in input-port?) (mode any/c))
(values
(tok symbol?)
(start (tok end) ...)
(end (tok) ...)
(new-mode any/c)))

contract from:
(definition bogus-lexer-with-contract)

blaming: (definition bogus-lexer-with-contract)

The view of a contract as an agreement between two
parties scales naturally to higher-order functions, borrowing
notation for expressing contracts for higher-order functions
from types for higher-order functions. For example, here is
a higher-order lexer-tester with its contract:

(define/contract (lexer-tester lexer)
(-> dep-lexer/c boolean?)
(lexer (open-input-string "[") #f)
#t)

The tester applies the lexer on a single character stream
and if the lexer returns, the tester returns #t. However, the
contract system wraps the argument lexer with a proxy that
checks dep-lexer/c for uses of the argument in the body
of lexer-tester. Thus the tester’s contract makes sure that
for the lexer to return succesfully, its result must satisfy the
post-condition of dep-lexer/c.

As far for blame assignment in this case, the contract
system passes information about the two responsible parties
to the proxy that enforces dep-lexer/c. More specifically, it
turns the two initial parties for the contract on lexer-tester
to parties for dep-lexer/c. Since the caller of lexer is the
body of lexer-tester and the provider of lexer is the caller
of lexer-tester, the contract system swaps the roles of the
original parties; lexer-tester becomes the client for the
argument and the context of lexer-tester the server:

> (lexer-tester bogus-lexer)
lexer-tester: contract violation

expected: (and/c natural-number/c (</c 2))
given: 10

which isn’t: (</c 2)

in: the start result of
the 1st argument of
(->
(->i
((in input-port?) (mode any/c))
(values
(tok symbol?)
(start (tok end) ...)
(end (tok) ...)
(new-mode any/c)))

boolean?)
contract from: (function lexer-tester)
blaming: top-level

In a nutshell, contracts for higher-order functions generalize
those for first-order functions; they establish a boundary be-
tween two parties and the contract system starts monitoring
the values that go through the boundary. When the contract
system detects a contract violation, it assigns blame to the
party that does not conform with the obligations imposed by
the boundary; the client for the negative pieces of the con-
tract and the server for the positive ones.

3.3 Introducing Options
A dependent contract introduces a non-trivial overhead when
DrRacket processes an editor as the user types. Hence, it is
a natural candidate for an option contract. Here is the code
that builds an option contract based on dep-lexer/c:

(define lexer/c
(option/c
dep-lexer/c
#:tester (λ (l) (try-random-inputs l))))

The option/c contract combinator accepts an ordinary con-
tract as its first argument and, optionally via the #:tester
keyword argument, a function that may examine the con-
tracted value in arbitrary ways.

Intuitively, the tester provides a minimum amount of val-
idation of any value that flows through this contract. For Dr-
Racket, the tester ensures that lexer is a function of two ar-
guments, and it applies this function to 10 streams of random
lowercase characters:

(define (try-random-inputs lexer)
(for ([attempt (in-range 10)])
(define n (random 50))
(define s (build-string n lc-letters))
(lexer (open-input-string s) #f)))

(define (lc-letters _)
(integer->char (+ 97 (random 26))))

When the lexer is passed to the tester, it is wrapped in the
contract, so calling it with some random inputs ensures that
it obeys the contract for at least a few streams.

A definition that imposes lexer/c on broken-lexer from
above immediately exposes it as a fraud:

(define/contract (broken-lexer in mode)
lexer/c
(values ’bogus 10 2 #f))

broken-lexer: broke its contract
promised: (and/c natural-number/c (</c 2))
produced: 10

which isn’t: (</c 2)
in: the start result of

...
(option/c
(->i
((in input-port?) (mode any/c))
(values
(tok symbol?)
(start (tok end) ...)
(end (tok) ...)
(new-mode any/c)))

#:tester
#<procedure>)

contract from: (function broken-lexer)
blaming: (function broken-lexer)

As the lexer gets tested on a number of random inputs, its
contract wrapper discover that its start result is too large.

3.4 Exercising and Waiving Options
Once contracted values have passed the tester’s exami-
nation, the option contract wrapper—technically, a proxy
value [28]—no longer checks any properties. Instead, it
transparently stores the underlying contract with the value
for future use, leaving dep-lexer/c inactive for now.

For instance, here is a flawed lexer that passes the tests in
the #:tester because they supply only lowercase letters:

(define/contract (less-broken-lexer in mode)
lexer/c
(define c (read-char in))
(cond [(eof-object? c)

(values ’eof #f #f #f)]
[(equal? c #\[)
(values ’bogus 10 2 #f)]
[else
(values ’symbol 1 2 #f)]))

This lexer does misbehave if its input port delivers a
#\[character. Once the #:tester function has checked this
function on its 100 random lowercase strings, however, even
the presence of #\[does not lead to a contract violation:

> (less-broken-lexer (open-input-string "[") #f)
’bogus
10
2
#f

Since the contract on less-broken-lexer is still present,
however, we can activate it by exercising the option:

> ((exercise-option less-broken-lexer)
(open-input-string "[") #f)

less-broken-lexer: broke its contract
promised: (and/c natural-number/c (</c 2))
produced: 10

which isn’t: (</c 2)
in: the start result of

the option of
(option/c
(->i
((in input-port?) (mode any/c))
(values
(tok symbol?)
(start (tok end) ...)
(end (tok) ...)
(new-mode any/c)))

#:tester
#<procedure>)

contract from: (function less-broken-lexer)
blaming: (function less-broken-lexer)

The result of exercise-option is a function that behaves as
if the original contract, dep-lexer/c, had been put directly
on less-broken-lexer. Passing the same arguments to this
contracted lexer thus results in a contract violation.

The dual to exercise-option is waive-option:

> ((waive-option less-broken-lexer)
(open-input-string "[") #f)

’bogus
10
2
#f

More specifically, the result of waive-option is a func-
tion that behaves as if less-broken-lexer had been defined
without a contract. In particular, exercise-option cannot
activate dep-lexer/c for the result of waive-option. At the
same time, calling less-broken-lexer after waiving the op-
tion is cheaper than calling less-broken-lexer directly, be-
cause it is no longer protected by a proxy.

3.5 Transferring Options
In addition to exercising and waiving an option, a function
may decide to shoulder responsibility for the contract with-
out applying the contract again. For example, the following
definition returns one of our earlier lexers, but instead of us-
ing lexer/c for the result contract, it uses transfer/c:

(define/contract (pick-a-lexer b)
(-> boolean? transfer/c)
(if b

broken-lexer
less-broken-lexer))

When the option is eventually exercised the pick-a-lexer
function agrees to take on joint responsibility for its result,
together with the original option-contract server:

> ((exercise-option (pick-a-lexer #f))
(open-input-string "[")
#f)

less-broken-lexer: broke its contract
promised: (and/c natural-number/c (</c 2))
produced: 10

which isn’t: (</c 2)
in: the start result of

the option of
(option/c
(->i
((in input-port?) (mode any/c))
(values
(tok symbol?)
(start (tok end) ...)
(end (tok) ...)
(new-mode any/c)))

#:tester
#<procedure>)

contract from: (function less-broken-lexer)
blaming multiple parties:
(function pick-a-lexer)
(function less-broken-lexer)

In contrast, if pick-a-lexer were to specify lexer/c as
its co-domain, only less-broken-lexer would have been
blamed but at the cost of checking the same contract twice:

(define/contract (pick-a-lexer b)
(-> boolean? lexer/c)
(if b

broken-lexer
less-broken-lexer))

> ((exercise-option (pick-a-lexer #f))
(open-input-string "[")
#f)

pick-a-lexer: broke its contract
promised: (and/c natural-number/c (</c 2))
produced: 10

which isn’t: (</c 2)
in: the start result of

the option of
the range of
(->
boolean?
(option/c
(->i
((in input-port?) (mode any/c))
(values
(tok symbol?)

(start (tok end) ...)
(end (tok) ...)
(new-mode any/c)))

#:tester
#<procedure>))

contract from: (function pick-a-lexer)
blaming: (function pick-a-lexer)

3.6 Options and Spot-Checkers
As mentioned in section 1, programmers tend to use random
tests and spot checkers, their sophisticated siblings, to re-
place expensive contracts. Since the contract system does not
provide support for substituting contracts with spot check-
ers, programmers do so in ad-hoc ways such as the contract
of binary-search from section 1.

Option contracts offer the necessary hooks for systemat-
ically using spot checkers and random tests as part of con-
tracts. The following simple syntax re-writing rule, declares
a spot checker contract for data structures such as vectors:

(define-syntax-rule (spotchecker/c c inv spot)
(option/c c #:invariant inv #:tester spot))

The form (spotchecker/c c inv spot) expands into an
option contract. The latter uses contract c as the cheap con-
tract that each element must satisfy, e.g., that each element
is of a specific data type; inv as the expensive invariant that
should really be monitored; and spot as the spot checker that
weakens the invariant for the sake of performance.

We can use spotchecker/c to express the spot checker of
the example of the introduction:

(define binary-search/c
(->i ([k V?]

[D (spotchecker/c (vectorof V?)
(sorted? V<)
mostly-sorted?)])

[index-of-k-in-D (D)
(maybe/c (</c (vector-length D)))]))

Besides providing a concise way to express the contract
weakening, the spotchecker/c abstraction makes the con-
tract system aware of the fact that a spot checker replaces a
precise contract. Hence a client component can use trans-
fer/c to share this information with its clients or exercise-
option to activate the full contract in cases where correct-
ness is more important than performance.

4. Option Contracts in Practice
The key test of a design idea such as option contracts is its
application to non-trivial software systems. To demonstrate
the value of option contracts, we employed option contracts
in three realistic settings: the Typed Racket implementation,
DrRacket’s text coloring mechanism, and a game called Ac-
quire. The first two are critical parts of the standard distribu-
tion of Racket. The third is a semester project for a course
on program design at Northeastern University.

4.1 Maintenance of Typed Racket
Typed Racket [30] is a statically typed dialect of Racket. It
is designed to accommodate common idioms of Racket pro-
grammers [31] and to enable the sound co-operation of typed
and untyped Racket components [29]. Both design goals are
pivotal for creating a pathway for porting components from
the untyped to the typed world, gradually and without sig-
nificant re-programming effort. The type system is sophisti-
cated and Racket programmers currently pay for this sophis-
tication in the running time of the type checker.

The implementation of Typed Racket defines a series of
data structures for storing and propagating type information.
Some, such as variants of a type environment, are similar to
those of any type checker. Others, such as filters, are specific
to features of Typed Racket’s type system. The correctness
of the type checker relies on the proper use and behavior of
functions that access and modify the contents of type repre-
sentations. For instance, the following function typechecks
recursive functions and its correctness depends on the appro-
priate calls to with-lexical-env-extend, which extends the
type environment, and make-arr and make-Function which
together construct the type of the recursive function based
on the types of its arguments and results:

(define (tc/rec-lambda
formals body name args return)

(with-lexical-env/extend
(syntax->list formals) args
(let∗ ([r (tc-results->values return)]

[t (make-arr args r)]
[ft (make-Function (list t))])

(with-lexical-env/extend
(list name) (list ft)
(begin (tc-exprs/check

(syntax->list body) return)
(ret ft))))))

To enforce the necessary discipline for working in such a
stringently structured environment, the developers of Typed
Racket attach contracts to the data structures and functions
of the type checker libraries. Thus, the (simplified) contract
header of make-arr looks like this:

(define/contract (make-arr args r)
(-> (listof Type/c) Type/c)
...)

