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The DefinitelyTyped repository hosts type declarations for thousands of JavaScript libraries. Given the lack of
formal connection between the types and the corresponding code, a natural question is are the types right? An
equally important question, as DefinitelyTyped and the libraries it supports change over time, is how can we
keep the types from becoming wrong?

In this paper we offer Scotty, a tool that detects mismatches between the types and code in the Definitely-
Typed repository. More specifically, Scotty checks each package by converting its types into contracts and
installing the contracts on the boundary between the library and its test suite. Running the test suite in this
environment can reveal mismatches between the types and the JavaScript code. As automation and generality
are both essential if such a tool is going to remain useful in the long term, we focus on techniques that sacrifice
completeness, instead preferring to avoid false positives. Scotty currently handles about 26% of the 8006
packages on DefinitelyTyped (61% of the packages whose code is available and whose test suite passes).

Perhaps unsurprisingly, running the tests with these contracts in place revealed many errors in Definitely-
Typed. More surprisingly, despite the inherent limitations of the techniques we use, this exercise led to one
hundred accepted pull requests that fix errors in DefinitelyTyped, demonstrating the value of this approach
for the long-term maintenance of DefinitelyTyped. It also revealed a number of lessons about working in the
JavaScript ecosystem and how details beyond the semantics of the language can be surprisingly important.
Best of all, it also revealed a few places where programmers preferred incorrect types, suggesting some avenues
of research to improve TypeScript.
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1 INTRODUCTION

We built Scotty, a prototype infrastructure that scans every package in DefinitelyTyped, a large,
Microsoft-maintained repository of TypeScript type declarations, in order to find inconsistencies
between JavaScript implementations and their corresponding type declarations. Scotty is a mostly
automatic system. It triggers errors when a mismatch is observed, but an absence of errors does
not guarantee the correctness of a type declaration and, conversely, an error reported by Scotty is

Authors’ addresses: Joshua Hoeflich, Northwestern University, USA, ; Robert Bruce Findler, Northwestern University, USA,
; Manuel Serrano, Inria/UCA, France, .

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART142
https://doi.org/10.1145/3563305

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 142. Publication date: October 2022.



http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3563305
https://doi.org/10.1145/3563305

142:2 Joshua Hoeflich, Robert Bruce Findler, and Manuel Serrano

not always the symptom of a true error in a declaration. However, Scotty lets us detect potential
problems in 567 packages and it helped us submit just over 100 accepted pull requests. Despite
its current weaknesses, some being inherent to the approach and some being possible to fix with
additional engineering effort, we have found that Scotty is nonetheless already useful enough in
practice to detect many meaningful bugs.

As of April 2022, on a reasonably fast server, Scotty takes less than 6 hours to analyze the whole
DefinitelyTyped repository (containing 8006 packages). Scotty can also be used in an incremental
mode where only modified packages are inspected. This feature makes Scotty a potentially valuable
part of a continuous integration system.

A brief description of the languages and techniques at play is in order.

e TypeScript is a front-end to JavaScript. The TypeScript compiler verifies the syntactic com-
pliance of the programs. It type checks them, which involves checking the compatibility of
the declared types and inferring types for unannotated variables and functions. In order to
execute TypeScript programs, it erases all types to produce JavaScript programs that can be
executed by any unmodified JavaScript engine.

TypeScript’s design is governed by two essential rules: full compatibility with JavaScript,
which means unrestricted interoperability between the two languages, and static error
detection. JavaScript’s high degree of dynamicity, however, may seem consubstentially
incompatible with the idea of static enforcement. To solve that contradiction, TypeScript’s
type system is unsound. That is, there is no guarantee that the static types checked by the
static type checker do indeed correspond to the values that appear during evaluation. Thus,
there is no formal correspondence between the static types used by the TypeScript compiler
and the dynamic types used by the JavaScript engine executing the program. Indeed, the
desire for unrestricted interoperation with JavaScript seems to have removed other inhibitions
and even a fully typed program in TypeScript might have values occupying its variables that
do not match the variables’ types.

Using an unsound type system is a controversial choice. Here, we merely observe that
according to others’ data,! TypeScript popularity is substantial and its community is growing
steadily. Also, in spite of the unsoundness of its type system, its static analysis helps to detect
bugs (Gao et al. 2017).

e DefinitelyTyped is a public repository where contributors provide type declarations for
existing JavaScript packages. It holds a central position in the TypeScript ecosystem. Providing
an additional type declaration to a JavaScript package enables the TypeScript compiler to
check the correctness of that package and its uses from within TypeScript code. As of 2022,
DefinitelyTyped offers type declarations for about 8,000 JavaScript packages, and its official
git repository shows about 80,000 commits by about 14,000 contributors. This is a huge
database of types!

Many of the DefinitelyTyped types are crafted manually. Some others are partially generated by
the TypeScript compiler that can be used to infer types from JavaScript programs. However, in both
cases, there is no guarantee that these types are faithful to their corresponding JavaScript libraries.
Our approach to finding these inconsistencies is to reuse techniques developed for natural-style
gradual typing (Gronski et al. 2006; Tobin-Hochstadt and Felleisen 2006) and higher-order con-
tracts (Findler and Felleisen 2002), following the pioneering work by Williams et al. (2017) with
their tool, TPD.? Their work discovered significant problems due to the interference introduced

Thttps://madnight.github.io/githut/4 and https://insights.stackoverflow.com/survey/2021#technology-most-popular-
technologies
2TPD stands for “The Prime Directive” from Star Trek and inspires our paper’s title and tool name as well.
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Table 1. Runing Scotty on all 8006 packages in Definitely Typed. Yes and No are the numbers of packages
that respectively pass to the next phase or are eliminated. For Can Fetch? and Can Test?, the percentages
are computed from the overall DefinitelyTyped package count. For Can Inject?, Can Interpose?, and Contract
Violation? two percentages are computed. The first is from the overall DefinitelyTyped package count and
the second from the number of packages that pass the Can Test? step. The Time column give the wall-clock
time it takes to run the phases for all the packages at that step, on a decently modern server.

Step Yes No Time
Can Fetch? 6446 (81%) 1560 (19%)
3.5 hours
Can Test? 3384 (42%) 3062 (38%)
Can Inject? 2417 (30%, 71%) 967 (12%, 29%) 55 mins
Can Interpose? 2069 (26%, 61%) 348 (4%, 10%) 45 mins
Contract Violation? 567 (7%, 17%) 1502 (19%, 44%) 47 mins

by higher-order contracts, and, in the end, rejected the approach. Our experience confirms their
observation that interference of higher-order contracts is problematic, but also differs from theirs
as interference is not, in our experience, a significant impediment to discovering bugs in Definitely-
Typed. Instead, we found that the wide variety of build steps, testing frameworks, and linters that
decorate the JavaScript ecosystem are more substantial challenges to overcome.

Despite the challenges, Scotty was able to lead us to hundreds of errors in DefinitelyTyped. After
some work to try to debug the errors, we were able to open slightly more than 100 pull requests on
DefinitelyTyped to fix the errors, of which all but two were merged. Our activity over about six
months currently places the first author as the 40th contributor on DefinitelyTyped.

The rest of the paper is organized as follows. In section 2, we present the infrastructure we have
developed for checking packages. Section 3 presents the higher-order contract system we have
created for dynamically checking TypeScript types and the compiler that translates TypeScript
types into contracts. The errors in DefinitelyTyped are themselves interesting and we present an
analysis of them in section 4. Finally, section 5 presents the related work and section 6 concludes.

