
Contract System Metatheories à la Carte
A Transition-System View of Contracts

SHU-HUNG YOU, Northwestern University, USA

CHRISTOS DIMOULAS, Northwestern University, USA

ROBERT BRUCE FINDLER, Northwestern University, USA

Over the last 15 years, researchers have studied a wide variety of important aspects of contract systems, ranging

from internal consistency (complete monitoring and correct blame) to subtle details about the semantics

of contracts combinators (dependency) to the difficulty of efficient checking (avoiding asymptotically bad

redundant checking). Although each paper offers essential insights about contract systems, they also differ

in inessential ways, making it hard to know how their metatheories combine. Even worse, the metatheories

share tremendous tedium in their definitions and proofs, occupying researchers’ time with no benefit.

In this paper, we present the idea that higher-order contract systems can be viewed as transition systems

and show that this perspective offers an important opportunity for reuse in their metatheories. We demonstrate

the value of this perspective by proving representative properties from the literature, and by contributing a

new proof establishing that elimination of redundant contract checks can eliminate asymptotic slowdowns. To

confirm our claims and encourage the adoption of our ideas, we provide a mechanized development in Agda.

CCS Concepts: • Theory of computation→ Program semantics; Proof theory.

Additional Key Words and Phrases: Higher-order contract, modular metatheory, transition system

ACM Reference Format:
Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler. 2025. Contract System Metatheories à la Carte:

A Transition-System View of Contracts. Proc. ACM Program. Lang. 9, OOPSLA2, Article 419 (October 2025),

29 pages. https://doi.org/10.1145/3764861

1 Introduction
Contract system metatheory has a long history with many papers establishing a wide range of

properties of various contract systems. Although we must not neglect the experience gained

by building and using contract system in real-world software, the theoretical investigation of

contract systems has had a direct positive influence on the development of our understanding

of contracts. The most notable example is the discovery of the correct semantics of dependent

contracts. Findler and Felleisen [23]’s original higher-order contract paper included an incorrect

semantics for dependency, and it took significant theoretical developments [4, 8, 9, 11, 15, 22, 30, 83]

to eventually lead to the correct semantics [15, 19]. Furthermore, this fundamental theory work

provides intellectual tools to understand how to generalize the ideas in higher-order contracts,

leading to a wide range of innovative contract designs [14, 16, 17, 46–50, 68, 81].

Unfortunately, contract system metatheory is not a panacea. Indeed, the labor involved when

proving properties about higher-order contract systems leads researchers to either leave out

some features or expend unreasonable amounts of energy repeating similar proofs over and over.

Authors’ Contact Information: Shu-Hung You, Northwestern University, Evanston, Illinois, USA, shu-hung.you@eecs.

northwestern.edu; Christos Dimoulas, Northwestern University, Evanston, Illinois, USA, chrdimo@northwestern.edu;

Robert Bruce Findler, Northwestern University, Evanston, Illinois, USA, robby@cs.northwestern.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/10-ART419

https://doi.org/10.1145/3764861

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

https://orcid.org/0009-0003-0003-3945
https://orcid.org/0000-0002-9338-7034
https://orcid.org/0000-0002-4245-2000
https://doi.org/10.1145/3764861
https://orcid.org/0009-0003-0003-3945
https://orcid.org/0000-0002-9338-7034
https://orcid.org/0000-0002-4245-2000
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3764861

419:2 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

Greenberg [28] articulates the situation well and provides the inspiration for our work, writing

that “changing our calculus to have a more interesting notion of blame, like indy semantics [15] or

involutive blame labels [80, 79], would be a matter of pushing a shallow change in the semantics

through the proofs” (emphasis ours).

The crux of the issue is that reasoning about contract systems is both brittle and tedious.

Specifically, stating contract system properties relies on an ad hoc collection of information about its

operational semantics and proving them is a tedious case analysis on the semantics’s reduction rules.

As an example, for a minimal formal model like CPCF [13], stating and proving a staple property

called correct blame requires: the definition of an annotated semantics; the definition of four well-

formedness judgments with thirty-six inference rules that describe an invariant about the semantics;

and a lengthy, but straightforward, progress-and-preservation proof for the invariant [15].