They also add contracts to the functions of the type checker
proper to obtain fine-grained blame information:

(define/contract (tc/rec-lambda f b n a r)
(-> syntax? syntax? syntax? tc-results/c

tc-results/c)
...)

The contracts in the implementation of Typed Racket do
not check behavioral properties but are limited to structural,

type-like properties. Although no contract individually per-
forms expensive computation, the sheer size of the code base
and the number of contracts creates a significant overhead
due to contract checking. More precisely, even for small
Typed Racket programs the time spent in contract checking
can dominate type checking. For that reason, the developers
of Typed Racket use a configuration module to remove con-
tracts from deployment code and add them back only during
development. Alas, it turns out that constantly enabling and
disabling contract checking is error-prone and slows down
the development cycle. Hence, the developers seldomly re-
configure the code base when extending or fixing problems
in the implementation; they reinstate contracts only when
debugging broken code without contracts becomes difficult.

Unsurprisingly, software developers do not update dis-
abled contracts as they evolve the code base. Over the course
of three months, we spotted numerous changes to the Typed
Racket implementation that broke its contracted version. The
problems range from syntactic errors in contracts to function
arity problems and module dependency omissions.

Our observation suggests that contracts in the Typed
Racket implementation should always be checked to some
degree. To implement this idea without imposing a perfor-
mance penalty, we formulated all function contracts in the
Typed Racket code base as option contracts, e.g.,

(define/contract (make-arr ...)
(option/c (-> (listof Type/c) Type/c)

#:tester (λ (x) #t))
...)

Our options contracts come with a trivial tester that en-
forces the validation of the first-order properties of the val-
ues attached to the contracts but no more contract checking
takes place after that. Moreover, we use waive-option to re-
move all the overhead of option contracts. Thus we made
the access to the contracted functions as cheap as if con-
tracts had not been applied. As a consequence, type checking
with option contracts results in a reduced overhead even for
type checking computationally intensive modules (on aver-
age less than 15%, see section 5 for details) while perform-
ing the syntactic, arity and dependencies checks that would
prevent the discrepancies we discovered.

Our study shows that option contracts provide adequate
infrastructure for gradually increasing the amount of con-
tract checking in the implementation of Typed Racket with-
out restructuring its code. At the level of our study, option
contracts perform basic checks. The developers can now en-
rich specific testers with deeper behavioral or random and
probabilistic tests, increasing their assurance as they see fit.

4.2 Contract Checking Only Where Necessary
Acquire is a market-based board game. Players try to max-
imize profit from purchasing, trading and expanding ho-
tel franchises. An implementation of Acquire can be con-
ceptually divided into three independent pieces, a Player,

a Strategy and a Game component. The Game component
can be further split into sub-components that implement the
Board with its pieces, the State of the game between rounds
and the game Administrator that interacts with the State in
the name of each Player; diagrammatically, we have:

In the context of a program design course project, stu-
dents implement the game, players and strategies. For the
final evaluation of the course, players, strategies and game
implementations from different students are combined to
play a tournament. For this purpose, an additional Factory
component is inserted between the Administrator and the
Player components that composes strategies with players
before linking them to the game Administrator.

This set-up naturally gives rise to a world where pro-
grammers combine third-party components to obtain work-
ing systems. Of course, a successful simulation requires that
all components correctly implement agreed-upon interfaces.
In addition, for a component to compete successfully in the
competition, it must make sure that it protects itself from
partners that do not respect their interfaces.

In our implementation, we enforce the components inter-
faces with contracts. For instance, a simplified version of the
contract for the interface of Strategy is:

(define strategy/c
(->i ([board (board-well-formed)]

[player-s-tiles (listof tile?)]
[cash cash?]
[available-shares shares?]
[available-hotels (board)

(open-hotels board)])
(values
[tile (board player-s-tiles)
(good-placement board player-s-tiles)]
[hotel (board available-hotels tile)
(good-hotel board available-hotels tile)]
[shares (board cash tile hotel)

(correct-purchase
board cash tile hotel)])))

The contract specifies that a strategy function consumes a
valid Board, the tiles of the Player, the Player’s cash, and

the administrator’s hotel Shares, and a list of the hotels
that the Player may still found. Given this information, the
strategy function returns to the Player the elements of the
next move: a valid tile for the Player to place on the board,
an available hotel to found or acquire, and a purchase order
for shares whose price depends on the State of the game and
the tiles placement. The Player component defines players
as instances of the class player%. The module also provides
the function create, which instantiates player% to obtain
instances that execute a given Strategy:

(define/contract (create name strategy)
(-> string? strategy/c (instanceof/c player/c))
...)

The alert reader may have noticed that both Strategy and
Player use strategy/c in the contracts of their interface,
and thus the strategy argument of create is subjected to
strategy/c twice: once when it is exported from Strategy
and once when it is passed to create. This may seem re-
dundant but in fact it is necessary in a world of third-party
components. Since a third component, Factory, brings to-
gether Player and Strategy, imposing the contract twice is
necessary; otherwise, the contract system may blame Fac-
tory instead of Strategy when something goes wrong. If
strategy/c were missing from Strategy, there is no con-
tract boundary between Factory and Strategy from the per-
spective of the contract system, and in case of a violation,
Factory is identified as the source of the problem because
it provided the misbehaving value. Similarly if strategy/c
was missing from the pre-condition of create, the contract
system may shift blame from Player to Factory. In effect,
the two contracts signal to the contract system that Factory
is a medium that simply passes values between Player and
Strategy and should not get blamed for them. In turn, this
helps the programmer to localize the source of a violation of
strategy/c. The price for the protection of Factory is the
double-checking of the contract.

In addition to the contracts on the interfaces of Player,
Strategy and Administrator, our implementation comes
with interfaces and contracts for all the components of the
game. These contracts enforce internal invariants of the com-
ponents but they are not critical after the implementation en-
ters a stable phase. Like the Typed Racket contracts, they
result in significant slowdown when running games.

Option contracts can help improve the implementation in
two different ways. First we employ option contracts to con-
trol the cost of checking non-critical contracts. These are all
contracts except those between the Player component and,
respectively, Strategy and Administrator. Second, with
transfer/c and exercise-option, we eliminate the cost of
checking strategy/c on the pre-condition of create with-
out completely losing the ability to track misbehaving strate-
gies back to the strategy component.

Hence, strategy/c becomes an option contract:

(define strategy/c
(option/c (->i (...) ...)))

and strategy/c is replaced with transfer/c in the pre-
condition of create:

(define/contract (create name strategy)
(-> string? transfer/c (instanceof/c player/c))
...)

The transfer/c contract recognizes the option contract,
adding Factory to the responsible providers and Player to
the clients of the strategy function as it flows to create.

Now, with exercise-option we can activate contract
checking for strategy/c when instantiating the player%
class to obtain a player object:

(define (create n strategy)
(new player%
[name n] [choice (exercise-option strategy)]))

The contract system monitors the exercised strategy function
for the exercise/c contract in Player. If it detects a viola-
tion of the contract’s post-condition it assigns blame both
to Strategy and Factory and explains that blame informa-
tion concerns multiple parties due to the transfer of the strat-
egy function from Factory to Player. Thus the programmer
can follow the transfer links back to the actual source of the
problem in Strategy.

Our analysis of the Acquire implementation reveals how
the features of the options library allow us to turn off con-
tract checking for efficiency and selectively turn it on based
on static information about the way components exchange
critical values. The next subsection explains how we can en-
rich these policies with dynamic information.

4.3 Contract Checking Only When Necessary
Since exercise-option is a plain Racket function, Racket
programs can call it when a dynamically checked condition
holds. DrRacket exploits this ability to selectively exercise
option contracts to enforce contracts only for specific lexers
that color the contents of the DrRacket editor pane.

Racket is a family of languages, one of which is called
racket. Each of these languages comes with its own lexer
and DrRacket needs a way to recognize the language of the
contents of an editor in order to call the appropriate lexer.
Each Racket file, therefore, begins with a #lang specifica-
tion to indicate which of the Racket-based programming lan-
guages the program uses. For example, a file containing code
in the Racket language should begin with

#lang racket

In contrast, document generating programs—such as this
subsection—are implemented in the scribble language and
their files start with

#lang scribble/base

To support syntax coloring that is sensitive to the #lang
specification, DrRacket comes with a lexer for just this line;
its result is the lexer for the language. Once the latter is
found, DrRacket dynamically links to the lexer and uses it
for the rest of the module.

Lexers for languages of the Racket family implement an
interface specified as a contract. We have already discussed
a simplified version of this contract in section 2:

(define dep-lexer/c
(->i ([in input-port?]

[mode any/c])
(values
[tok symbol?]
[start (tok end)

(if (equal? ’eof tok)
#f
(and/c natural-number/c

(</c end)))]
[end (tok)

(if (equal? ’eof tok)
#f
natural-number/c)]

[new-mode any/c])))

Checking dep-lexer/c causes significant overhead, espe-
cially when the lexer tries to color a file as the programmer
edits it. Since lexers such as the ones for Racket and Scribble
are well-tested and have been found bug-free for a few years,
we can consider them “trusted” and use an option contract to
silence their contracts. The following option contract around
lexer/c also uses a tester that generates a few random inputs
to try out the lexer and thus re-establish trust:

(define lexer/c
(option/c
dep-lexer/c
#:tester (λ (l) (try-random-streams l))))

In contrast to racket and scribble, most of the other lex-
ers distributed with Racket, for example, the lexers that are
part of the datalog and algol60 implementations, are not
trusted. The predicate trusted-lexer? consumes a lexer and
checks if the lexer is in the pre-defined list of trusted lexers
of DrRacket. For the lexers that trusted-lexer returns #f,
DrRacket should use the dep-lexer/c contract.

Unfortunately, we have now two different contracts for
lexers; one with the option for the trusted lexers and one
without it for the untrusted lexers. As a result the information
about which lexers DrRacket trusts, and which not is spread
all over the code base of Racket and requires error-prone and
intrusive infrastructure to maintain and update.

One possible solution is to modify the structure of the
#lang-line lexer. Instead of having that lexer call directly the
language lexers, we could insert a lexer manager function
that accesses the list of trusted lexers and attaches to each
lexer an appropriate contract. In Racket we can implement

this idea easily with with-contract, a construct for creating
nested contract regions inside a component [27]:

(define (lexer-manager lexer)
(if (trusted-lexer? lexer)

(with-contract new-lexer
#:result lexer/c lexer)

(with-contract new-lexer
#:result dep-lexer/c lexer)))

Despite its simplicity, the above solution has a shortcom-
ing. Since we separate the lexers and their specification, the
contract system does not have enough information to track
the error back to the language lexer implementation in case
of a contract violation. In particular, from the perspective of
the contract system, the contract dep-lexer/c is not between
an untrusted lexer and its clients but rather between the con-
tract region labeled new-lexer and its context. Thus, if the
post-condition of dep-lexer/c fails, the contract system as-
signs blame to new-lexer which resides in the module of
the #lang-line lexer and not the module that defines the bro-
ken lexer. In short, this kind of violation report misleads the
programmer because it requires an additional search for the
guilty party. With option contracts, we can solve the problem
elegantly. First, we use lexer/c as the interface for every
lexer, keeping lexers and their specification together. Sec-
ond, we employ exercise-option and waive-option to ac-
tivate the contract on untrusted lexers and remove the options
related overhead for trusted ones, respectively:

(define (lexer-manager lexer)
(if (trusted-lexer? lexer)

(waive-option lexer)
(exercise-option lexer)))

This definition of lexer-manager takes advantage of the op-
tion contract associated with the lexer. It activates it only as
necessary. If a lexer violates its exercised contract, the con-
tract system can now assign blame to the lexer itself and pro-
vide the programmer with precise debugging information.