2 SCOTTY

Scotty tries to download and test all of the untyped packages listed on DefinitelyTyped, but the
immense variation in the JavaScript ecosystem makes this task difficult. While the npm registry
where these packages are hosted provides rudimentary structural guarantees, the command line
interface offers commands like “npm test” that simply invoke one-line shell scripts. These scripts
can behave in unexpected and surprising ways, from starting a web server that never exits to
spinning up GUIs or playing songs. Nonetheless, they behave predictably often enough that our
system can detect a meaningful number of bugs.

As of April 2022, DefinitelyTyped counts 8006 packages and Scotty attempts to process all of
them. Packages are eliminated for a number of different reasons. Some packages simply do not
provide source code or test suite. Some packages are intrinsically incompatible with Scotty, for
instance because of its use of higher-order contracts. Some other packages cannot be checked
because of current limitations of Scotty’s implementation.

In order to bring some structure to the chaos of the number of ways that packages might fail,
Scotty is organized in a series of steps, as detailed in figure 1. After each step, some number

Proc. ACM Program. Lang., Vol. 6, No. OOPSLAZ2, Article 142. Publication date: October 2022.



142:4 Joshua Hoeflich, Robert Bruce Findler, and Manuel Serrano

Not a package, or perhaps
Scotty/eco encountered a
network error/dead link.

No Package has no unit tests, or the
current unit tests fail.
gj

iYes
N Scotty/comp can’t find where to
2 put the code, or linting and stylin
tools interfere with our system.

iYes

Can
Interpose?

iYes

Contract
Violation?

JavaScript proxies used by
2 Scotty/contract interfere with
the package’s behavior.

5

o Scotty could detect no
problems with the package.

A

¢ Yes

The package may contain a bug;
manual investigation is needed.

Fig. 1. The steps that Scotty takes.
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### ECO:STEP 1/7: 2022-07-30T05:48:29.353Z (Download the Source Code)
Cloning into '$HOME/.eco/sandbox/bases’. ..

#i## ECO:STEP 2/7: 2022-07-30T05:48:30.905Z (Install the Dependencies)
up to date, audited 1 package in 98ms
found @ vulnerabilities

#i## ECO:STEP 3/7: 2022-07-30T05:48:31.405Z (Run the Unit Tests)
> bases@0.2.1 test

> node test

All tests passed.

#i## ECO:STEP 4/7: 2022-07-30T05:48:31.900Z (Run the Unit Tests in Identity Mode)
> bases@0.2.1 test

> node test

All tests passed.

#i## ECO:STEP 5/7: 2022-07-30T05:48:33.305Z (Run the Unit Tests in Proxy Mode)
> bases@0.2.1 test

> node test

All tests passed.

### ECO:STEP 6/7: 2022-07-30T05:48:34.890Z (Run the Unit Tests With Full Contract Checking)
> bases@.2.1 test
> node test
$HOME/ . eco/sandbox/bases/contract-base. js:1389
throw new ContractError (" ${errorMessage}${nullMessage}${keyMessage}”);

A

ContractError [TypeError]: x** SCOTTY-CONTRACT-VIOLATION:
Predicate ~isNumber' not satisfied for value "2'
blaming: neg
value type: string
keys: {0}
at throw_contract_violation ($HOME/.eco/sandbox/bases/contract-base.js:1389:9)

Fig. 2. An example log file, from the bases package, lightly edited to fit on a single page.

of packages continue on to the next step of processing and some are eliminated because Scotty
cannot handle them; these numbers are detailed in table 1. These steps and the processing of
DefinitelyTyped are implemented in four major software components:

® Scotty/contract: a JavaScript library of higher-order contracts for mapping TypeScript types;

e Scotty/comp: a compiler that compiles TypeScript type declarations into Scotty/contract
higher-order contracts;

e Scotty/pkg: a software application that compiles and tests DefinitelyTyped packages individ-
ually; and

® Scotty/eco: a software application that downloads, compiles, and tests batches of Definitely-
Typed packages.
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As Scotty processes the packages, the steps provide a coarse grain categorization, but to better
understand the problems it encountered, Scotty emits log files as it goes through all of the packages.
As an example, see figure 2, showing the log file for the bases package. Scotty prints a line starting
with ### showing which step it is on. This package’s logfile is a particularly simple and clear one,
showing that the package behaved as expected until the contracts were turned on, at which point
it tried to use the string "2" in a place expecting the type number, resulting in a contract violation.

Beyond diagnosis of errors in the types (or in the packages), the log files enable a post-mortem
inspection that helps to identify the limitations of the current implementation that could be fixed
in order to support more packages. For that, we cluster the log files using regular expressions. This
reveals that many packages fail with similar error messages that we group and analyze together.
This analysis gives us direction for the next Scotty improvements.

In the following sections we describe each Scotty phase individually, focusing on the reasons
why packages fail at each stage and the jobs each of Scotty’s components do.

2.1 [Initialization

Scotty begins by cloning DefinitelyTyped from GitHub and mining it to find a list of types to examine.
Helpfully, the available types all live within a single folder at the repository’s root, which we read
to proceed. Because DefinitelyTyped changes on a day-to-day basis, we check out a particular git
commit of the project before proceeding to make repeated runs of the tool easier to analyze. We
start with 8006 packages to consider.

Because running the tool over all the packages can become expensive, a user can also provide
Scotty a list of packages to examine. This feature enables an incremental use of Scotty. The list of
packages that have changed since the last inspection can be easily computed using git facilities.
That restricted list of changed packages can be fed to Scotty and can then be used to recheck only
the new package versions. Given the number of packages DefinitelyTyped publishes, the high
pace at which packages are changed, the download times, and the checking times, providing this
incremental package check is critical for the viability of the system in the long run.

2.2 Can Fetch?

Scotty next looks for the untyped JavaScript code that corresponds to the type declarations by
following links to git repositories listed on the npm registry or in the package.json declaration
files. One can also download the gzipped files that npm hosts for consumption in application code,
but those files often lack metadata necessary for running the library’s tests correctly. Accordingly,
Scotty only considers packages where it can find the original source code.

Unfortunately, Scotty/pkg’s attempt to find the untyped package does not always succeed be-
cause some declarations do not correspond to any JavaScript packages. For example, the package
@types/elm provides type declarations that allow TypeScript code to interact with the elm program-
ming language; these types are outside of the scope of our project that focuses on JavaScript and
TypeScript.® Scotty ignores such packages.

In other cases, the downloads fail due to dangling links, network timeouts, and other such
problems. For instance, the git repository associated with the package convert-string no longer
appears to exist.* Downloading packages may also fail due to rate limiting from the npm registry;
in the future we may wish to implement a “wait and retry” policy. Overall, in 1560 cases, Scotty
failed to download the JavaScript package associated with the type declarations, which is 19% of
the DefinitelyTyped packages.

3See https: //www . npmjs. com/package/@types/elm
4See https: //www.npmjs. com/package/convert-string
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2.3 Can Test?

Ideally, with the source code at hand, one could run the unit tests for a package by invoking the
officially supported “npm test” command and observing the output. In practice, some libraries
do not have unit tests, and some have several dependencies which the tests require to execute
correctly. One must therefore download all dependencies by invoking “npm install” first. Perhaps
surprisingly, several libraries have compilation steps due to the need to support different JavaScript
runtimes and module systems. Accordingly, Scotty executes “npm run build” to ensure these
compilation steps get executed when necessary.