To make matters worse, it is unclear how pieces of this process can be reused for different prop-

erties or different contract systems. For instance, consider correct blame combined with complete

monitoring [19], another staple property of contract systems. The straightforward approach for

stating and proving these two properties for one formal model requires repeating all of the above

steps in nearly the same way with only a few (but important) differences. To avoid the redundancy,

Dimoulas et al. [19] fuse the two properties into one. While the fusion avoids redundancy, it is not

always possible. Indeed, for comparing different checking regimes for gradual typing (an application

of contracts), Greenman et al. [31] end up defining seven variants of annotated reduction rules and

well-formedness judgments, and repeat essentially the same proof three times.

With this paper, we show that the view of contract systems as transition systems alleviates the

unnecessary labor. Of course, this is not the first paper that points out connections between

transition systems and contract checking, or more generally, monitoring program behavior. Indeed,

for more than two decades the runtime verification community has been studying the design and

implementation of program monitors based on transition systems [41, 7, 42, 40]. Closer to home,

Dimoulas et al. [18, 17], and Swords et al. [70, 71] have explored how the ideas from runtime

verification translate to the world of (higher-order) contract systems and can underpin contract

systems’ formal semantics, design, and implementation. This paper, however, is the first one that

develops a reusable, modular metatheory for contract systems, where the key enabling step is the

view of contract systems as transitions systems.

1.1 The Challenge of Reuse and Our Approach
There is a major challenge to overcome, however: the evaluation of a program with higher-order

contracts is tightly coupled with the way that the contract system monitors the evaluation of the

program and performs its checks. Because of this tight coupling, the operational semantics of

higher-order contract systems weaves the reductions that are related to evaluating the program

together with those that are related to monitoring contracts in a complex three-part pattern: some

monitor-related reductions set up proxies that attach contracts to program values, these proxies

act as anchors for other monitor-related reductions that inspect how the rest of the program uses

proxied values, and finally, the monitor-related reductions rely on program-related ones both for

the evaluation of the predicates that are part of contracts and for the propagation of proxied values.

In general, which monitor-related rule fires when, and which other rules it cooperates with (and

how) depends on the specifics of the contract system. As a result, augmenting the monitor-related

rules to propagate extra, property-specific information needed for reasoning about the contract

system seems to leave little space for reuse. To unlock reuse, the paper combines a series of insights:

Transition systems for higher-order contract systems. The reduction semantics of a contract

system induces a transition system that captures the distinction between monitor-related and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:3

Ok

𝑒1 −→∗
p 𝑒2 −→m

Ok

𝑒3 −→∗
p 𝑒4 −→m

· · · ℎchecking
Ok

Err(ℓ1) · · · Err(ℓ𝑖) · · ·

Fig. 1. A view of the reduction semantics of contract systems as transition systems

Ok,𝑟 ′
1

−→m

Ok,𝑟 ′
2

−→m

· · ·

ℎproj

ℎconsistent

Ok

−→m

Ok

−→m

· · · ...
ℎchecking

(Ok,𝑟 ′
1
)

I⊨𝑒1 −→m

(Ok,𝑟 ′
2
)

I⊨𝑒2 −→m

· · ·

Fig. 2. A view of contract systems as transition systems enables decomposition

program-related reductions. The diagram on the left in Figure 1 illustrates how. Each state of the

transition system (each dotted box) contains a set of program terms, namely all of the ones that are

reachable only via program-related reduction steps, 𝑒1 −→p 𝑒2. Monitor-related reduction steps,

in contrast, trigger transitions in the enclosing transition system. Intuitively, the states represent

observations that the contract system makes about the evaluation of a program. Importantly, the

monitor calculus can simplify the parts of the proof that concern the terms in a single state, as they

do not depend on the details of the specific contract system.

Homomorphisms between transition systems are proofs. Proofs of a wide range of properties
of contract systems boil down to mapping the information represented by the states of the induced

transition system to states of a transition system that satisfies a target property in an obvious

manner, by construction. For example, the homomorphism ℎchecking in Figure 1 demonstrates that

the contract system on the left does not mask errors, as the transition system on the right has no

transition from the Err states to the Ok state. Homomorphism composition also enables proof

reuse, as suggested by the arrows in Figure 2. Indeed, we return to these figures, formally defining

these transition systems and homomorphisms to establish composite properties of contract systems.