The options-based solution is part of the latest Racket
implementation. Option contracts have made it possible to
reduce the cost of coloring text in DrRacket when trusted
lexers are used. Conversely option contracts permit to moni-
tor the contract on untrusted lexers and pinpoint faults when
contracts are violated.

5. Performance Evaluation
The preceding section shows how option contracts make it
straight-forward to implement a variety of contract checking
policies. In this section, we provide experimental evidence
to support this claim. Specifically, we use the results from
measuring three benchmark suites based on our three case
studies to make our case. Each measurement compares the
execution time of the benchmarks without contracts, with
plain contracts and with option contracts. Our measurements

FileFileFileFileFileFileFileFileFile

S
lo

w
d

ow
n

S
lo

w
d

ow
n

S
lo

w
d

ow
n

S
lo

w
d

ow
n

S
lo

w
d

ow
n

S
lo

w
d

ow
n

S
lo

w
d

ow
n

S
lo

w
d

ow
n

S
lo

w
d

ow
n

ber
nou

lli

ber
nou

lli

ber
nou

lli

ber
nou

lli

ber
nou

lli

ber
nou

lli

ber
nou

lli

ber
nou

lli

ber
nou

lli

ar
ra

y-
te

st
s

ar
ra

y-
te

st
s

ar
ra

y-
te

st
s

ar
ra

y-
te

st
s

ar
ra

y-
te

st
s

ar
ra

y-
te

st
s

ar
ra

y-
te

st
s

ar
ra

y-
te

st
s

ar
ra

y-
te

st
s

m
at

rix
-b

as
ic

m
at

rix
-b

as
ic

m
at

rix
-b

as
ic

m
at

rix
-b

as
ic

m
at

rix
-b

as
ic

m
at

rix
-b

as
ic

m
at

rix
-b

as
ic

m
at

rix
-b

as
ic

m
at

rix
-b

as
ic

fla
rr

ay
-p

oi
ntw

is
e

fla
rr

ay
-p

oi
ntw

is
e

fla
rr

ay
-p

oi
ntw

is
e

fla
rr

ay
-p

oi
ntw

is
e

fla
rr

ay
-p

oi
ntw

is
e

fla
rr

ay
-p

oi
ntw

is
e

fla
rr

ay
-p

oi
ntw

is
e

fla
rr

ay
-p

oi
ntw

is
e

fla
rr

ay
-p

oi
ntw

is
e

m
at

rix
-s

ol
ve

m
at

rix
-s

ol
ve

m
at

rix
-s

ol
ve

m
at

rix
-s

ol
ve

m
at

rix
-s

ol
ve

m
at

rix
-s

ol
ve

m
at

rix
-s

ol
ve

m
at

rix
-s

ol
ve

m
at

rix
-s

ol
ve

m
at

rix
-te

st
s

m
at

rix
-te

st
s

m
at

rix
-te

st
s

m
at

rix
-te

st
s

m
at

rix
-te

st
s

m
at

rix
-te

st
s

m
at

rix
-te

st
s

m
at

rix
-te

st
s

m
at

rix
-te

st
s

m
at

rix
-o

per
at

or
-n

or
m

m
at

rix
-o

per
at

or
-n

or
m

m
at

rix
-o

per
at

or
-n

or
m

m
at

rix
-o

per
at

or
-n

or
m

m
at

rix
-o

per
at

or
-n

or
m

m
at

rix
-o

per
at

or
-n

or
m

m
at

rix
-o

per
at

or
-n

or
m

m
at

rix
-o

per
at

or
-n

or
m

m
at

rix
-o

per
at

or
-n

or
m

num
ber

-th
eo

ry

num
ber

-th
eo

ry

num
ber

-th
eo

ry

num
ber

-th
eo

ry

num
ber

-th
eo

ry

num
ber

-th
eo

ry

num
ber

-th
eo

ry

num
ber

-th
eo

ry

num
ber

-th
eo

ry

der
iv

ed
-p

ai
r3

der
iv

ed
-p

ai
r3

der
iv

ed
-p

ai
r3

der
iv

ed
-p

ai
r3

der
iv

ed
-p

ai
r3

der
iv

ed
-p

ai
r3

der
iv

ed
-p

ai
r3

der
iv

ed
-p

ai
r3

der
iv

ed
-p

ai
r3

flo
num

-te
st

s

flo
num

-te
st

s

flo
num

-te
st

s

flo
num

-te
st

s

flo
num

-te
st

s

flo
num

-te
st

s

flo
num

-te
st

s

flo
num

-te
st

s

flo
num

-te
st

s

ar
ra

y-
st

ric
tn

es
s-

te
st

s

ar
ra

y-
st

ric
tn

es
s-

te
st

s

ar
ra

y-
st

ric
tn

es
s-

te
st

s

ar
ra

y-
st

ric
tn

es
s-

te
st

s

ar
ra

y-
st

ric
tn

es
s-

te
st

s

ar
ra

y-
st

ric
tn

es
s-

te
st

s

ar
ra

y-
st

ric
tn

es
s-

te
st

s

ar
ra

y-
st

ric
tn

es
s-

te
st

s

ar
ra

y-
st

ric
tn

es
s-

te
st

s

flo
m

ap
-p

oi
ntw

is
e

flo
m

ap
-p

oi
ntw

is
e

flo
m

ap
-p

oi
ntw

is
e

flo
m

ap
-p

oi
ntw

is
e

flo
m

ap
-p

oi
ntw

is
e

flo
m

ap
-p

oi
ntw

is
e

flo
m

ap
-p

oi
ntw

is
e

flo
m

ap
-p

oi
ntw

is
e

flo
m

ap
-p

oi
ntw

is
e

m
at

rix
-s

tr
ic

tn
es

s-
te

st
s

m
at

rix
-s

tr
ic

tn
es

s-
te

st
s

m
at

rix
-s

tr
ic

tn
es

s-
te

st
s

m
at

rix
-s

tr
ic

tn
es

s-
te

st
s

m
at

rix
-s

tr
ic

tn
es

s-
te

st
s

m
at

rix
-s

tr
ic

tn
es

s-
te

st
s

m
at

rix
-s

tr
ic

tn
es

s-
te

st
s

m
at

rix
-s

tr
ic

tn
es

s-
te

st
s

m
at

rix
-s

tr
ic

tn
es

s-
te

st
s

m
at

rix
/u

til
s

m
at

rix
/u

til
s

m
at

rix
/u

til
s

m
at

rix
/u

til
s

m
at

rix
/u

til
s

m
at

rix
/u

til
s

m
at

rix
/u

til
s

m
at

rix
/u

til
s

m
at

rix
/u

til
s

flo
m

ap
-tr

an
sf

or
m

flo
m

ap
-tr

an
sf

or
m

flo
m

ap
-tr

an
sf

or
m

flo
m

ap
-tr

an
sf

or
m

flo
m

ap
-tr

an
sf

or
m

flo
m

ap
-tr

an
sf

or
m

flo
m

ap
-tr

an
sf

or
m

flo
m

ap
-tr

an
sf

or
m

flo
m

ap
-tr

an
sf

or
m

bas
e-

fu
nct

io
ns

bas
e-

fu
nct

io
ns

bas
e-

fu
nct

io
ns

bas
e-

fu
nct

io
ns

bas
e-

fu
nct

io
ns

bas
e-

fu
nct

io
ns

bas
e-

fu
nct

io
ns

bas
e-

fu
nct

io
ns

bas
e-

fu
nct

io
ns

del
ta

-d
is

t

del
ta

-d
is

t

del
ta

-d
is

t

del
ta

-d
is

t

del
ta

-d
is

t

del
ta

-d
is

t

del
ta

-d
is

t

del
ta

-d
is

t

del
ta

-d
is

t

fo
r-v

ec
to

r

fo
r-v

ec
to

r

fo
r-v

ec
to

r

fo
r-v

ec
to

r

fo
r-v

ec
to

r

fo
r-v

ec
to

r

fo
r-v

ec
to

r

fo
r-v

ec
to

r

fo
r-v

ec
to

r

fc
ar

ra
y-

poi
ntw

is
e

fc
ar

ra
y-

poi
ntw

is
e

fc
ar

ra
y-

poi
ntw

is
e

fc
ar

ra
y-

poi
ntw

is
e

fc
ar

ra
y-

poi
ntw

is
e

fc
ar

ra
y-

poi
ntw

is
e

fc
ar

ra
y-

poi
ntw

is
e

fc
ar

ra
y-

poi
ntw

is
e

fc
ar

ra
y-

poi
ntw

is
e

div
is

ib
ili

ty

div
is

ib
ili

ty

div
is

ib
ili

ty

div
is

ib
ili

ty

div
is

ib
ili

ty

div
is

ib
ili

ty

div
is

ib
ili

ty

div
is

ib
ili

ty

div
is

ib
ili

ty

lo
g-g

am
m

a

lo
g-g

am
m

a

lo
g-g

am
m

a

lo
g-g

am
m

a

lo
g-g

am
m

a

lo
g-g

am
m

a

lo
g-g

am
m

a

lo
g-g

am
m

a

lo
g-g

am
m

a

pr1
3412

pr1
3412

pr1
3412

pr1
3412

pr1
3412

pr1
3412

pr1
3412

pr1
3412

pr1
3412

flo
m

ap
-s

tr
uct

flo
m

ap
-s

tr
uct

flo
m

ap
-s

tr
uct

flo
m

ap
-s

tr
uct

flo
m

ap
-s

tr
uct

flo
m

ap
-s

tr
uct

flo
m

ap
-s

tr
uct

flo
m

ap
-s

tr
uct

flo
m

ap
-s

tr
uct

flo
m

ap
-b

lu
r

flo
m

ap
-b

lu
r

flo
m

ap
-b

lu
r

flo
m

ap
-b

lu
r

flo
m

ap
-b

lu
r

flo
m

ap
-b

lu
r

flo
m

ap
-b

lu
r

flo
m

ap
-b

lu
r

flo
m

ap
-b

lu
r

ty
ped

-a
rr

ay
-s

tr
uct

ty
ped

-a
rr

ay
-s

tr
uct

ty
ped

-a
rr

ay
-s

tr
uct

ty
ped

-a
rr

ay
-s

tr
uct

ty
ped

-a
rr

ay
-s

tr
uct

ty
ped

-a
rr

ay
-s

tr
uct

ty
ped

-a
rr

ay
-s

tr
uct

ty
ped

-a
rr

ay
-s

tr
uct

ty
ped

-a
rr

ay
-s

tr
uct

ty
ped

-a
rr

ay
-p

oi
ntw

is
e

ty
ped

-a
rr

ay
-p

oi
ntw

is
e

ty
ped

-a
rr

ay
-p

oi
ntw

is
e

ty
ped

-a
rr

ay
-p

oi
ntw

is
e

ty
ped

-a
rr

ay
-p

oi
ntw

is
e

ty
ped

-a
rr

ay
-p

oi
ntw

is
e

ty
ped

-a
rr

ay
-p

oi
ntw

is
e

ty
ped

-a
rr

ay
-p

oi
ntw

is
e

ty
ped

-a
rr

ay
-p

oi
ntw

is
e

pol
y-

st
ru

ct
-p

ar
en

t

pol
y-

st
ru

ct
-p

ar
en

t

pol
y-

st
ru

ct
-p

ar
en

t

pol
y-

st
ru

ct
-p

ar
en

t

pol
y-

st
ru

ct
-p

ar
en

t

pol
y-

st
ru

ct
-p

ar
en

t

pol
y-

st
ru

ct
-p

ar
en

t

pol
y-

st
ru

ct
-p

ar
en

t

pol
y-