These testing commands happen to fail in many ways. Running “npm test” invokes a one-line
shell script defined in the package package. json file that can effectively do anything, from deleting
critical files on the disk to starting up a web server and blocking forever. The risk is similar to
that of piping a script on the internet into a shell. Accordingly, we time out our system after two
minutes as a simple mitigation mechanism. More fundamentally, the unit tests for the JavaScript
might not pass; if so, Scotty cannot provide help, and simply fails.

Scotty detected 1026 cases in which “npm test” failed because the JavaScript had no unit tests.
Of those, 282 packages had package. json files that contained the string “echo "Error: no test
specified" && exit 17, which is the default message that npm creates when starting a project.
Other failures were more subtle; for instance, the package jexcel emits the message “No test files
found” instead, after invoking the “mocha” test runner.

In at least 312 cases, the unit tests failed because they appeared to depend on an external
dependency not specified in the package. json or present on the host machine. For instance, the
package random-name tries to invoke the popular tap test runner; however, because tap is not listed
as a dependency on the project, the error message specifies that the file was not found.” In another
instance, three tests in the package webpack-plugin-serve failed because the server on which we
ran the tests does not have a browser.

Scotty found 1846 packages with tests that failed at runtime due to semantic or configuration
issues. Semantic issues occur because of known, unpatched problems with the test suites; the
package timelinejs3 provides a well documented example of this failure mode.® We include the
code from timelinejs3 that causes problems:

// these tests fail because the timeline config instantiation is async, and the test
// proceeds before it's ready. I still haven't figured out how to make Jest wait
// until it's actually ready, or maybe there's a different problem?
test("Ensure options is optional", async() => {
let timeline = await new Promise((resolve) => {
let tl = new Timeline('timeline-embed', TEST_CONFIG)
debugger
tl.on('ready', () => resolve(tl))
B;
// these tests will fail until we figure out how to deal with
// the fact that the config creation/setting is async
// tried some things waiting for
expect(timeline.config).toBeDefined()
1))

5See https: //www . npmjs . com/package/random-name
®See https: //github. com/NUKnightLab/TimelineJS3
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With configuration issues, the tests fail because they require additional set up to run that our
system does not provide. For example, the package asciify fails because the README specifies that
before one can develop or test the project, one must clone two separate submodules first. Our
system cannot cope with such idiosyncrasies; it assumes that “git clone”, “npm install”, and “npm
run build” provide sufficient setup for testing.

Overall, we found 3384 packages (52% of the packages we could download) that we could test.

24 Can Inject?

Scotty/pkg next determines whether it can inject compiled code into the untyped JavaScript library
without breaking its unit tests. Doing so involves running Scotty/comp, which translates TypeScript
type declarations into a JavaScript module that wraps the exports of the original library with the
contracts provided by Scotty/contract. To detect packages that are incompatible with the Scotty
rewriting procedure, Scotty/pkg first performs a dry run. For the dry run, it uses a version of
Scotty/contract that provides contract combinators that do no checking and do not create any
proxy objects. Of course, this means we will not find any errors in such packages, but running the
contracts in this mode helps us understand why failures occur.

One common reason for failures at this stage is that Scotty/pkg cannot determine where to put
its compiled output. Consider, for instance, the package facebook-locales, whose package. json
says the entry to the library exists in a file at the path dist/index. js from the root of the repository.
This file does not exist because it is the output of a build step; to obtain it, one needs to run npm
run compile before proceeding. The current implementation of Scotty/pkg does not know how
to handle cases where the entry point is missing by default, so it gives up on the package. Scotty
reports that analogous situations occurred in 478 other cases.

Another relatively minor but interesting source of error involves conflicts between the two
predominant module systems in the node ecosystem. Most packages on npm as of now tend to
use Common]S modules instead of the ESModule system encoded in the official ECMAScript
specification; accordingly, our compiler currently targets Common]S. However, we detected 75
cases in which this decision prevented our system from interoperating with the package. Future
versions of Scotty/pkg and Scotty/comp will have to handle ESModule as well.

Perhaps surprisingly, linting and code coverage tools are more frequently responsible for pre-
venting Scotty from injecting its code into a package. Because of its dynamic and permissive design,
JavaScript is considered an error-prone language. For instance, Frolin S. Ocariza Jr. et al. (2011) have
shown that in JavaScript, even mundane syntax errors can cause many dynamic errors. To mitigate
these problems developers frequently use linters (Beller et al. 2016; Toémasdottir et al. 2017, 2020).
We have observed that many packages run styling tools like "eslint", "jshint", and "standard" before
or after invoking unit tests.” These different tools enforce different conventions around whitespace,
semicolons, line lengths, and other such concerns, but any deviation from the package’s norms can
trigger a failure. Adding lines of code that the library’s unit testing system detects are uncovered
by the tests can also cause errors.

At one point, linting errors caused over 1000 different packages to fail at this step. As a way of
mitigating the problem, Scotty preemptively stubs out several popular linters with a shell script
that never fails. Unfortunately, linters integrated directly into testing tools and linters that we
have not recognized in advance do not work with this strategy. Consider, for example, the package
@happi/crumb, which relies on the lab testing library.® Running lab from an npm script causes
eslint to report a number of style violations to which our new code does not conform. Our system

7See https://standardjs.com , https: //eslint. org, and https: //jshint. com/about/ for more details.
8See https: //www . npmjs. com/package/@hapi/crumb
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cannot detect that the test suite succeeded despite these problems, so Scotty reports a failure. Here
is the precise report of the package, showing that the tests pass and even achieve 100% test coverage:

19 tests complete

Test duration: 311 ms

Assertions count: 91 (verbosity: 4.79)
Leaks: No issues

Coverage: 100.00%

but then the output shows that the style is incorrect:

Line 1: strict - Use the global form of 'use strict'.
Line 1: @hapi/no-var - Unexpected var, use let or const instead.
Line 1: quotes - Strings must use singlequote.

Even after disabling the most common linters, we found 41 packages that failed because Scotty’s
compiler uses double quotes and 20 packages that failed because it generates too many semicolons.
These 61 failures were straightforward to detect (but not remediate) because they all shared similar
error messages; however, our search misses linters with more idiosyncratic diagnostics. For example,
4 packages failed because some of the contracts our system generated used capital letters, which
violates style conventions used to distinguish constructor functions from ordinary functions, from
the era before JavaScript introduced the class keyword. Problems such as these can be difficult to
spot among the sea of other errors, both with various other packages and Scotty itself.

After accounting for the errors above, we determined that our system can inject code into 2417
different packages, that is 71% of the packages for which Scotty found an operational test suite.

2.5 Can Interpose?

Our next step involves checking whether using proxies to perform contract checking causes
problems. As in Williams et al. (2017)’s work, object equality is a problem for contract checking
based on proxies. In a nutshell, the problem is that an object proxy and the original object are
not the same under the === equality relation in JavaScript. Accordingly, if a value flows through a
contract and gets a proxy, it may cause code downstream to behave differently if the proxied value
flows into such an equality test where the unproxied value normally would have.

Proxies also cause problems with built-in classes like Map because calling their native methods on
a proxy can cause an error at runtime. Consider what happens, for example, when creating a proxy
named MySet of the native Set class that intercepts none of the set’s handlers. Trying to add an
element to MySet using Set.add triggers an exception because JavaScript does not support calling
the add method on proxied Sets, only nonproxied ones.

const MySet = new Proxy(new Set(), {3}); // a proxy with no interposition
MySet.add(3); // This causes a crash at runtime.