Abstract annotations can represent both contracts and property-related information.
Existing proof techniques for properties of contract systems rely on property-specific annotations.

These annotations represent meta-information about the workings of the contract system that

annotated semantics collect and propagate through evaluation. However, contract systems already

come with the “plumbing” needed to associate information with program values and propagate it

through evaluation; they have monitor-related reduction rules that attach contracts to values for

contract checking. Hence, abstracting over the annotations that these rules manipulate can kill

two birds with one stone. For instance, a set of annotations can represent contracts and another

proof-related meta-information, such as Dimoulas et al.’s notion of ownership. Similarly, monitor-

reduction rules that are abstracted over the way they handle annotations can be specialized to

perform contract checking or to propagate ownership. Finally, the two resulting systems can be

composed for the modular definition of a contract system that does both.

Working with contract systems: a design recipe. The combination of transition systems,

homomorphisms, and abstract annotations suggests a recipe for proving a property about a contract

system: (i) organize the contract system into layers of abstract annotations on top of contract-

agnostic proxies; (ii) enrich the annotations with information that is needed for proving the property,

modifying the monitor-specific reduction rules accordingly; (iii) abstract away unnecessary noise

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:4 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

by constructing a simpler transition system whose behavior captures the desired property; and

(iv) prove that the property is preserved by the monitor-specific rules, thereby establishing a

homomorphism that transfers the property from the simpler transition system to the original

contract system. Even better, properties proven in this manner are amenable to reuse.

1.2 An Overview of the Monitor Calculus
The paper demonstrates the above insights in the context of a formal framework based on the

monitor calculus. Themonitor calculus comeswith a fixed set of language features that are commonly

found in the literature, but the insights of the paper extend beyond the specifics of these features

and we hope this paper provides a roadmap for future contract system metatheories.

The reduction rules and the syntax of the monitor calculus are also fixed but parameterized.

Independent of the parameterization, there is only a single reduction sequence starting from any

term and thus only a single result it can produce. However, filling in the holes-parameters in the

definition of the syntax and reduction rules produces a specific instance of the monitor calculus;

each such instance corresponds to a different contract system that records information for stating

and proving its specific properties. The holes in the syntax of the monitor calculus have two flavors:

global and local. Global holes occupy a global register of the calculus’ abstract machine; local holes

decorate the contract-specific syntactic forms of the calculus. Global holes record information

about the reduction sequence of a term as a whole; local holes record information local to a specific

(sub)term. For both forms of holes, each instantiation of the monitor calculus must fill in holes in the

reduction rules of the calculus to specify how the rules propagate the corresponding information

as the term reduces. The monitor calculus allows this propagation to take place only when the

term reduces via a monitor-specific reduction, but neither the global nor the local information can

change the reduction sequence of a term except by causing it to terminate early.

To help with proving properties of contract systems, the metatheory of the monitor calculus

comes with key lemmas that themselves have holes. Filling in these holes amounts to specifying

desired evaluation invariants of the global and local information of an instance of the calculus. The

role of the key lemmas of the calculus is to facilitate establishing that the invariants hold, which in

turn serve as the bedrock for establishing properties of the instance. Overall, the holes-parameters of

our calculus can be filled in to state and prove properties that cover a range of contract systems and

their properties, from well-established properties like correct blame and complete monitoring for

Findler and Felleisen [23]’s classic contract system to facts about the time complexity of Greenberg

[29]’s space-efficient contract checks that have not been proven before.

To make these parameters and their interaction with the monitor calculus precise, we develop

the definitions and key lemmas of the monitor calculus by exploring a series of contract systems,

showing how their common parts correspond to the fixed pieces of the monitor calculus itself and

how their differences correspond to different instantiations of the calculus. Of course, to truly have

a monitor calculus that delivers on its promise of enabling proof reuse, the development must be

spelled out formally and in full. We have done so, in Agda. You [84] contains Agda code with all of

our definitions and proofs of all of the theorems and lemmas.