st
ru

ct
-p

ar
en

t

m
od

ule
-p

lu
s

m
od

ule
-p

lu
s

m
od

ule
-p

lu
s

m
od

ule
-p

lu
s

m
od

ule
-p

lu
s

m
od

ule
-p

lu
s

m
od

ule
-p

lu
s

m
od

ule
-p

lu
s

m
od

ule
-p

lu
s

ch
eb

ys
hev

ch
eb

ys
hev

ch
eb

ys
hev

ch
eb

ys
hev

ch
eb

ys
hev

ch
eb

ys
hev

ch
eb

ys
hev

ch
eb

ys
hev

ch
eb

ys
hev

st
irl

in
g-e

rr
or

st
irl

in
g-e

rr
or

st
irl

in
g-e

rr
or

st
irl

in
g-e

rr
or

st
irl

in
g-e

rr
or

st
irl

in
g-e

rr
or

st
irl

in
g-e

rr
or

st
irl

in
g-e

rr
or

st
irl

in
g-e

rr
or

flo
num

-lo
g

flo
num

-lo
g

flo
num

-lo
g

flo
num

-lo
g

flo
num

-lo
g

flo
num

-lo
g

flo
num

-lo
g

flo
num

-lo
g

flo
num

-lo
g

dee
p-fl

om
ap

-s
tr

uct

dee
p-fl

om
ap

-s
tr

uct

dee
p-fl

om
ap

-s
tr

uct

dee
p-fl

om
ap

-s
tr

uct

dee
p-fl

om
ap

-s
tr

uct

dee
p-fl

om
ap

-s
tr

uct

dee
p-fl

om
ap

-s
tr

uct

dee
p-fl

om
ap

-s
tr

uct

dee
p-fl

om
ap

-s
tr

uct

ve
ct

or
/v

ec
to

r

ve
ct

or
/v

ec
to

r

ve
ct

or
/v

ec
to

r

ve
ct

or
/v

ec
to

r

ve
ct

or
/v

ec
to

r

ve
ct

or
/v

ec
to

r

ve
ct

or
/v

ec
to

r

ve
ct

or
/v

ec
to

r

ve
ct

or
/v

ec
to

r

flo
num

-c
on

st
an

ts

flo
num

-c
on

st
an

ts

flo
num

-c
on

st
an

ts

flo
num

-c
on

st
an

ts

flo
num

-c
on

st
an

ts

flo
num

-c
on

st
an

ts

flo
num

-c
on

st
an

ts

flo
num

-c
on

st
an

ts

flo
num

-c
on

st
an

ts

m
at

h/v
ec

to
r

m
at

h/v
ec

to
r

m
at

h/v
ec

to
r

m
at

h/v
ec

to
r

m
at

h/v
ec

to
r

m
at

h/v
ec

to
r

m
at

h/v
ec

to
r

m
at

h/v
ec

to
r

m
at

h/v
ec

to
r

lo
g-g

am
m

a-
ze

ro
s

lo
g-g

am
m

a-
ze

ro
s

lo
g-g

am
m

a-
ze

ro
s

lo
g-g

am
m

a-
ze

ro
s

lo
g-g

am
m

a-
ze

ro
s

lo
g-g

am
m

a-
ze

ro
s

lo
g-g

am
m

a-
ze

ro
s

lo
g-g

am
m

a-
ze

ro
s

lo
g-g

am
m

a-
ze

ro
s

la
ncz

os

la
ncz

os

la
ncz

os

la
ncz

os

la
ncz

os

la
ncz

os

la
ncz

os

la
ncz

os

la
ncz

os

flo
num

-fu
nct

io
ns

flo
num

-fu
nct

io
ns

flo
num

-fu
nct

io
ns

flo
num

-fu
nct

io
ns

flo
num

-fu
nct

io
ns

flo
num

-fu
nct

io
ns

flo
num

-fu
nct

io
ns

flo
num

-fu
nct

io
ns

flo
num

-fu
nct

io
ns

im
ag

es
/fl

om
ap

im
ag

es
/fl

om
ap

im
ag

es
/fl

om
ap

im
ag

es
/fl

om
ap

im
ag

es
/fl

om
ap

im
ag

es
/fl

om
ap

im
ag

es
/fl

om
ap

im
ag

es
/fl

om
ap

im
ag

es
/fl

om
ap

gam
m

a-
lo

w
er

-s
er

ie
s

gam
m

a-
lo

w
er

-s
er

ie
s

gam
m

a-
lo

w
er

-s
er

ie
s

gam
m

a-
lo

w
er

-s
er

ie
s

gam
m

a-
lo

w
er

-s
er

ie
s

gam
m

a-
lo

w
er

-s
er

ie
s

gam
m

a-
lo

w
er

-s
er

ie
s

gam
m

a-
lo

w
er

-s
er

ie
s

gam
m

a-
lo

w
er

-s
er

ie
s

pol
yg

on
al

pol
yg

on
al

pol
yg

on
al

pol
yg

on
al

pol
yg

on
al

pol
yg

on
al

pol
yg

on
al

pol
yg

on
al

pol
yg

on
al

bet
a-

pdf

bet
a-

pdf

bet
a-

pdf

bet
a-

pdf

bet
a-

pdf

bet
a-

pdf

bet
a-

pdf

bet
a-

pdf

bet
a-

pdf

bas
e-

ra
ndom

bas
e-

ra
ndom

bas
e-

ra
ndom

bas
e-

ra
ndom

bas
e-

ra
ndom

bas
e-

ra
ndom

bas
e-

ra
ndom

bas
e-

ra
ndom

bas
e-

ra
ndom

gam
m

a-
nor

m
al

gam
m

a-
nor

m
al

gam
m

a-
nor

m
al

gam
m

a-
nor

m
al

gam
m

a-
nor

m
al

gam
m

a-
nor

m
al

gam
m

a-
nor

m
al

gam
m

a-
nor

m
al

gam
m

a-
nor

m
al

bet
a-

util
s

bet
a-

util
s

bet
a-

util
s

bet
a-

util
s

bet
a-

util
s

bet
a-

util
s

bet
a-

util
s

bet
a-

util
s

bet
a-

util
s

im
ag

es
/p

riv
at

e/
flo

m
ap

im
ag

es
/p

riv
at

e/
flo

m
ap

im
ag

es
/p

riv
at

e/
flo

m
ap

im
ag

es
/p

riv
at

e/
flo

m
ap

im
ag

es
/p

riv
at

e/
flo

m
ap

im
ag

es
/p

riv
at

e/
flo

m
ap

im
ag

es
/p

riv
at

e/
flo

m
ap

im
ag

es
/p

riv
at

e/
flo

m
ap

im
ag

es
/p

riv
at

e/
flo

m
ap

dis
tr

ib
utio

ns/
util

s

dis
tr

ib
utio

ns/
util

s

dis
tr

ib
utio

ns/
util

s

dis
tr

ib
utio

ns/
util

s

dis
tr

ib
utio

ns/
util

s

dis
tr

ib
utio

ns/
util

s

dis
tr

ib
utio

ns/
util

s

dis
tr

ib
utio

ns/
util

s

dis
tr

ib
utio

ns/
util

s

dee
p-fl

om
ap

-re
nder

dee
p-fl

om
ap

-re
nder

dee
p-fl

om
ap

-re
nder

dee
p-fl

om
ap

-re
nder

dee
p-fl

om
ap

-re
nder

dee
p-fl

om
ap

-re
nder

dee
p-fl

om
ap

-re
nder

dee
p-fl

om
ap

-re
nder

dee
p-fl

om
ap

-re
nder

nor
m

al
-u

til
s

nor
m

al
-u

til
s

nor
m

al
-u

til
s

nor
m

al
-u

til
s

nor
m

al
-u

til
s

nor
m

al
-u

til
s

nor
m

al
-u

til
s

nor
m

al
-u

til
s

nor
m

al
-u

til
s

m
at

h/p
riv

at
e/

util
s

m
at

h/p
riv

at
e/

util
s

m
at

h/p
riv

at
e/

util
s

m
at

h/p
riv

at
e/

util
s

m
at

h/p
riv

at
e/

util
s

m
at

h/p
riv

at
e/

util
s

m
at

h/p
riv

at
e/

util
s

m
at

h/p
riv

at
e/

util
s

m
at

h/p
riv

at
e/

util
s

sy
nta

x

sy
nta

x

sy
nta

x

sy
nta

x

sy
nta

x

sy
nta

x

sy
nta

x

sy
nta

x

sy
nta

x

ty
ped

/p
riv

at
e/

util
s

ty
ped

/p
riv

at
e/

util
s

ty
ped

/p
riv

at
e/

util
s

ty
ped

/p
riv

at
e/

util
s

ty
ped

/p
riv

at
e/

util
s

ty
ped

/p
riv

at
e/

util
s

ty
ped

/p
riv

at
e/

util
s

ty
ped

/p
riv

at
e/

util
s

ty
ped

/p
riv

at
e/

util
s urlurlurlurl

urlurlurlurlurl

unsa
fe

unsa
fe

unsa
fe

unsa
fe

unsa
fe

unsa
fe

unsa
fe

unsa
fe

unsa
fe
m

ai
n

m
ai

n

m
ai

n
m

ai
n

m
ai

n
m

ai
n

m
ai

n

m
ai

n
m

ai
n

m
im

e

m
im

e

m
im

e

m
im

e

m
im

e

m
im

e

m
im

e

m
im

e

m
im

e

in
te

rn
al

-ty
ped

-s
ubm

od

in
te

rn
al

-ty
ped

-s
ubm

od

in
te

rn
al

-ty
ped

-s
ubm

od

in
te

rn
al

-ty
ped

-s
ubm

od

in
te

rn
al

-ty
ped

-s
ubm

od

in
te

rn
al

-ty
ped

-s
ubm

od

in
te

rn
al

-ty
ped

-s
ubm

od

in
te

rn
al

-ty
ped

-s
ubm

od

in
te

rn
al

-ty
ped

-s
ubm

od

ty
ped

ty
ped

ty
ped

ty
ped

ty
ped

ty
ped

ty
ped

ty
ped

ty
ped

sa
m

ple

sa
m

ple

sa
m

ple

sa
m

ple

sa
m

ple

sa
m

ple

sa
m

ple

sa
m

ple

sa
m

ple

ty
pes

ty
pes

ty
pes

ty
pes

ty
pes

ty
pes

ty
pes

ty
pes

ty
pes

111111111

1.21.21.21.21.21.21.21.21.2

1.41.41.41.41.41.41.41.41.4
1.61.61.61.61.61.61.61.61.6
1.81.81.81.81.81.81.81.81.8

222222222
2.22.22.22.22.22.22.22.22.2 full contractsfull contractsfull contractsfull contractsfull contractsfull contractsfull contractsfull contractsfull contracts

any/c contractsany/c contractsany/c contractsany/c contractsany/c contractsany/c contractsany/c contractsany/c contractsany/c contracts

waived optionswaived optionswaived optionswaived optionswaived optionswaived optionswaived optionswaived optionswaived options

Normalized average of cpu time of 30 runs. The length of the bars denotes the width of the 95% confidence interval for the slowdown. Measurements performed
on an Intel Core i5-3550S CPU @ 3.00GHz X 4 with 4 GiB memory running 32-bit Ubuntu 13.04 and Racket 5.3.4.7.

Figure 1: Experimental Results for Typed Racket

confirm that option contracts significantly reduce the slow-
down inflicted on programs from contract checking.