To automatically find libraries in which the proxy semantics causes problems, Scotty/pkg uses
a neutral variant of Scotty/contract. In this version of the library, contracts are implemented by
means of neutral proxies that do no checking (but may create other proxies for higher-order types).
They are only used to detect situations where proxies interfere with the package’s semantics. This
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is an essential step as it let us evaluate how practical it is to use proxies for detecting type errors.
The lower the number of failures, the more viable the approach. By contrast, the higher the number
of failures, the less practical the approach.

We found that in only 348 cases, proxies did cause interference (14% of the packages for which
Scotty can inject code). Of those cases, 19 were due to failures involving calling built-in methods.
Another 18 errors were caused due to proxies causing the system to time out, possibly because of
well studied performance problems (Greenman et al. 2019; Takikawa et al. 2016). These 348 are
incompatible with the technique Scotty relies on to check type correctness.

In total, we found that Scotty could interpose on 2069 packages, 61% of the packages for which
Scotty found an operational test suite.

2.6 Contracts Pass?

In the last step, we use the real Scotty/contract implementation of the contract library that performs
the actual checking in the proxies. If violations do not occur, Scotty reports that it could find no
errors in the type declarations; if violations do occur, Scotty notes that there may be a problem with
the types. Unfortunately, Scotty does not offer a fix, only some debugging information about which
type the failing dynamic check comes from. At this point, a programmer must investigate further.
In our experience the amount of effort to write a pull request to offer a fix varies widely. Sometimes
the contract error message leads us directly to the bug but, in general, it can be arbitrarily difficult
to determine if there is a bug in the tests, the code, or the types. The worst one took many hours;
it was from the ical package. The actual bug’ is that a test case was checking to ensure an error
happened while accessing the nonexistent field fromURL, but the types were written as if fromURL
were a legitimate function. The difficulty finding the bug was that the error was being thrown in
an asynchronous test, making it difficult to pin down exactly which code was signaling the error.
Worse, some kinds of unit tests create false positives with our system. A particularly perplexing
occurrence is that some tests check that certain functions throw exceptions with specific error
messages when passed arguments with the wrong types. In these cases, Scotty’s messages interfere
with the code. Consider, for example, the string-similarity package’s find-best-match function.!®
It takes a string for its first argument and an array of strings for its second argument. The package
tests that the function throws exceptions when provided illegal values, but Scotty/contract breaks
these tests because it detects the illegal values before the function is invoked and it generates its
own error message. The tests expect errors to match the string "Bad arguments: First argument
should be a string, second should be an array of strings", whereas Scotty/contract emits
different messages like "Wrong argument count @/2" and "Predicate ‘isString’ not satisfied
for value ‘2’". Currently, Scotty is unable to automatize the detection of false positives of this
variety. Currently, they require one to go through all 567 packages for manual inspection.

2.7 Broken Contracts, Unsound Types, and Too Many Linters

JavaScript the language causes relatively few problems for our system. Combined, the interference
problems known to occur with proxies and the presence of two incompatible module systems
account for only 423 packages that Scotty cannot handle. While this number is nontrivial, compared
to the hundreds of problems caused by malfunctioning test suites, fussy linters, code coverage tools,
and other such auxiliary concerns, it is relatively small. The npm ecosystem poses us the most
significant engineering challenges. Although we believe a production-quality version of Scotty is

“https://github.com/DefinitelyTyped/Definitely Typed/pull/54744
03¢ee https: //www . npmjs. com/package/string-similarity
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feasible, especially given the value it provides, there is no question it would need to cope with the
immense variety of all of the different packages.

3 DYNAMICALLY CHECKING TYPES

Following early work on natural gradual typing (Gronski et al. 2006; Tobin-Hochstadt and Felleisen
2006) and higher-order contracts (Findler and Felleisen 2002), Scotty compiles types to contracts
using two separate components. Scotty/comp is our type to contract compiler; it uses Babel!! to
parse TypeScript declarations. Scotty/contract is our contract-checking runtime system; it uses
JavaScript’s proxies (Ecma International 2015; Van Cutsem and Miller 2013). Scotty/comp generates
code that maps the information from the TypeScript type declarations onto combinators provided
by Scotty/contract, the contract checking library. Together Scotty/comp and Scotty/contract try
to ensure that mistakes in the types raise errors instead of passing silently.

The remainder of this section explains how the contract checking works and discusses short-
comings of the checking.

3.1 Checking Basic Types

As a first example, consider this JavaScript function:

function swap(result) {
if (result === "pass")
return "fail";
return "pass";

Let us assume an associated TypeScript type declaration like the ones in DefinitelyTyped:

type Result = "pass" | "fail"
declare function swap(result :Result) :Result;

Scotty compiles the TypeScript declarations into contracts and then uses them to do dynamic
checking on the JavaScript version of swap.

In general, Scotty creates one function for each different type. These functions all have the same
signature: they accept arbitrary values and then either signal errors (if the input doesn’t match the
corresponding type) or the return the original value (if it does). For instance, for the TypeScript
type Result, Scotty creates a function that behaves like this one:

function Result_ctc(x) {
if (x == "fail") return x;
if (x == "pass") return x;
throw new ContractError("not a Result")

If the type is an object type or a function type (i.e., the type has a behavior), then the function
that Scotty creates uses a JavaScript proxy to delay the checking until an appropriate moment in

See https://babeljs. io
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the evaluation of the program. This function behaves like the one that Scotty creates for the type
declaration of swap:

function Result_to_Result_ctc(f) {
const handler = {
apply: function(target, self, args) {
if (args.length === 1)
return Result_ctc(target.call(Result_ctc(args[0]1)))
throw new ContractError("Incorrect number of arguments");
}
}

return new Proxy(f, handler);

The actual functions that Scotty generates are not so neat and tidy as this one, but these capture
the key ideas of the strategy that Scotty is using and they behave identically for these specific type
declarations (except that Scotty’s error messages have more information).

There are a number of improvements required to generalize these ideas to support the full
language of TypeScript. Currently, Scotty can handle primitive types such as numbers, strings,
arrays, symbols, null, undefined, and Nodejs primitives types such as files, streams, events, etc. All
of the Nodejs primitives are handled using just first-order checks, as the Result_ctc does.

Scotty can also compile array types into array contracts, and interfaces into object contracts.
These contracts are similar to function contracts, in that they create proxies to delay checking.
Scotty also has an implementation of union and intersection contracts; and union types compile into
union contracts and overloaded functions compile into intersection contracts; Scotty supports both
variadic and optional arguments in this manner. The support for intersection and union is the most
complex aspect of the contracts; our implementation follows ideas in Castagna and Lanvin (2017)’s,
Keil and Thiemann (2015)’s, and Williams et al. (2018)’s work.

3.2 Checking Class Types

Classes are also a complex aspect of Scotty. First, let us recall their main characteristics. Classes
were added to JavaScript in version 6 and, although they bring a class-based programming flavor
to the language, they are merely syntactic extensions to functions. A JavaScript class is compiled
down to a JavaScript function. Class instances are regular JavaScript objects. Instance properties
are implemented as regular object properties and methods are implemented as properties of the
prototype object of the function representing the class. Indeed, JavaScript classes and functions can
be mixed without limitation. TypeScript enforces two important constraints. First, a TypeScript
class cannot be used as a function, i.e, a class identifier cannot be called via function application.
Conversely, a TypeScript function cannot be used as a constructor, i.e., with new. That said, it is
possible to construct a type for a single value that behaves as both a function and a class.