1.3 Roadmap
Section 2 describes variants of a simple contract system and uses them to introduce the monitor

calculus. Sections 3 and 4 explains how homomorphisms provide the backbone of proofs and how

the monitor calculus can automate some of the work. Sections 5 and 6 demonstrate the power of

the paper’s framework through two contract systems with the same language features but different

semantics; one checks every contract, while the other collapses redundant checks. Most importantly,

these two sections also show how the view of contracts as transition systems enables stating and

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:5

𝜅 ::= unit/c | flatℓ(𝑥 . 𝑒) | 𝜅1 ×/c𝜅2 | 𝜅1 +/c𝜅2 | box/c𝜅 | 𝜅𝑎 →/c𝜅𝑟 | 𝑡 | 𝜇/c 𝑡 .𝜅
𝐴 ::= [𝜅1, . . . , 𝜅𝑚] 𝑟 ::= Ok | Err(ℓ) ℓ ∈ Label
𝜏 ::= unit | nat | 𝜏1 × 𝜏2 | 𝜏1 + 𝜏2 | Box𝜏 | 𝜏𝑎 → 𝜏𝑟 | 𝑡 | 𝜇𝑡 .𝜏

𝑒 ::= B#𝐴 { 𝑒 } | proxy(𝐴, 𝑒𝑚) | () | zero | suc(𝑒) | foldnat (𝑒, 𝑒𝑧, 𝑥 𝑦. 𝑒𝑠)
| ⟨𝑒1, 𝑒2⟩ | π1 (𝑒) | π2 (𝑒) | inl(𝑒) | inr(𝑒) | case 𝑒 of {𝑥 .𝑒1 | 𝑦.𝑒2}
| box(𝑒) | unbox(𝑒) | 𝑥 | λ𝑥 .𝑒 | 𝑒1 𝑒2 | unroll(𝑒) | roll𝜏 (𝑒) | fix𝑥 .𝑒

𝑣 ::= () | 𝑛 | ⟨𝑣1, 𝑣2⟩ | inl(𝑣) | inr(𝑣) | roll𝜏 (𝑣) | box(𝑣) | λ𝑥 .𝑒 | proxy(𝐴, 𝑒𝑚)

𝑒𝑚 ::= box(𝑒)
| λ𝑥 .𝑒

𝑛 ::= zero
| suc(𝑛)

Fig. 3. The syntax of the monitor calculus instantiated for extended CPCF

proving key properties of the two semantics in a reusable and modular manner, including reuse

across semantics. The paper concludes with related work and closing remarks about the significance

and future of this work.

2 The Monitor Calculus
We introduce themonitor calculus through the formal models of two variants of Findler and Felleisen

[23]’s contracts for higher-order functions. Section 2.1 presents the step-by-step construction of a

model for higher-order contracts without blame as an instance of the calculus, and along the way,

explains how the monitor calculus’s parameters have been instantiated to enable this construction.

Section 2.2 composes this first instance with another that equips the model with blame objects, and

hence, illustrates how the parameters of the calculus make it possible to enrich a model with extra

local information in a modular manner.

Throughout the remainder of the paper, we leave out unsurprising parts of definitions, including

them only in You [84], our Agda development.

2.1 Syntax and Operational Semantics
As a first example of an instance of the monitor calculus, we consider Dimoulas and Felleisen [13]’s

CPCF, which is an extension of call-by-value PCF [54] with features for checking contracts. Because

the base monitor calculus is larger than CPCF, our instance will be larger than CPCF. Concretely,

the monitor calculus has natural numbers, pairs, disjoint sums, immutable references, and recursive

data structures, and so will our extended CPCF.

The calculus has two special features for monitoring the behavior of a program: boundaries and

proxies. Boundaries and proxies both connect a contract to a specific part of the program, explicating

which contract should be checked against which part of the program. Syntactically a boundary is

written B#𝐴 {𝑒}, and is a term with a nested term 𝑒 . In conventional contract systems, boundaries

evaluate by evaluating 𝑒 and then determining if its value satisfies a contract; the monitor calculus

generalizes this idea as we shall see presently. A proxy is the corresponding value form, used to

indicate that the immediate properties of the value have been checked against its contract but

that there may be other properties of the value remaining to be checked; it is written proxy(𝐴, 𝑣).
Typically contract systems check first-order properties (function arity, properties of base values,

etc) as they reduce boundaries. If the checks pass and there are more properties as yet unchecked,

the boundaries reduce to proxies (properties of the domain or range of a function, properties of the

elements of vectors, etc); if there are no remaining checks, the boundaries simply evaporate.