5.1 Typed Racket
In the setting of Typed Racket, we measure the cost of type-
checking 60 different files from the Racket distribution that
are implemented in Typed Racket. These modules range
from tests for the Typed Racket implementation to pieces of
the math and plot libraries of Racket. Of the sixty modules,
twenty are those with the highest typechecking time, twenty
are closest to the median time and the remaining twenty
are the most popular, i.e., those that are imported most fre-
quently by other modules in the code base.

Each benchmark consists of a call to the compiler for
the corresponding file and a call to the garbage collector.
The latter helps us to account for the memory use during
compilation. Without it, our benchmark script may terminate
before all of the allocated memory has been involved in a
collection, unfairly lowering the price of the allocation.

We run our benchmarks in three major modes: without
contracts, with the plain contracts that the Typed Racket
developers specify, and with all these contracts turned into
option contracts as described in sub-section 4.1. In addition
to measuring the cost of the option contracts mechanism, we
run the benchmarks in the “any/c” mode where all contracts
are replaced by a trivial, never failing contract. This mode
measures the vanilla cost of applying contracts to values.

The chart of files to slowdown in figure 1 displays the
results of our measurements. To each file, which defines one
of the modules in our benchmarks set, correspond up three
error bars. For every file—except two, discussed below—
the error bars show up in the same order: the bottom one

(gray) shows the slowdown due to contract application, that
is the cost of the “any/c” mode, the middle one (black)
shows the cost of option contracts, and the top one (light
gray) shows the cost of plain contracts. All of the numbers
are normalized to the no-contracts mode, which serves as our
baseline and the width of each bar indicates the length of the
95% confidence interval for the slowdown establishing the
significance of our results.2

We can read a few general insights from the chart. First,
the overall overhead from option contracts fluctuates be-
tween 1% and 27%. In all but three benchmarks, it is be-
low 20%, and in all but eight benchmarks, it is below 15%. In
all but one case, the overall cost of option contracts is smaller
than that of plain contracts by 5% to 127%. Second, since the
bars in the chart are sorted by the overhead of plain contract
checking, the cost of option contracts does not scale with the
cost of plain contract checking. Third, a good proportion of
the cost of option contracts comes from contract application
(0% – 17%), i.e., the cost of of the “any/c” mode.

We have further analyzed the source of the raw cost
of option contracts, i.e., the cost of the option contracts
mode minus the cost of the “any/c” mode. This cost ranges
between 1% and 10%. Our measurements show that a small
percentage of this cost is due to creating option contracts (1
– 4%, 50ms out of 1100ms in the worst case) while the rest
is due to the cost of waiving option contracts together with
the cost of the first-order checks that options perform. We
omit the details of these measurement here for conciseness.

2 We follow the methodology of George [15, Section 4.2.4] for the statisti-
cal analysis of slowdowns.

Acquire
contracts option contracts

1.62 (0.02) 1.01 (0.01)

Normalized average of cpu time of 30 runs. The numbers in parenthesis
denote the width of the 95% confidence interval for the slowdown. Mea-
surements performed on an Intel Core i5-3550S CPU @ 3.00GHz X 4 with
4 GiB memory running 32-bit Ubuntu 13.04 and Racket 5.3.4.7.

Figure 2: Experimental Results for Acquire

The chart exhibits two anomalies. First, in module types
(the last column) the “any/c” mode is less expensive than
the “without contracts” mode by a small amount, 9ms out
of 1820ms. We do not have a good explanation for this in-
version. Second, module sample (second from the right) is
the only case where the option contracts mode takes longer
that the full contracts mode. Again the absolute difference
is small, 34ms out of 1850ms. Type-checking this particular
module is trivial in terms of performance, despite the fact
that the type-checker constructs 700 contracts. The cost of
creating and waiving these contracts is a plausible explana-
tion for the extra cost of the option contracts mode.

We also looked more carefully into the cost that the any/c
contract imposes relative to the no-contracts baseline and
discovered that most of this cost comes in the form of in-
hibited optimizations, as the code that the contract library
generates can confuse the compiler’s analysis.

Currently the cost of using option contracts instead of dis-
abling contract checking is prohibitive for integrating option
contracts with Typed Racket’s typechecker. However, since
most of this cost comes from contract application, we antic-
ipate that performance improvements to the contract system
of Racket will allow us in the near future to make option
contracts the default mechanism for controlling the contract
checking overhead in the implementation of Typed Racket.

5.2 Acquire
Our Acquire benchmark runs four complete games with
three, four, five and six players respectively. We measure
the performance of the simulation in three different modes:
without contracts in the implementation of the game, with
plain contracts on the interfaces of all the components of the
game, and with all these contracts replaced by option con-
tracts. In the latter case, we use exercise-option to activate
contracts between Player and Administrator; following the
description in section 4.2, we also replace strategy/c in the
contract of create with transfer/c and apply exercise-
option to activate the option contract on the strategy func-
tion within create.

The table in figure 2 shows the results of our measure-
ments. Contract checking results in 62% slowdown and op-
tion contracts manage to bring it down to 1% even though

the critical contracts between Strategy, Player and Admin-
istrator are checked.

5.3 DrRacket’s Lexer
For DrRacket’s code coloring infrastructure, we construct
two benchmarks. The first loads a 5,000-line racket file and
measures the time it takes to color the lexemes of the file
while treating the lexer of the Racket language as a trusted
lexer. The second carries out the same task but considering
the lexer as untrusted. Similar to the Acquire benchmarks,
we run the two benchmarks without contracts, with plain
contracts and with option contracts. For the “with contracts”
mode, all the lexers involved (the #lang-line lexer and the
racket lexer) are equipped with the dep-lexer/c contract
mentioned in section 4.3. For the “with option” mode, we
use the lexer/c option contract. The tester of this contract
tries the given lexer on ten stream inputs of random size
between zero and a hundred characters.

The table in figure 3 shows the results of our measure-
ments. Contract checking results in 21% slowdown. In the
trusted case, option contracts eliminate this overhead almost
entirely (1%), which implies that the cost from the random
tests of the option contracts are insignificant. In the untrusted
case, we get a 14% slowdown from option contracts. Since
the lexer/c contract is exercised for the Racket lexer, the
contract system monitors this contract while the lexer colors
the file. The 7% improvement compared to the plain con-
tracts mode is due to the fact that the #lang-line lexer is still
considered trusted and its option contract is not exercised.

DrRacket’s Lexer
contracts option contracts

trusted 1.21 (0.02) 1.01 (0.01)
untrusted 1.21 (0.02) 1.14 (0.01)

Normalized average of cpu time of 30 runs. The numbers in parenthesis
denote the width of the 95% confidence interval for the slowdown. Mea-
surements performed on an Intel Core i5-3550S CPU @ 3.00GHz X 4 with
4 GiB memory running 32-bit Ubuntu 13.04 and Racket 5.3.4.7.

Figure 3: Experimental Results for Racket’s Lexer

6. Option Contracts in Theory
Like type systems, contract systems should satisfy some ba-
sic universal properties so programers can rely on their feed-
back [7]. Specifically, (1) when a contract system blames
a component for a violation, the component must be able
to affect the flow of values through the violated contract
boundary and (2) contract systems must be able to moni-
tor all the channels of communication between components
so that no unchecked value may migrate into a seemingly
protected component. As history has shown, it is easy for
a language designer to violate these conditions [6, 7]. This
section shows that option contracts satisfy these properties.

We specify the semantics of option contracts as an ex-
tension to CPCF, called OCPCF. In turn, CPCF [5] extends
Plotkin’s PCF [26] with generic constructs for formulat-
ing and monitoring contracts. Unlike Racket, CPCF is a
simply-typed higher-order functional language; we use a
typed model to expose the orthogonality of types and con-
tracts and to help the designers of typed languages with
importing option contracts into their world.. A contract ex-
presses computable properties of values at any level in the
type hierarchy. Monitors interpose contracts between value
producers and consumers and, at runtime, unfold into code
that enforces the properties.

Types τ = o | τ→τ | con(τ)
o = I | B

Contracts c = flat(e) | c d7→(λx.c)
| option(c d7→(λx.c),e)
| transfer

Terms e = v | x | e e | µx:τ.e | e+e
| e−e | e∧e | e∨e | zero?(e)
| if e e e | Ml,l

l (c,e)
| exercise(e) | waive(e)

Comp. Values v∗ = λx:τ.e
Values v = b | v∗

Base Values b = 0 | 1 | −1 | . . . | tt | ff

Figure 4: OCPCF: source syntax

Figure 4 shows the source syntax for OCPCF. Like CPCF,
OCPCF is a typed language that comes with predicate con-
tracts for primitive values, written flat(e), and contracts for
higher-order functions, written c1

d7→(λx.c2) where the “pre-
condition” c1 is the contract on the argument and the “post-
condition” c2 is the contract on the result. The latter is a
dependent function contract where the argument to the func-
tion is bound to x making it visible in the post-condition of
the contract and allowing for properties of the result to de-
pend on the argument. In addition, OCPCF offers two more
kinds of contracts: option contracts and transfer contracts.
Concretely, option(c,e) pairs a function contract c with a
tester e that exercises the function; like our Racket imple-
mentation, OCPCF syntax restricts option contracts to func-
tion contracts. A transfer contract tags a value as trusted
and never signals a contract violation. If the value comes
with an option contract, the consumer is added to its list of
responsible client parties and the provider to the responsible
server parties.

The programmer can apply a contract c to a compo-
nent e using M

k,l
j (c,e). Such a monitor separates two com-

ponents: the service provider e and its surrounding context,
the client. It corresponds to Racket’s define/contract and
with/contract forms. The labels k, l and j serve as iden-
tifiers for the exporting component; dubbed the server; the

importing component, the client, and the contract itself, re-
spectively. In source code, monitors have only one server
and client label, but due to option contracts monitors may
accumulate multiple server and client labels during evalu-
ation. These sets of labels represent those components that
have endorsed a value with an option contract.

A component can use exercise(e) to remove the option
contract from the value of e (if any) and replace it with the
underlying contract. The waive(e) expression discards the
option contract (if any) from the value of e.

Here is an example contract for a derivative operator:

c = c1
d7→(λ f .option(c2, tester))

c1 = positive d7→(λx.positive)
c2 = positive d7→(λx.close-to-slope-of-f@x)

The post-condition of c2 asserts that the slope of f around
x is close to the result of deriv applied to f at x. The op-
tion contract for c2 performs some random testing on f as
specified in the tester predicate.

Component e1, named k1, imports deriv with contract c
and applies it to a function f :

e1 = (Ms,k1
j1 (c,deriv)) f

Then e1 does not exercise the option contract, but transfers
its result to a client e2, named k2:

e2 = (Mk1,k2
j2 (transfer,e1)) 0

Component e2 imports the result of e1, trusts the random
testing and opts out of any further checks related to c2.
In other words, e2 uses the result of e1 without any con-
tract checking. By importing a transfered value, client
e2 acknowledges responsibility as a client of the randomly
checked result of e1. Moreover, since e1 transfers its result to
e2, it deliberately chooses to become a server for this value.

A different client e3, labeled k3, imports e1 and exercises
the option:

e3 = (exercise(M
k1,k3
j3 (transfer,e1))) 0

Let f ′ denote the derivative function of f and c′2 and tester′

the result of substituting f for x in c2 and tester, respectively,
which is necessary due to the dependent nature of c. Client
e3 considers c′2, the contract of f ′, to be critical and thus
decides not to trust the random testing. Since e3 applies f ′

to a value that violates the precondition of c′2, the contract
system detects the violation and blames the components that
imported f ′, in this case e1 and e3 and reports their labels
k1 and k3, respectively, in the contract error message. If e3
provided to f ′ a value that does not violate the precondition
of c′2 and the contract system detected a violation of the post-
condition of c′2, it would blame all the responsible servers of
f ′ and report their labels, namely s and k1.