When Scotty/comp compiles a class declaration, it generates a contract for the class instances,
another one for the class constructor, and one contract for each of the class methods. Let us
illustrates this process with the compilation of the Point class:

export class Point {
X: number;
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y: number;
constructor(x: number, y: number);
toStr(): string;

The contract Scotty/comp generates for representing instances of Point is:

var Point$InstanceContract =
CT.CTInstance(
"Point",
{
x: CT.numberCT,
y: CT.numberCT,
h
{
toStr: CT.CTFunction(
CT.CTRec(() => Point$InstanceContract),
1,
CT.stringCT
),
}
originalModule.Point,
undefined

);

There are a number of things to unpack in this code. First, the contract is generated by a call to
CT.CTInstance, whose first argument is a string, naming the class. The second argument is a record
giving the contracts of the fields. Instances of the Point class have two fields x and y whose values
are numbers, enforced by the builtin Scotty/contract contract CT.numberCT, which uses a technique
similar to Result_ctc, as above. The third argument of CT.CTInstance is an object whose keys are
the methods and whose values are the method’s contracts. TypeScript does not permit class methods
to be invoked on arbitrary objects; it requires that they receive a proper instance of the class as their
this argument. The contract enforces this constraint by using the Point$ClassContract passed
as the first argument to the CT.CTFunction constructor. CT.CTFunction’s first argument is used to
check the this argument during function invocation. The Point$ClassContract also ensures that
Point instances have at least two properties x and y, that the method toStr is included in their
prototype object, and that they are all genuine instances of the Point class.

Because class definitions use recursion to refer to the type of this in methods and constructors,
and because class definitions are, in general, mutually referential, Scotty/comp uses CT.CTRec
recursive contract constructor to tie the self-referential knot. CT.CTRec is wrapped around all
references to identifiers that the compiler generates, ensuring that the references to the identifiers
are evaluated only after all the contracts are defined, no matter what order they appear in the
program. CT.CTRec accepts a thunk that returns a contract and internally it invokes that thunk and
ties the recursive knot the first time the contract is checked, at which point all of the contracts

have been defined.
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Also, Scotty/comp generates a contract for the function that allocates and constructs Point
instances. This one is generated from the prototype of the class constructor:

var Point$ClassContract = CT.CTClass(
CT.CTRec(() => Point$InstanceContract),
[CT.numberCT, CT.numberCT]

);

This contract enforces that the JavaScript generated Point function is used only in new expressions
and that it is always invoked with two arguments that are both numbers. This is the purpose of the
CT.CTClass contract constructor. It is very similar to CT.CTFunction, differing only by enforcing the
type of this and by checking that no value is returned from the constructor.

Subtyping introduces a subtle point for the checking in these contracts and it is a place where
Scotty/contract might miss some errors. To understand how, consider this pair of classes.

class C {

cache;

constructor() {
this.cache = false;

}

getValue() {
if (!this.cache) this.cache = this.computeValue();
return this.cache;

b

computeValue() { return 1; 3;

class D extends C {
aField = 1;
computeValue() {
return this.aField;

The class C is intended to be illustrative of a caching protocol where the getValue method returns
(and possibly computes) the cached value, with an extension point computeCache that is intended
to be overridden to compute the cached value. In this code, D overrides computeValue and, as part
of the computation, uses the field aField.

With types that simply declare that the cache is a number, we generate contracts similar to
the ones described above, but specific to these fields and methods. The subtle point about these
contracts is how the wrappers get created. In particular, when we create an instance of D and invoke
the getValue method, the contract for C wraps the implicit this argument. Since there is no aField
in C, the eventual reference to aField in D would signal an error.

The way we avoid this problem is to add a check: if the field we’re trying to access actually
exists in the object (but is not described the contract), we allow it in the get handler of the proxy
created for the contract. In principle, this choice can cause the contract checking to miss some
errors but since this problem creates false negatives and does not give up basic checking, we opted
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to include it in Scotty/contract. In future work, we hope to devise a better strategy for checking
class contracts that would catch errors that this strategy might miss.

3.3 Missing Checking

Some type constructs and features are still missing, which causes Scotty to be unable to handle
some packages. Because of the incremental nature of Scotty, we add support for contracts and
fix known problems with the existing support as it becomes important. One general, and simple,
example of this approach is our catch-all contract that does no checking; it is implemented simply
as the identity function and we use it for any types that Scotty does not handle. There are three
notable shortcomings beyond the one described at the end of the previous subsection:

e Scotty/contract and Scotty/comp do not handle generic types; any use of a polymorphic
variable is compiled into a contract that does no checking. We believe we could add support
for polymorphic contracts along the lines of prior work (Ahmed et al. 2009; Ahmed et al.
2017; Guha et al. 2007; Matthews and Ahmed 2008), following the implementation in Racket’s
contract system.'? It is difficult to know how many more errors we will uncover if we add
support for generics until it is implemented, especially because contracts for generics are
likely to introduce interference.

e Scotty/contract’s implementation of union and intersection contracts is incorrect in some

situations. In many common situations, the intersection and union contracts are correct, but
the implementation is simpler than the strategy presented in Keil and Thiemann (2015) and
Williams et al. (2018).
Roughly speaking, the problem is that our implementation does not delay the decision of
which branch of the intersection or union long enough (in some situations). In general, this
can lead to false positives, where the contracts signal a violation because they commit to
a particular branch of the union or intersection too soon. We discovered this by using the
test suite from Williams et al. (2018)’s work; the discrepancy has not yet come up with any
TypeScript package.

o The current implementation of Scotty/comp requires all the TypeScript type declarations to
be included in a single file. Supporting imports and exports in TypeScript declaration files
requires additional engineering effort.

Unfortunately, in addition to these unsupported features, for various reasons, there are a number
of situations where the contracts Scotty/contract generates are incorrect in the sense that they
might generate false positives. Overall, false positives are rare but possible. The two following
sections detail the situations where they occur.

3.4 Proxy Interference

In general, JavaScript proxy objects are not transparent. That is, in a few situations, introducing
proxies changes the behavior of a program. Scotty supports a mode where it creates all of the proxy
wrappers but the wrappers never signal any errors. We use this mode to determine if there is any
interference between Scotty and the package we are testing, as discussed in section 2.5. This let us
automatically separate packages that cannot be tested by Scotty and avoids false positives.

While we are not sure of the full set of causes of proxy interference in uses of Scotty, we observed
three: the JavaScript equality relation === is not preserved by proxies, primitive methods accept
only primitive objects (and not proxied primitive objects), and some packages time out only when
contract checking is enabled in proxies. This last problem could probably be improved by adopting
optimization techniques developed for higher-order contracts (Bauman et al. 2017; Feltey et al.

2https://docs.racket-lang.org/reference/parametric-contracts.html
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2018) but because of the small number of packages actually hitting the timeout limit (18 packages),
we have postponed this additional implementation effort.

3.5 TypeScript Unsoundness

TypeScript’s deliberate unsoundness makes it difficult to generate contracts that faithfully mir-
ror the types. TypeScript’s function compatibility rules are the source of one problem that we
encountered. To understand the specific unsoundness, consider a function named runOneTwoThree,
a higher-order procedure that takes some function and invokes it with the numbers one, two,
and three. Next, consider a function named addTwo that takes two numbers and sums them to-
gether. Invoking runOneTwoThree with addTwo does not raise a type error, even though calling addTwo
with three arguments in other circumstances would cause compilation to fail because of the arity
mismatch (The TypeScript Handbook 2019).

type TakesThreeArguments = (a: number, b: number, c:number) => number;

const runOneTwoThree = (input: TakesThreeArguments) => {

return input(1, 2, 3);

const addTwo = (a: number, b: number) => a + b;

// This code passes TypeScript's type checker.
runOneTwoThree (addTwo) ;

// This line is a type error
addTwo(1, 2, 3);

These peculiar TypeScript typing rules are motivated by the ubiquitous JavaScript map operator.
The function map receives is applied to three values: an array element, an array offset, and the array
itself. However, most user codes passes a function of a single argument to map. If TypeScript were
to use an ordinary typing rule, it would raise errors for all these situations. As array is extensively
used, this would limit too severely the connection between the two languages.