In the monitor calculus, both boundaries and proxies have a second piece, an annotation 𝐴, that

sits where the contract would sit in a conventional contract system, which brings us to the first

holes-parameters of the monitor calculus. In general, to fill in the holes in the monitor calculus’s

syntax, each instance must specify the local annotations 𝐴 and the global register 𝑟 . For the CPCF

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:6 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

Γ ::= 𝑥1 : 𝜏1, . . . , 𝑥𝑚 : 𝜏𝑚 Γ ⊢ 𝑒 : 𝜏 Δ :≡ {𝑡1, . . . , 𝑡𝑛} Δ ⊢c 𝜅 : Ctc𝜏

⊢ 𝐴 : Ann𝜏 ⊢ 𝑒 : 𝜏
Γ ⊢ B#𝐴 {𝑒} : 𝜏

⊢ 𝐴 : Ann𝜏 ⊢ 𝑒𝑚 : 𝜏

Γ ⊢ proxy(𝐴, 𝑒𝑚) : 𝜏
⊢c 𝜅1 : Ctc𝜏 · · · ⊢c 𝜅𝑚 : Ctc𝜏

⊢ [𝜅1, . . . , 𝜅𝑚] : Ann𝜏
𝑥 : nat ⊢ 𝑒 : nat

Δ ⊢c flatℓ(𝑥 . 𝑒) : Ctc nat
Δ ⊢c 𝜅𝑎 : Ctc𝜏𝑎 Δ ⊢c 𝜅𝑟 : Ctc𝜏𝑟
Δ ⊢c 𝜅𝑎 →/c𝜅𝑟 : Ctc (𝜏𝑎 → 𝜏𝑟)

𝑡 ∈ Δ

Δ ⊢c 𝑡 : Ctc 𝑡
Δ ⊢c 𝜅1 : Ctc𝜏1 Δ ⊢c 𝜅2 : Ctc𝜏2

Δ ⊢c 𝜅1 ×/c𝜅2 : Ctc (𝜏1 × 𝜏2)
Δ, 𝑡 ⊢c 𝜅 : Ctc𝜏

Δ ⊢c 𝜇/c 𝑡 .𝜅 : Ctc (𝜇𝑡 .𝜏)

Fig. 4. The contract-related typing rules of the monitor calculus instantiated for extended CPCF

instance,𝐴 is a list of contracts, and 𝑟 is either Ok, indicating there have been no contract violations

or Err(ℓ) for some ℓ , indicating there has been a violation of a flat contract the label ℓ . Figure 3

depicts the full syntax definitions for CPCF as an instance of the monitor calculus. The nonterminal

𝜏 ranges over types, 𝜅 over contracts, 𝑒 over terms, and 𝑒𝑚 over proxy-able terms. Parts of CPCF

that are specific to this instance of the monitor calculus are blue; portions of the definitions in black

are the same for all instances.

And, already at this point, we can see some of the flexibility of the monitor calculus because

the contracts themselves are written as part of the instantiation of the parameter of the monitor

calculus, and not directly in the monitor calculus itself. Therefore, we can easily vary the syntax of

contracts, and the precise interaction between the contracts and the rest of the calculus.

Beyond boundaries and proxies, the base monitor calculus contains some standard features and,

for brevity, we discuss only two of them that play a special role in themetatheory of contract systems.

First, isorecursive types enable the expression of commonly used datatypes whose contracts pose

interesting challenges when reasoning about blame and space-efficient contracts; we return to these

issues in Sections 5 and 6. Second, immutable references are particularly useful for modeling lazy

contracts [24]. For example, when a boundary encounters a pair ⟨𝑣1, 𝑣2⟩, both of its components

are immediately checked (cf. the [R-CrCons] rule in Figure 5). In contrast, when a pair stores two

references, i.e. ⟨box(𝑣1), box(𝑣2)⟩, a pair of proxies is created after crossing the boundary, delaying

the contract checks of the individual components of the pairs until they are accessed via unbox.
The first row of Figure 4 presents a key subset of the monitor calculus’s type rules, those for

boundaries, proxies and annotations. The rules for boundaries and proxies recursively type the