Finally, a client e4 deems that c′2 is not a critical property
to monitor and decides to waive the option contract on f ′.

The waive expression allows e4 to use the function without
paying for the overhead of the option contract monitor:

e4 = waive(Mk1,k4
j4 (transfer,e1)) 0

The waive operator frees the value from the monitor and the
application proceeds as if f ′ had never had a contract.

In order to prove the fundamental soundness theorem for
our contract system, we formulate a reduction semantics. In-
terested readers can find the concrete definition of the se-
mantics in appendix A.1. What we need to know here is
that the semantics specifies a reduction relation → whose
transitive closure →∗ reduces the program to its final value
(if any). The relation requires an additional kind of term
syntax—so-called option guards O

l,k
j (c,e)—to express val-

ues with option contracts wrapped around them.
To demonstrate the workings of our semantics, we revisit

our examples from above. Under the semantics of the model,
e2 reduces as follows:

e2→∗ (Mk1,k2
j2 (transfer,Ms,k1

j1 (option(c′2, tester′), f ′))) 0
→∗ (Mk1,k2

j2 (transfer,Os,k1
j1 (c′2, f ′))) 0

→∗ (O{k1,s},{k2,k1}
j1 (c′2, f ′)) 0

→ f ′ 0

Since the option contract is not exercised the result of e1
does not come with a monitor around it and the application
proceeds without any contract checking. In short, the use of
0 does not result in a violation of c′2.

In the case of e3, the reduction proceeds differently:

e3→∗ (exercise(Mk1,k3
j3 (transfer,Os,k1

j1 (c′2, f ′)))) 0

→∗ (exercise(O{k1,s},{k3,k1}
j3 (c′2, f ′))) 0

→∗ (M{k1,s},{k3,k1}
j1 (c′2, f ′)) 0

Since e3 chooses to exercise the option contract, the applica-
tion involves checking c′2 and thus results in a contract error.
The contract system blames the components labeled k1 and
k3, meaning e1 and e3, the components that imported f ′:

e3 →∗ error
{k3,k1}
j1

The last example e4 shows how waive discards an option
guard around a value:

e5 →∗ waive(O
{k1,s},{k4,k1}
j1 (c′2, f ′)) 0 → f ′ 0

As the examples point out, our model introduces a pol-
icy for assigning blame that somewhat deviates from the
Findler-Felleisen model. Instead of blaming one compo-
nent for violating its contractual obligations, our new model
assigns blame to potentially many components. Moreover,
transfer contracts permit values to entirely bypass con-
tract checks, undermining the ability of the contract system
to detect contract violations. Considering the difficulties of

getting blame assignment correct for the Findler-Felleisen
version of contracts [6], these changes call for a formal
investigation of the correctness of our contract system. In
particular, we must prove that our contract system is able to:

• disallow values to bypass contract checks, unless they are
explicitly transferred from one component to another,

• keep track of transferred values, and
• on contract violation, report all the parties that created

the value or were involved in a transfer.

These informal criteria can be formalized as a variant of
a basic correctness property for contract systems, dubbed
complete monitoring [7].

THEOREM 1. → satisfies complete monitoring for OCPCF

PROOF. A detailed account of the proof technique and the
proof itself is provided in appendix A.2 and A.3.

7. Related Work
Eiffel [23, 25] first popularized software contracts and in-
troduced the design-by-contract paradigm. The latter builds
on a view of the world of software components as a market
where software contracts play the role of business contracts,
imposing obligations and making promises about compo-
nents. Option contracts take this analogy one step further
introducing notions that correspond to financial options to-
gether with actions such as transfer and exercise.

Since Eiffel introduced contracts, contracts have been
used both for extended static checking [1, 3, 10, 16, 33],
runtime monitoring of higher-order programs [12, 18], and
even a mixture of the two approaches [17, 21]. Nowadays,
contracts in one form or another are part of many mainstream
languages and libraries. Option contracts live in the world
of dynamically enforced contracts and build on a decade of
linguistic research on software contracts [12].

The designers of languages with software contracts rec-
ognize the performance impact of contract checking and pro-
vide compile-time mechanisms that disable contract check-
ing entirely or partially. For example, Ada [20] program-
mers can use the built-in pragma Assert for this purpose.
Eiffel [8] programmers can modify the Assert options of
the Eiffel compiler to enable or disable specific kinds of as-
sertions. For instance, the "Supplier Precondition" option
addresses interaction with trusted libraries, disabling all as-
sertions for these libraries except pre-conditions. Racket pro-
grammers implement such compile time mechanisms with
macros. As discussed, the Typed Racket developers achieve
a reasonably flexible use of the contracts in their imple-
mentation. Unfortunately, all these methods for controlling
contract checking permit only static, all-or-nothing policies
either at the component or the contract level. Option con-
tracts offer another alternative, namely, fine-grained con-
trol of contract checking without weakening the precision
of blame assignment. Moreover, option contracts can also

be used to implement dynamic contract-checking policies,
as demonstrated in our DrRacket example.

8. Conclusion
Software contracts are notorious for their cost. Given the
economic incentives for performance, any given program-
mer routinely disablesf contracts for product deployment,
acting, as Hoare [19] puts it, “[as] a sailing enthusiast who
wears his lifejacket when training on dry land, but takes it
off as soon as he goes to sea.” Our work tackles this prob-
lem, giving programmers new powers to create new policies
of contract checking, avoiding some performance overhead
and the code base skew that results from disabled contracts.

With this new expressive power of option contracts, pro-
grammers acquire new responsibilities. Client-side program-
mers must adapt their programming style to option contracts.
The creators of server components cannot remove option an-
notations from contracts in a lighthearted manner because
doing so may have serious performance implications. The
Racket community has just begun its experimentation with
options, and we hope to report our insights in the future.

Acknowledgments Thanks to Amal Ahmed and Amr Sabry
for the inspiring exchange that triggered this research.
Sam Tobin-Hochstadt coined the phrase “option contracts.”
AFOSR supported the exploration of contracts for Dimoulas
and Felleisen in the past; NSF provides support for Findler.

References
[1] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec#

programming system. In CASSIS, pages 49–69, 2004.

[2] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins.
Making components contract aware. IEEE Computer, 32(7):
38–45, July 1999.

[3] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. Technical Report 158, Compaq
SRC Research Report, 1998.

[4] C. Dimoulas. Foundations for Behavioral Higher-Order Con-
tracts. PhD thesis, Northeastern University, 2012.

[5] C. Dimoulas and M. Felleisen. On contract satisfaction in
a higher-order world. ACM Transactions on Programming
Languages and Systems, 33(5):16:1 – 16:29, 2011.

[6] C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen.
Correct blame for contracts: No more scapegoating. In POPL,
pages 215 – 226, 2011.

[7] C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen. Complete
monitors for behavioral contracts. In ESOP, pages 211 – 230,
2012.

[8] Standard ECMA-367 Eiffel: Analysis, Design and Program-
ming Language. Ecma International, 2006.

[9] F. Ergün, S. Kannan, S. R. Kumar, R. Rubinfeld, and
M. Viswanathan. Spot-checkers. Journal of Computer and
System Sciences, 60(3):717–751, 200.

[10] M. Fähndrich, M. Barnett, and F. Logozzo. Embedded con-
tract languages. In SAC, pages 2103–2110, 2010.

[11] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineer-
ing with PLT Redex. MIT Press, 2009.

[12] R. B. Findler and M. Felleisen. Contracts for higher-order
functions. In ICFP, pages 48–59, 2002.

[13] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for Java. In
PLDI, pages 234–245, 2002.

[14] M. Flatt and PLT. Reference: Racket. Reference Manual PLT-
TR2010-reference-v5.3.3, PLT Design Inc., February 2013.
URL http://racket-lang.org/techreports/.

[15] A. George. Three Pitfalls in Java Performance Evaluation.
PhD thesis, Ghent University, 2008.

[16] M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made
manifest. In POPL, pages 353–364, 2010.

[17] J. Gronski and C. Flanagan. Unifying hybrid types and con-
tracts. In TFP, pages 54–69, 2007.

[18] R. Hinze, J. Jeuring, and A. Löh. Typed contracts for func-
tional programming. In FLOPS, pages 208–235, 2006.

[19] C. A. R. Hoare. Hints on programming language design.
Technical report, Stanford University, 1973.

[20] Ada 2012 Language Reference Manual. International Organi-
zation for Standardization, 2012.

[21] K. Knowles, A. Tomb, J. Gronski, S. N. Freund, and
C. Flanagan. Sage: Unified hybrid checking for first-class
types, general refinement types, and dynamic, 2006. URL
http://sage.soe.ucsc.edu/.

[22] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for
detailed design. In Behavioral Specifications of Businesses
and Systems, pages 175–188. 1999.

[23] B. Meyer. Design by contract. In Advances in Object-Oriented
Software Engineering, pages 1–50. Prentice Hall, 1991.

[24] B. Meyer. Applying design by contract. IEEE Computer, 25
(10):40–51, 1992.

[25] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[26] G. D. Plotkin. LCF considered as a programming language.
Theoretical Computer Science, 5(3):223–255, 1977.

[27] T. S. Strickland and M. Felleisen. Nested and dynamic con-
tract boundaries. In IFL, pages 141 – 158, 2009.

[28] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and
M. Flatt. Chaperones and impersonators. In OOPSLA, pages
943–962, 2012.

[29] S. Tobin-Hochstadt and M. Felleisen. Interlanguage migra-
tion: from scripts to programs. In DLS, pages 964–974, 2006.

[30] S. Tobin-Hochstadt and M. Felleisen. The design and imple-
mentation of Typed Scheme. In POPL, pages 395–407, 2008.

[31] S. Tobin-Hochstadt and M. Felleisen. Logical types for un-
typed languages. In ICFP, pages 117–128, 2010.

[32] S. Tobin-Hochstadt and D. V. Horn. Higher-order symbolic
execution via contracts. In OOPSLA, pages 537–554, 2012.

[33] D. Xu, S. Peyton Jones, and K. Claessen. Static contract
checking for Haskell. In POPL, pages 41–52, 2009.

A. Appendix
This appendix presents a proof of complete monitoring [7]
for OCPCF, a model of a typed variant of Racket with option
contracts. Complete monitoring guarantees that the contract
system assigns blame accurately and protects components
effectively. A complete monitoring theorem is thus the min-
imal standard that a contract system should satisfy.

Unfortunately, the OCPCF model does not come with the
necessary infrastructure to prove complete monitoring. We
deal with this issue via an indirect approach. We first define
another model ∗OCPCF, which has the required hooks for
establishing complete monitoring. After that we show that
the two models are observably equivalent.

The first section of this appendix introduces a suitable re-
duction semantics [11] of OCPCF. While the second section
presents ∗OCPCF, the third one proves that it satisfies com-
plete monitoring and bi-simulates OCPCF.

A.1 Reduction Semantics for OCPCF
Figures 5 through 7 present the evaluation syntax of OCPCF
as an extention to its source syntax (figure 4) plus its eval-
uation contexts and reduction rules. The rules that do not
involve contracts are the same as those for Plotkin’s PCF.