Unfortunately, the contracts that our compiler uses cannot distinguish between the two different
calls to addTwo. Our experience is that the higher-order use of a function like addTwo is far less
common than the direct use, so the contracts always check that the number of arguments passed
to a function with a contact matches exactly the number specified in the type (as the example code
at the start of this section does). Accordingly, the higher-order use in the example signals an error
when used in our system but does not in TypeScript.

We encountered this problem with the package doge-seed while experimenting with our system.
The library exports a function with a type that optionally takes a single argument, but the test suite
uses it in the point-free style with Array.map, which passes three arguments to its function. These
caused our contracts to report an arity-related error.

4 ERROR ANALYSIS

Using Scotty enabled us to submit accepted pull requests to Definitely Typed efficiently. Over the
summer of 2021, we maintained the rate of 8 new pull requests per week, based on the results of
running Scotty. The pull requests we opened are not a random sampling of the ones that Scotty
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finds today, however, for two reasons. First, we submitted pull requests as we were also developing
the tool and, as time progressed, Scotty got better at handling packages, meaning that there were
more contract violations to choose from. Second, some of the contract violations are easier than
others to turn into suggestions for fixes. Indeed, different errors took wildly different amounts of
time to understand, based on the complexity of the package and its types.

The remainder of this section analyzes all of the pull requests we submitted to understand the
nature of the failures our system could uncover. We analyze each pull request twice, once by
semantic issue and once by external factor.

When grouping packages by semantic issue, we examine the particular contract violation that
created a bug. This categorization involved analyzing the blame message emitted by the contract
system and categorizing the packages accordingly. Several of the type errors stemmed from the
same kind of mistake related to one feature of the type system, which indicates that the semantics
of the feature may be difficult to use correctly.

By contrast, when analyzing the external factors related to the bugs, we focus on how changes
outside the type declarations themselves created problems. For these factors, we examined the git
repositories of both the underlying JavaScript and the types to understand how differences in each
may have created problems. These mistakes shed insight into how well the language’s type system
copes with the shifting requirements and outside world that software engineers face each day.

4.1 By Semantic Issue

We have organized the semantic failures of the 100 packages into the table below.

Reason Count Package examples

Record Mismatch 41 checksum, ...

Function Arity 27 mouse-event-offset, ...
Broaden Type 15 natural-compare, ...

Null and Undefined 9 humanize-ms, ...

Other 8 ical, express-ejs-layouts, ...

We detail each category in the following subsections and we present examples and accepted
pull-requests we have submitted.

4.1.1  Record Mismatch. Incorrect interface types accounted for the most substantial proportion of
problems we uncovered. An interface type in TypeScript describes the structure of a JavaScript
dictionary by enumerating the names and types of its keys. Any mismatch in the type’s shape
results in a type error, although the language does offer facilities for marking some keys as optional
or permitting arbitrary dynamic keys. We found several errors where the JavaScript code used
dictionaries with too many, too few, misnamed, or incorrectly typed keys.

The library named checksum provides an example of an error that fits within this category. The
library exports a function that a programmer can point at a file to get a string that represents a
checksum. To configure the method, one can pass a dictionary with a key named algorithm that
specifies the hashing technique to use and a key called encoding that specifies the encoding of
the underlying file. While the interface in the type declarations had the algorithm key, it lacked
the encoding key, which meant that a programmer could not use that feature safely from within
TypeScript. Scotty reported that problem with a contract violation when invoking the function.
Adding the missing key to the type declaration fixed the problem.!*

4.1.2  Function Arity. Challenges with function arity accounted for another substantial portion of
the errors we patched. TypeScript generally requires that programmers invoke functions with all of

13See https: //github . com/DefinitelyTyped/DefinitelyTyped/pull/54805
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their declared parameters; leaving out or putting in too many arguments is generally a compile-time
error. By contrast, JavaScript takes a more liberal approach. If a function gets called with more
arguments than it was declared with, they are ignored, and if it gets called with less, it binds the
missing parameters to the special undefined value. JavaScript programmers frequently overloaded
their functions in subtle ways which the TypeScript declarations did not capture.

One library named mouse-event-offset typifies the kinds of mistakes within this category. The
library exports a function for calculating the X and Y offsets of an event from the browser based on
the target of the event. Optionally, one can pass the function a second argument that is another
element in the DOM to instead compute the X and Y offsets from that element. However, the
TypeScript type did not account for this second argument. By adding this parameter to the function
type, TypeScript programmers became able to access this feature of the package.!*

4.1.3 Broaden Type. On several occasions, the type declarations for a package proved overly
restrictive. In these cases, the underlying JavaScript implementation invoked its code with types
unsupported in the TypeScript declaration, which indicated the need for a union type to support the
semantics of the package. The natural-compare library, for example, exports a comparison function
meant for sorting that supports both numbers and strings. However, the TypeScript code only
allowed programmers to call the method using strings. To help TypeScript programmers invoke
the function safely from more contexts, we submitted a patch changing the input argument of the
package to a union of strings and numbers.'

4.1.4  Null and Undefined. Unexpected occurrences of null and undefined also created problems.
Functions often accepted or returned null or undefined in unusual situations; one can configure the
TypeScript compiler to accept those values in place of any other, but DefinitelyTyped requires type
declarations to adhere to a strict mode which makes the presence of those values bugs. The package
humanize-ms serves as an example of this kind of problem. The library exports a function that tries
to parse strings like "1s" to numbers. When the parser fails, instead of throwing an exception, it
returns undefined to the caller. The type declarations did not account for this undefined situation,
so making the return type the union of number and undefined solved the issue.'

4.1.5 Other. The remaining errors did not fit neatly into any of the above categories. For example,
one package named ical had type declarations for a function that did not exist. Another library
called express-ejs-layouts had types for a higher-order function when, in fact, the module exported
only a first-order function.

In general, the semantic bugs found were easy to fix because the correction merely consisted of
extending or refining a type declaration. The difficult step was mostly to realize that there was a
bug somewhere! This is the job Scotty is designed for.

4.2 By External Factor

We have organized the external factors leading to contract violations below.

Reason Count Package examples
Documentation Challenges 47 gaussian, ...
Misimplementation 30 envhandlebars, ...

Platform Changes 23 pwd-strength, http-codes, ...

143ee https: //github. com/mattdesl/mouse-event-offset/tree/82805f285{8483£2373d2bf20f62f9eb8d79£74d
15See https: //github. com/DefinitelyTyped/DefinitelyTyped/pull/54185
16See https: //github . com/DefinitelyTyped/DefinitelyTyped/pull/54608
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4.2.1 Documentation Challenges. Issues regarding the documentation of JavaScript libraries ac-
counted for the most significant portion of errors our system discovered. In these cases, a library
contained behavior recorded only in its source code, test suite, or git history that the type declara-
tions should (but did not) capture. Without the help of a contract system and its error messages, a
programmer would need to discover these cases by carefully reading through the library’s source
while writing the type declarations.

The library gaussian serves as an illustrative example of this problem. It exports a function
named random which, according to the README file, takes a single numeric parameter. However, a
JSDoc comment in the source code reveals that the function takes a callback as its second argument
that one can use to configure the system of random number generation that the method invokes.
The tests exercise this option, but the documentation does not mention it.

Note that before our pull request to fix this issue,!” both the package and its type declarations
were being maintained by the community. JavaScript support for the callback parameter got added
in July of 2021, and the type declarations had received unrelated bug-fixes on October 1st of the
same year. Developers were actively trying to keep the types in sync in this case, but the lack of
documentation made doing so challenging.

4.2.2  Missimplementation. Mistakes in the initial implementation of the TypeScript declarations
accounted for the second-largest proportion of errors. In these cases, the types for the package
appear to have never matched the underlying JavaScript code. As the results of some mistakes in
JavaScript are difficult to catch, these errors appear to have gone unnoticed until our patches.

One illustrative example of this error involved the envhandlebars package. The type declarations
contained an interface type with a key named arrayEnabled meant to correspond to a boolean or
undefined; however, the JavaScript code looked for a key named arraysEnabled instead. As the
underlying JavaScript did not need the key to be present to work, this typo went unnoticed until
Scotty revealed it.'®

4.2.3 Platform Changes. The remaining errors we analyzed are most attributable to platform
changes. In these cases, some external change rendered the type declarations invalid, like a modifi-
cation to the underlying JavaScript code. The library pwd-strength contains an especially striking
example of this type of problem. On March 26th, 2021, the library authors added a feature that
let users add a minNumberChars key to a configuration dictionary. The day before, on March 25th,
an interface describing the shape of that dictionary got merged into DefinitelyTyped; this type
was only accurate for a single day. The incremental analysis of Scotty makes finding this sort of
desynchronization between the implementation and the type declaration easy.'’

Note that factors other than changing JavaScript code can cause the types to become inaccurate.
For example, the package http-codes used to export a key named UNORDERED_COLLECTION because
node’s http package exported a dictionary that mapped the key "Unordered Collection" to the
string "425". However, the http library bundled with node changed, and the key’s name became
"TOO_EARLY" instead. This change rendered the previous type declaration invalid, even though
neither the type nor the JavaScript changed.?’ This example shows the benefit of approach that
consist of running actual code in an operational system. Any change to the underlying execution
platform, in this case Nodejs, is handled by Scotty, without requiring sophisticated analysis or
significant effort.

17See https: //github . com/DefinitelyTyped/DefinitelyTyped/pull/58747
18See https: //github. com/DefinitelyTyped/DefinitelyTyped/pull/55888
9See https: //github . com/DefinitelyTyped/DefinitelyTyped/pull/55722
20See https: //github. com/DefinitelyTyped/Definitely Typed/pull/54281
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4.3 Deliberate Unsoundness

In two situations Scotty revealed problems that the implementors did not consider to be errors or
preferred not to fix. That is, the maintainers of DefinitelyTyped rejected our patches because they
preferred the existing unsound type declarations. Their motivations for each differed and provided
insight into the ways in which programmers use the type system.

The first case of deliberate unsoundness involved a package named caseless. This package
exported an interface type with methods like get and set that represented actions one could
perform on a specific dictionary. At runtime, that dictionary was stored on the object under the
key _dict; a programmer could access the key in JavaScript directly instead of using the accessors
provided by the package. Since the key _dict was not present on the interface type, the TypeScript
type was not faithful to the JavaScript implementation, but it enforced encapsulation desired by
the TypeScript maintainers of the package. Accordingly, the maintainers of the type declaration
rejected our patch to add the key.?!

The second case of deliberate unsoundness involved a callback in the ffprobe library. The package
contained a function named getInfo whose last argument was a function of two arguments: err of
type Error and info of an interface type called FFProbeResult. In the callback type, neither of those
two values could be null or undefined; at runtime, however, one of them always was. One can
most easily understand the correct type as a union of two function types. The first function type
contains one argument, error, that is always present; the second type takes two arguments, the
first of which is always the value null, and the second of which is always of type FFProbeResult.

Switching to the sound type would require users of the package to check whether the err
parameter is null before using the data in the info parameter. However, such a change would
cause existing TypeScript code that does not already perform this check to no longer compile.
Because of this backward compatibility constraint and the fact the package had not received active
development, the maintainers of the package opted not to accept our pull request.??

The cases reported in this section, although rare, show that to be effective, an approach needs to
combine an automatic bug detection that isolates each potential error and a manual inspection of
suspicious packages that confirms the error and that supports ad hoc treatment of subtle situations.
Beyond the need for manual inspection, the tool also needs support so programmers can declare that
specific type mismatches are false positives, either declaring that specific tests should not be run
when checking the contracts, or by declaring that specific types should be ignored, and translated
into contracts that do no checking. Overall, our experience suggests that these declarations, while
necessary for a fully-featured tool, are needed only rarely.

5 RELATED WORK

Discrepancies between TypeScript type declarations and JavaScript implementations has long been
identified as a source of bugs. The popularity of the DefinitelyTyped repository has exacerbated
the problem. Improving the correctness of TypeScript types with respect to JavaScript package
implementations is an active research field. In this section we discuss some of the most related
threads of work.

Scotty fundamentally builds on Proxy objects (Van Cutsem and Miller 2013), introduced in
ECMAScript 6 (Ecma International 2015), as they provide a low-level mechanism for portable
higher-order contract checking, but JavaScript Proxy objects are not transparent and are thus
subject to the interference problem (Keil and Thiemann 2013); see also section 3.4. Keil et al. (2015)

21See https: //github. com/DefinitelyTyped/DefinitelyTyped/pull/55992
22See https: //github. com/DefinitelyTyped/Definitely Typed/pull/54866
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show how to mitigate that problem by introducing transparent and opaque proxy objects but as
they have not been adopted by the JavaScript standard, Scotty does not use them.

Williams et al. (2017) studied the interference problems with JavaScript proxies when using
contracts for checking DefinitelyTyped interfaces. They built TPD, a tool based on the polymorphic
blame calculus, for monitoring JavaScript libraries and TypeScript definitions. They found that
interference occurred “in an intolerable number of cases”. Our own study concludes otherwise
because we have found that only 348 packages (or 14% of the packages that could otherwise have
been checked at that stage) cannot be verified because of proxy interference.

TPD’s opposite conclusion may be because the landscape of types has changed since then (as
reported by TPD’s authors, there were only 500 packages on the DefinitelyTyped repository at
that time) and it may also be because we do not check polymorphic types. Fundamentally, it is
surprising that proxy interference and the unsoundness of TypeScript causes Scotty relatively
few problems. Instead, we found that the wide variety of build steps, testing frameworks, and
linters in the JavaScript ecosystem created significant engineering challenges for researchers and
developers who seek to analyze arbitrary libraries from npm in the large. Happily, simply not
checking polymorphic contracts and just ignoring the packages with proxy interference still enables
us to find many bugs, which is our goal.

There has been a long line of research in using gradual typing (Gronski et al. 2006; Siek and Taha
2006; Tobin-Hochstadt and Felleisen 2006) to combine statically and dynamically typed languages
that reached a climax with Takikawa et al. (2016)’s famously provocative question, “Is Sound
Gradual Typing Dead?”, a question raised because of the intrinsic and severe impact on program
performance. Many responses were published, all minimizing the slowdown incurred by gradual
typing (Bauman et al. 2017; Feltey et al. 2018; Moy et al. 2021; Muehlboeck and Tate 2017). Scotty,
in contrast, uses gradual typing only for checking type validity but not for running the production
implementation. In this context, the performance of gradual typing is not crucial as long as the
incurred performance penalty does not prevent running the tests. Our experience is that, at least
for debugging and testing purposes, gradual typing is alive and well!