The evaluation syntax of OCPCF comes with two kinds
of monitors: M

k,l
j (c,e) and O

k,l
j (c,e). The first correspond

to components whose result the contract system monitors
for c while the second denote components whose result the
contract system does not monitor for c but they contain c and
enable the use of exercise or transfer.

Terms e = ... | checkl̄
l(e,v) | tryl̄

l(e,e)
| errorl̄

l | mg | og
Guards mg = M

l̄,l̄
l (c,e)

og = O
¯̄l,l̄
l (c,e)

Values
MGV : mgv = M

l̄,l̄
l (c,v∗)

OGV : ogv = O
l̄,l̄
l (c,v∗)

v∗ = ... | mgv | og

Figure 5: OCPCF: evaluation syntax

The monitor expression M
k,l
j (flat(e),b) reduces to a

check that tests whether predicate e holds for b. If the
check succeeds, it returns b; else it raises a contract violation
errork

j that blames component k for violating contract j.
The monitor expression Mk,l

j (c1
d7→(λx.c2),v) uses a moni-

tor guard to protect the function v during future applications.
When the guard is applied, the reduction rule decomposes
the contract, creates a guard that monitors the argument with
c1 and then applies v to the guard. The responsible reduction
rule also constructs a guard that monitors the result of the
application with c2. The monitor of the argument flips the

server and client labels while the monitor of the result leaves
them as they are. The label swap signals that the precondi-
tion becomes the responsibility of the client, which after all
provides the argument, while the post-condition remains the
responsibility of the server. For the dependent aspect of the
contract, the rule implements the indy semantics [6], mean-
ing x in c2 is replaced by the argument monitored by c1
where j replaces k. The intuition behind the labels selection
is that the original client l is responsible for the argument’s
post-condition but the contract j is responsible for the treat-
ment of the argument inside the contract’s code.

Finally, Mk,l
j (option(c,e),v) employs try to test whether

a guard for v with c satisfies the tester e. Since e is part of
the contract itself, the monitor for the test carries j as its
client label. If the test does not lead to a contract error, try
returns an option guard, Ok,l

j (c,v), which is a value that stores
v together with c and the labels of the original monitor.

An option guard represents a partially checked func-
tion; it keeps track of the contract so that a component
may exercise the option. In addition, it accumulates the
labels of the components that accept the option guard to
accurately assign blame when contract checking detects a
contract breach. A component may use an option guard like
any other function. In particular, the application O

k,l
j (c,v f) v

reduces to an ordinary application v f v.

E = [] | E e | v E | E +e | v+E | E −e | v−E
| E ∧e | v∧E | E ∨e | v∨E | zero?(E)

| if E e e | Mk̄,l̄
j (c,E) | checkk̄

l (E ,v) | tryl̄
l(E ,v)

| exercise(E) | waive(E)

Figure 6: OCPCF: evaluation contexts

When a monitoring expression employs transfer as
a contract, guarded values experience a change of labels.
Specifically, M

k,l
j′ (transfer,O

h,q
j (c,v)) updates the option

guard’s labels; it adds the server and client labels of the
monitor to the server and client labels of the guard to pro-
duce O

kh,lq
j (c,v). This labeling shows how the consumer of

the guard takes responsibility as a client and the exporting
component as a server. Monitors of transfer contracts do
not affect other kind of values; they simply pass them on.

Exercising an option transforms an option guard O
k,l
j (c,v)

into a monitored guard, Mk,l
j (c,v).

Due to transfer contracts and exercise, monitor
guards carry a pair of sets of labels instead of one server
and one client label. This implies that in case of a contract
failure check blames all the labels at the server position on
the guard, i.e., it blames all the components that accepted
responsibility for the guarded value.

Like exercise, waive affects only guards. It extracts v
from O

k̄,l̄
j (c,v) and otherwise passes on all other values.

E [· · ·] → E [· · ·]

n1+n2 . n where n1 +n2 = n
n1−n2 . n where n1−n2 = n
zero?(0) . tt

zero?(n) . ff if n 6= 0
v1∧v2 . v where v1∧ v2 = v
v1∨v2 . v where v1∨ v2 = v
if tt e1 e2 . e1
if ff e1 e2 . e2
λx.e v . {v/x}e
µx.e . {µx.e/x}e

M
k̄,l̄
j (flat(e),b) . checkk̄

j(e b,b)

M
k̄,ll̄
j (option(c,e),v)

tryk̄
j(e M

k̄, jl̄
j (c,v),Ok̄,ll̄

j (c,v))

M
kk̄,l̄
j (c1

d7→(λx.c2),v f) v .

M
kk̄,l̄
j ({Ml̄, jk̄

j (c1,v)/x}c2,v f M
l̄,kk̄
j (c1,v))

M
k,l
j (transfer,v) . v if v 6∈ OGV

M
k̄,l̄
j′ (transfer,O

h̄,q̄
j (c,v)) . O

k̄h̄,l̄q̄
j (c,v)

checkk̄
j(tt,v) . v

checkk̄
j(ff,v) . errork̄

j

tryk̄
j(tt,v) . v

tryk̄
j(ff,v) . errork̄

j

exercise(v) . v if v 6∈ OGV

exercise(O
h̄,q̄
j (c,v)) . M

kh̄,lq̄
j (c,v)

waive(v) . v if v 6∈ OGV

waive(O
h̄,q̄
j (c,v)) . v

O
k̄,l̄
j (c,v f) v . v f v

E [errork̄
j] → errork̄

j

Figure 7: OCPCF: reduction semantics

A.2 ∗OCPCF: A Theorem-Friendly Semantics
Complete monitoring requires that we decorate OCPCF pro-
grams with annotations for ownership and obligations [7].
Ownership and obligations are tools for reasoning about the
behavior of the contract system independently of monitors.

An obligation annotation bflat(e)cl̄ denotes that compo-
nents l̄ are responsible for meeting the contract flat(e). An
ownership annotation |e|l indicates that component l owns e.

Ownership provides a mechanism for tracking the migra-
tion history of values and thus helps establish that the con-
tract system offers sufficient protection. A revised semantics
propagates ownership annotations. If the ownership annota-
tion of a term is different than the owner of its context and

the term is not embedded in an appropriate monitor, then the
contract system allows values to leak from one component
to another without inspection. Put positively, if a contract
system manages to enforce a single-owner policy through-
out program execution, i.e., every value has a single owner,
it allows preogrammers to protect components completely.

As for blame assignment, a correct contract system
should blame a component only if it breaks one of its
promises. We therefore mark the pieces of a contract that
a component needs to live up to with obligation annotations.
Equipped with this machinery, we can specify what it means
for a contract system to assign blame correctly. A contract
system may blame a component only if one of its values
violates one of its contractual obligations.

Adding ownership and obligations annotations to OCPCF
directly poses a challenge. Monitors for transfer contracts
allow values to circumvent the contract system as they mi-
grate from one component to another. Thus a naive anno-
tation of the OCPCF semantics with ownership labels vi-
olates the single-owner policy and breaks complete moni-
toring. Fortunately, we can construct an extension of CPCF
with annotations [7] that is equivalent to OCPCF and tracks
uninspected values. We call the new language ∗OCPCF.

Contracts c = ... | boption(c d7→(λx.c),e)cl̄
| transfer

Terms e = ... | exercise(e) | waive(e)

Γ; l
 e

Γ; l
 e
Γ; l
 exercise(e)

Γ; l
 e
Γ; l
 waive(e)

Γ; k̄; l̄; j B c

Γ; k̄; l̄; j B transfer

Γ; k̄; l̄; j B c Γ; j
 e

Γ; k̄; l̄; j B boption(c, |e| j)ck̄

Figure 8: ∗OCPCF: Well-formed source programs

The syntax of ∗OCPCF extends annotated CPCF with
ownership and obligations annotations; see top of figure 8.
The bottom of the figure adds rules for well-formed source
programs and contracts to those of CPCF. The most inter-
esting rules are those for contracts. Transfer contracts never
fail and thus do not impose obligations and are always well-
formed. In contrast, option contracts may raise a contract
violation due to a failed test and thus they impose obliga-
tions like flat contracts. Also, an option contract must own
its tester term.

In addition to try and check, the evaluation syntax of
∗OCPCF (figure 9) introduces a small ecosystem of guards.
We group guards in three categories: monitor guards M, op-

Terms e = ... | errorl̄
l | tryl̄

l(e,e)
| mg | og | wg

Guards mg = M
l,l
l (c,e) | ∗Ml,l(e) | |mg|l

og = O
l,l
l (c,e) | ∗Ol,l(e) | |og|l

wg = Wl,l(e) | |wg|l
Values
MGV : mgv = M

l,l
l (c,v∗) | ∗Ml,l(v∗) | |mgv|l

OGV : ogv = O
l,l
l (c,v∗) | ∗Ol,l(v∗) | |ogv|l

WGV : wgv = Wl,l(v∗) | |wgv|l
v∗ = ... | mgv | ogv | wgv

Figure 9: ∗OCPCF: Evaluation syntax

tion guards O, and waived guards W . We use waived guards
to mark an unchecked value as foreign inside a component
when the value crosses the component’s boundary without
the contract system’s protection but with its approval. Un-
like OCPCF, both monitor and option guards carry only two
labels rather than two sets of labels. However, the star ver-
sions of the guards, ∗M and ∗O allow us to record multiple
components that have accepted an option guard. For instance
a stack of star-option guards with an option guard at the bot-
tom in ∗OCPCF, ∗Ok1,l1(...∗Okn,ln(O

h,q
j (c,v))...), corresponds

to a single option guard Ok1...knh,l1...lnq
j (c,v) in OCPCF. Stacks

of guards have the advantage of introducing separate bound-
aries between components that have accepted an option
guard. This allows the guards to accommodate ownership
annotations without breaking the single-owner policy.

E l = ... | checkk̄
l (E

lo ,v) | checkk̄
h(E

l ,v) | tryk̄
l (E

lo ,v)
| tryk̄

h(E
l ,v) | exercise(E l) | waive(E l)

| Ml,k
j (c,E lo) | Mh,k

j (c,E l) | ∗Ml,k(E lo) | ∗Mh,k(E l)

| Ol,k
j (c,E lo) | Oh,k

j (c,E l) | ∗Ol,k(E lo) | ∗Oh,k(E l)

| Wl,k(E lo) | Wh,k(E l)

E lo= ... | exercise(E lo) | waive(E lo)

Figure 10: ∗OCPCF: Evaluation contexts

The guards, together with the check and try con-
structs, introduce points where ownership changes. Hence,
they affect the ownership of the hole of evaluation con-
texts changes. Figure 10 defines the evaluation contexts of
∗OCPCF as an extension of those of CPCF.

Before we present the semantics of ∗OCPCF, we need to
add another case to the special contract substitution function
so that it handles option contracts:

{e/cx}boption(c, |e′|k)cl̄ =
boption({e/cx}c,{|e|k/x}|e′|k)cl̄

The reduction semantics for ∗OCPCF adopts some rules
from the semantics of CPCF and adds a few. Figures 11, 12
and 13 show the rules that replace or add to those of CPCF.

Rules for check and try are similar to those of OCPCF
except that now they come with ownership annotations.

When a stack of waived guards holds a basic value, the
reduction eliminates the guards and delivers the value after
removing all ownership annotations. After all, basic values
are safe for the context to absorb.

Applying a function wrapped in a stack of waived guards
reduces to an application wrapped with the same guards. The
argument is wrapped with a reversed stack of guards plus
ownership annotations. The labels on the guards for the ar-
gument are swapped just as for monitors for function con-
tracts. An application of a stack of option guards reduces to
an application of a homomorphic waived guard. The waived
guard marks the function as a foreign value but does not add
any contract-related constraints on its use.

Figure 12 displays the reduction rules for exercise and
waive. They are in spirit the same as the corresponding rules
of OCPCF with two differences: they operate on stacks of
guards rather than a single guard and waive does not release
the value that resides in a stack of option guards but instead
turns the option guards into waived ones. Other than that, the
rules transform guards in a way that is analogous to the rules
of OCPCF but leave ownership annotations intact.

Figure 13 presents the complex rules for manipulating
stacks of monitor guards. These rules also cover the cases
where there is just a single monitor around a value instead

E l [· · ·] ; E l [· · ·]

checkk̄
j(||tt|| j,v) . v

checkk̄
j(||ff|| j,v) . errork̄

j

tryk̄
j(||tt|| j,v) . v

tryk̄
j(||ff|| j,v) . errork̄

j

wg . b

if wg = Wk1,l1(...||Wkn,ln(||Wm,p(||b||r)||h)||qn ...)

||wgv||l ||v||l . ||wg||l
if ||wgv||l = ||Wk1,l1(...||Wkn,ln(||Wm,p(v′)||h)||qn ...)||q1

where
||wg||l = ||Wk1,l1(...||Wkn,ln(||Wm,p(v′ wgv′)||h)||qn ...)||q1

and wgv′ = Wp,m(||Wln,kn(||...Wl1,k1(|||v|l ||q1)...||qn)||h)

||ogv||l ||v||l . ||wgv||l ||v||l
if ||ogv||l = ||∗Ok1,l1(...||∗Okn,ln(||Om,p

r (c,v)||s)||qn ...)||q1

and where
||wgv||l = ||Wk1,l1(...||Wkn,ln(||Wm,p(v′)||s)||qn ...)||q1

Figure 11: ∗OCPCF: Annotated semantics (part 1)

E l [· · ·] ; E l [· · ·]

exercise(||v||l) . ||v||l if v 6∈ OGV

exercise(||ogv||l) . mgv
if ||ogv||l = ||∗Ok1,l1(...||∗Okn,ln(||Om,p

r (c,v)||s)||qn ...)||q1

and where
||mgv||l = ||∗Mk1,l1(...||∗Mkn,ln(||Mm,p

r (c,v)||s)||qn ...)||q1

waive(||v||l) . ||v||l if v 6∈ OGV

waive(||ogv||l) . wgv
if ||ogv||l = ||∗Ok1,l1(...||∗Okn,ln(||Om,p

r (c,v)||s)||qn ...)||q1

and where
||wgv||l = ||Wk1,l1(...||Wkn,ln(||Wm,p(v)||s)||qn ...)||q1

Figure 12: ∗OCPCF: Annotated semantics (part 2)

of a stack of star-monitors. Thus they subsume the corre-
sponding rules of CPCF.

If the bottom of the stack is a guard for a flat contract on
a basic value, the stack reduces to a check where the blame
labels are all the labels in server position on the stack of the
guards. If the check fails, the contract system blames all the
components that accepted responsibility for that value.

If the bottom of the stack is a guard for an option contract,
the stack reduces to a try where the test term applies the
tester of the contract to the stack of monitors. To get the
correct indy semantics, the rule replaces the client label of
the top of the stack with j. If the test succeeds, try returns
an option guard like the original one but without the option
around the contract; else it raises a contract error blaming all
the labels in server position on the stack of the guards.

An application of a stack of monitor guards depends on
the value at the bottom of the stack. If it is a stack of option
guards, the reduction activates the option by turning the op-
tion guards into corresponding monitors and then performs
the application. If not, the application is similar to that of
waived guards. The difference is that the rule also decom-
poses the function contract at the bottom of the stack and
uses the pre-condition as the contract at the bottom of the
argument stack and the post-condition as the contract at the
bottom of the application stack. Furthermore, the stack of
guards substituted in the post-condition uses the contract la-
bel, namely j, as the client label on the top star-guard.

The rules for stacks of monitors for transfer contracts
are like those of OCPCF. Accepting a stack of option guards
ogv results in a star-option stack of guards around ogv
that uses the same labels as the stack of monitors for the
transfer contract. All other value are passed through.

Before we prove complete monitoring for ∗OCPCF, we
go back to the example e3 of section 6 and examine how
its behavior changes under the semantics of our new model.

We omit obligation annotations, because they do not affect
computation, and we focus on well-formed ownership anno-
tations and guards. In terms of the syntax of ∗OCPCF, the
example’s terms become:

e1 = |Ms,k1
j1 (c, |deriv|s) f |k1

e3 = |exercise(Mk1,k3
j2 (transfer,e1)) 0|k3

E l [· · ·] ; E l [· · ·]

mg . check
k1...knm
j (e b,b)

if mg =
∗Mk1,l1(...||∗Mkn,ln(||Mm,p

j (bflat(e)cl̄ , ||b||r)||k)||qn ...)

mg . try
k1...knm
j (e mg′,og)

if mg =
∗Mk1,l1(...||∗Mkn,ln(||Mm,p

j (boption(c,e)cl̄ ,v)||k)||qn ...)

and where mg′ = ∗Mk1, j(...||∗Mkn,ln(||Mm,p
j (c,v)||k)||qn ...)

and og = ∗Ok1,l1(...||∗Okn,ln(||Om,p
j (c,v)||k)||qn ...)

||mgv||l ||v||l . ||mg||l
if ||mgv||l =
||∗Mk1,l1(...||∗Mkn,ln(||Mm,p

j (c1
d7→(λx.c2),v′)||h)||qn ...)||q1

and where ||mg||l =
||∗Mk1,l1(...||∗Mkn,ln(||Mm,p

j ({mg′′/cx}c2,v′ mg′)||h)||qn ...)||q1

and mg′ = ∗Mp,m(||∗Mln,kn(||...Ml1,k1
j (c1, |||v|l ||q1)...||qn)||h)

and mg′′ = ∗Mp, j(||∗Mln,kn(||...Ml1,k1
j (c1, |||v|l ||q1)...||qn)||h)

mg . Wk1,l1(...||Wkn,ln(||Wm,p(v)||k)||qn ...)

if mg = ∗Mk1,l1(...||∗Mkn,ln(||Mm,p
j (transfer,v)||k)||qn ...)

and v 6∈ OGV

mg . og′

if mg = ∗Mk1,l1(...||∗Mkn,ln(||Mm,p
j (transfer,ogv)||k)||qn ...)

where ogv = ||∗Ok′1,l
′
1(...||∗Ok′n,l

′
n(||Om′,p′

j′ (c,v)||k′)||q′n ...)||q1

and og′ = ∗Ok′1,l
′
1(...||∗Ok′n,l

′
n(||∗Om′,p′(ogv)||k)||qn ...)

Figure 13: ∗OCPCF: Annotated semantics (part 3)

The execution of e3 leads to an application of a stack of
waived guards:

e3 ;∗ |exercise(Mk1,k3
j2 (transfer, |Os,k1

j1 (c′2, | f ′|s)|k1)) 0|k3

;∗ |exercise(∗Ok1,k3(|Os,k1
j1 (c′2, | f ′|s)|k1)) 0|k3

;∗ |(|∗Mk1,k3(|Ms,k1
j1 (c′2, | f ′|s)|k1)|k2) 0|k3

As in section 6, e3 reduces to a contract error errork3,k1
j1 .

Notice how the ownership annotations remain well-formed
during evaluation. This is the key insight that we are going
to use to prove that ∗OCPCF is well-formed.

A.3 Complete Monitoring for ∗OCPCF
The definition of complete monitoring for ∗OCPCF is simi-
lar to that for CPCF except that the case for failures of flat
contracts is slightly different and there is an additional case
for failed option contract tests.

DEFINITION 2 (Complete Monitoring for ∗OCPCF). A re-
duction relation ↪→ is a complete monitor for ∗OCPCF if
for all terms e0 such that ∅; lo
 e0,

• e0 ↪→∗ v,
• for all e1 such that e0 ↪→∗ e1 there exists e1 ↪→ e2,
• e0 ↪→∗ e1 ↪→∗ errorh̄

j and there is at least an e1 such that

e1 = E l [∗Ml2,l1(...||∗Mln+1,ln(||Mk,ln+1
j (c,v)||ln+1)||ln ...)]

and for all such terms e1, v = |v1|k, h̄ = l2...ln+1k, k ∈ l̄,
and c = bflat(e)cl̄ or boption(c′,e)cl̄ .

First, the definition requires the absence of stuck states
due to any violation of the single-owner policy. Second, the
cases for contract failures guarantee that if the contract sys-
tem raises a blame error, then the blamed components are
all the components that accepted responsibility for the mon-
itor guards. In addition, the definition requires that the flat
or option contract at the bottom of the stack is amongst the
obligations of one of the blamed components, specifically of
the first component that took responsibility for the value.

The proof of complete monitoring for ∗OCPCF follows
the proof of Dimoulas et al. [7]. We develop a subject
that generalizes well-formedness and use a progress-and-
preservation subject reduction technique. The additional
well-formedness rules cover the terms of the evaluation syn-
tax of ∗OCPCF. Especially for stacks of guards they make
sure that appropriate ownership annotations are present in
between each guard layer. Moreover the rules for moni-
tors and stacks of guards use a generalized notion of well-
formedness to inspect terms inside the bottom guard of the
stack of guards. This extention is needed because beta-
reduction introduces terms that temporarily deviate from
well-formedness [6]. The generalized well-formedness per-
mits us to handle these temporarily out-of-order terms with-
out disturbing the single-ownership and obligations princi-
ples. Some modifications are also necessarry for the rules
for well-formed flat and option contracts. Since monitors for
transfer monitors dynamically change the components
that are responsible for meeting a contract, statically deter-
mined obligations cannot provide an accurate prediction of

the blamable parties. Nevertheless, obligations can still tell
us that the initially responsible component for a contract is
amongst the components that get blamed if the contract fails.
The proof technique and corresponding definitions are sim-
ilar to that of Dimoulas [4, ch. 6] and we ommit them here
due to lack of space.

With the extended definition for well-formedness in hand,
we prove that ; defines a complete monitor.

THEOREM 3. ; is a complete monitor for ∗OCPCF.

A.3.1 Complete Monitoring for OCPCF
The introduction of ∗OCPCF is a detour to prove complete
monitoring for OCPCF. To transfer the result to OCPCF,
we prove a bisimulation theorem between the two lan-
guages. Figure 14 specifies the relation between OCPCF
and ∗OCPCF terms.

e∼ e′

e∼ctx e′

e∼ |e′|l
e∼ctx e′

e∼ Wk,l(e′)

e∼ctx e′ c∼ctx c′

M
k1...knk,l1...lnl
j (c,e)∼

∗Mk1,l1(...||∗Mkn,ln(||Mk,l
j (c′,e′)||l)||ln ...)

e∼ctx e′ c∼ctx c′

O
k1...knk,l1...lnl
j (c,e)∼

∗Ok1,l1(...||∗Okn,ln(||Ok,l
j (c′,e′)||l)||ln ...)

c∼ c′

c∼ c′ e∼ctx e′ v∼ctx v′

option(c,e)∼ boption(c′,e′)cl̄

e∼ctx e′

flat(e)∼ bflat(e′)cl̄

Figure 14: OCPCF-∗OCPCF bisimulation

THEOREM 4. Let e a term of OCPCF and e∗ a term of
∗OCPCF. If ∅; lo
 e∗ and e∼ctx e∗ then

• e→∗ v iff e∗;∗ v∗ and v∼ctx v∗ and,
• e→∗ errork̄

j iff e∗;∗ errork̄
j.