While Scotty is based on techniques behind one strategy for checking gradual types, there is
a second strategy that is in active use in Reticulated Python (Siek and Taha 2006; Vitousek et al.
2014). We were not able to leverage this strategy, unfortunately, because it relies on adding checks
into typed code. In our situation, we typically have only type declarations, an untyped JavaScript
library, and an untyped test suite.

Static analysis and type inference have also been used to detect TypeScript declaration inconsis-
tencies (Feldthaus and Meller (2014)’s TSCheck) but it was soon established that the static analyzers
known at the time, alone, were not precise enough and a new direction based on dynamic checking
was needed. This new approach proved to be more robust, that is yielding fewer false positives
and more true positives (Kristensen and Mgller (2017b)’s TSTest). Recent studies continue in this
direction with improved static analysis and support for program evolution (Kristensen and Mgller
2017a). This approach successfully finds mismatches between the TypeScript and JavaScript but,
with only 50% coverage of the library code, it may leave many errors undiscovered. Recently,
there has been a revival of static analyzers. Kristensen and Meller (2019) present the ReaGenT
system, based on the JavaScript TAJS static analyzer (Jensen et al. 2009) adapted to TypeScript and
per-module analysis. It aims to guarantee that it finds all possible type mismatches between type
declarations and JavaScript implementations that realistic clients may encounter. The notion of
realistic clients builds on the idea of most general clients, an intellectual tool that has been invented
for the static analysis of dynamic programming languages (Rinetzky et al. 2007). Static analyzers
are also facing another challenge: it is not enough for them to analyze the packages and their
associated types; they must also model the execution platform and its libraries. Otherwise, some
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bugs would not be found, such as the one reported in section 4.2 due to an incompatible evolution
of Nodejs. Modeling the execution platform precisely is a daunting task. The approach promoted
by Scotty that relies on actual execution by the platforms sidesteps this difficulty.

To support an unrestricted and unconstrained JavaScript interface, TypeScript is intentionally
unsound (Bierman et al. 2014). It relies on an erasure semantics for a smoother integration with
JavaScript, meaning that types are not checked during execution, and thus the JavaScript implemen-
tation might diverge from its type specification. Several projects attempt to build safe execution for
TypeScript. Instead of checking or enforcing the consistency of TypeScript declarations, researchers
have considered building a sound version of TypeScript. Safe TypeScript (Rastogi et al. 2015) is a
TypeScript variant that enables better static error detection and checks types during execution.
Type checks are implemented by a dedicated compiler. This technique enables safe and efficient
execution of TypeScript programs, but it is unsuitable for our approach because it cannot cope
with unannotated JavaScript packages.

More recent studies have explored the design and implementation of platforms going beyond in-
dividual package testing and instead handling bulk analysis of the whole DefinitelyTyped repository.
Cristiani and Thiemann (2021)’s tool dts-generate is a pioneer in this category. It automatically
generates type declarations whose precision can be compared to those provided by the package
developers. Specifically, dts-generate extracts the examples from the package README files, and
executes them against an instrumented version of the library implementation. The instrumentation
is based on the Jalangi tool (Sen et al. 2013). It enables executions to gather dynamic data flow
information about function calls, function results, binary operations, object accesses, etc. These
pieces of information are used to generate type declarations. These declaration files are compared
to the original ones using the dts-compare tool. The framework has been applied to the Definite-
lyTyped repository and 249 packages were sufficiently documented for dts-generate to generate
types. The approach embodied in dts-generate is complementary to that of Scotty: dts-generate
uses the package examples to generate correct by construction type declarations. Scotty uses the
package test suite to verify that the type declarations are correct. The smaller number of packages
that dts-generate handles and the difficulty of extracting relevant examples from the README files
suggests that generating types is a harder problem and, unsurprisingly, the whole process is less
robust than simply testing declarations. Scotty is synergistic with dts-generate, as it can help
verify the correctness of dts-generate types by re-testing the package with the newly generated
type interface.

Tsinfer and Tsevolve (Kristensen and Mgller 2017a) are two tools designed to assist the con-
struction of new TypeScript declaration files and support co-evolution of the declarations and
the implementations. Tsinfer accomplishes a similar task to that of dts-generate but it uses static
analysis instead of instrumented executions. The tool Tsevolve compares two declaration files
to detect situations where a change in an implementation might also change the type of the vis-
ible interface. The experimental results presented in the paper suggest that the analysis is fast
enough to analyze all the DefinitelyTyped packages but there was no attempt to use Tsinfer on
the whole repository and its authors have since declared Tsinfer obsolete (Kristensen and Mgller
2019). NL2Type (Malik et al. 2019) is another tool akin to Tsinfo and dts-generate. It automatically
generates type declarations for JavaScript packages but as it uses learning techniques applied
to the textual information available with each package (function and variable names, comments,
etc.), the validity of its production is not guaranteed and its output requires human verification.
Consequently, NL2Type is not suitable for automatic handling of large package repositories such
as DefinitelyTyped.

Tapir (Meller et al. 2020) is another tool that finds incompatibility between two versions of a
JavaScript library. Like Tsevolve and dts-compare, it can be used to detect inconsistencies introduced
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by a package’s evolution, a source of many errors due to the constant and rapid evolution of npm
packages (Mitropoulos 2019; Nielsen et al. 2021). Contrary to Scotty, its goal is not to discover
implementation and type declaration inconsistencies.

Beyond TypeScript and DefinitelyTyped, the Flow (Chaudhuri 2016) type system also has the
basic design choices that Scotty supports. As an experiment, we used the Babel Flow parser and
adapted our tool to generate contracts for Flow packages. We were able to detect problems with the
http-codes package (the same problem that we found with the TypeScript version of that package).
Based on that experiment, we are hopeful that this tool might also generalize to supporting Flow,
but we have not investigated the idea deeply.

6 CONCLUSION

Our work demonstrates that packages in the JavaScript ecosystem are sufficiently similar that one
can build tools to detect bugs in their type declarations with gradual typing. This feasibility is
surprising given the hostile-to-contract-checking semantics of proxies, conflicting module systems,
and dozens of different linting and testing tools with slightly different behaviors. The extent to
which the npm ecosystem caused more problems than JavaScript itself is also surprising: we did not
expect nor anticipate that, when left unchecked, semicolon placement would cause more problems
than the actual behavior of the language.

We are excited by how useful we have found the tool for assisting us in finding and fixing bugs,
despite an approach that comes with no guarantees. Our tool is not complete, as the unit tests that
come with the package may be insufficient to find errors in the types and we do not handle all of
the types in TypeScript. It is also not sound, as generating dynamic checks based on an unsound
type system inevitably leads to incorrect checks. In short, some packages will always be inherently
incompatible with Scotty. From a more practical perspective, a fully automatic tool will remain
out of reach because finding the correct fix is still a fully-manual process. Scotty can only identify
mismatches between the types and the tests; it cannot offer fixes.

Nevertheless, we expect that relatively small amounts of further engineering effort into the tool
could result in detecting many more mismatches between TypeScript types and the behavior of
JavaScript packages. Indeed, we have followed a practical, error-based discipline as we developed
Scotty, keeping our focus on the largest obstacle at each stage, instead of the one our programming-
language or programmer sensibilities might encourage us to focus on. This discipline has led to a
large number of closed pull requests fixing bugs on DefinitelyTyped.

Going beyond mere bug-finding, we are optimistic that further analysis of type mismatches could
even suggest future changes to TypeScript’s design, especially for the cases in which programmers
prefer unsound types.
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