term 𝑒 and 𝑒𝑚 , but in an empty context. The annotation portion and the conclusion of the rules are

part of the base monitor calculus and, hence, are generic. They reference the generic annotation 𝐴,

enabling each instance of the monitor calculus to determine which annotations are appropriate for

a particular 𝜏 . For this CPCF instance of the monitor calculus, the rightmost rule in that first line

says that all of the contracts in a particular 𝐴 must have the same type and they must match the

type in the annotation. The premise of the rule is blue to indicate that it is part of the instantiation

of the parameter of the monitor calculus. The 𝐴 in the conclusion is also blue (written out as a

sequence of contracts), as it too can change in different instances.

The remainder of Figure 4 gives the rules for well-typed contracts and follows the design of

CPCF with one contract form for each type. For values of type 𝜏 , Ctc𝜏 denotes the type of their
contracts. A flat contract, i.e., a contract for a natural number, consists of a label ℓ and a predicate

𝑒 that may use only the identifier 𝑥 , that binds the value being checked. And, although we write

𝑒 in the definition of 𝐴, we do not actually allow proxies or boundaries, to simplify the formal

development. Including boundaries and proxies does not require a fundamental change to the

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:7

monitor calculus itself, but does require a complex stratification to ensure that the semantics is

well-defined. We include that stratification in the Agda development [84].

Still, the premise of the rule for flat contracts can simply use the typing judgment for terms. Note

that the premise of the typing rules for flat contracts is blue, as it is the instance’s decision to type

the terms with the typing judgment for terms of the monitor calculus. However, the instance is not

allowed to change the definition of the typing judgment for terms.

A contract for a pair, 𝜅1 ×/c𝜅2, is well-typed when both pieces of the contract are well-typed

and, similarly, a function contract is well-typed when its domain contract and range contract are

well-typed. We omit the typing rules for contracts for disjoint sums and immutable reference

cells—they follow the same pattern. Finally, 𝜇/c builds an isorecursive contract, 𝜇/c 𝑡 .𝜅, which is

well-typed when the body 𝜅 is well-typed in a context extended with the additional type variable 𝑡 ,

mirroring how the recursive type 𝜇𝑡 .𝜏 binds the type variable 𝑡 in 𝜏 .

To give a faithful semantics to CPCF in our instance, when the term 𝑒 in B#𝐴 {𝑒} evaluates
to a flat value like a number, we must check the sequence of contracts inside 𝐴. When instead

the term 𝑒 evaluates to a higher-order value, such as a function or a box, a proxy is created and

wrapped around the value. The proxy inherits the same contracts 𝐴 that were on the boundary. All

subsequent operations applied to the value are intercepted by the monitor calculus to allow for the

latent checks in the annotated list of contracts.

As an example, consider proxy([isOdd→/c isEven], λ𝑥 .suc(suc(𝑥))), a function that adds two

to its argument with a contract. The function’s contract is an arrow contract whose domain and

range are two contracts on natural numbers, isOdd and isEven; we’re using those names to stand

for flatℓO(𝑧. foldnat (𝑧, 0, 𝑥 𝑦. neg𝑦)) and flatℓE(𝑧. foldnat (𝑧, 1, 𝑥 𝑦. neg𝑦)), respectively, where neg
is λ𝑧.foldnat (𝑧, 1, 𝑥 𝑦. 0). These two contracts are flat contracts, meaning they represent a predicate

on 𝑧; flat contracts treat 0 as false and all other naturals as true. To compute with naturals, a term

of the form foldnat (𝑛, 𝑒1, 𝑥 𝑦. 𝑒2) iterates over 𝑛, returning 𝑒1 if 𝑛 is zero and 𝑒2 with 𝑥 bound to

the predecessor of 𝑛 and 𝑦 bound to the recursive result of foldnat when 𝑛 is not zero.

Monitor calculus evaluation pairs the global register with a term. To get a sense of the semantics,

the following sequence of reduction steps shows how the CPCF instance of the monitor calculus

reduces the application of the proxied function from above to 13.

Ok, proxy([isOdd→/c isEven], λ𝑥 .suc(suc(𝑥))) 13 −→
Ok,B#[isEven] { (λ𝑥 .suc(suc(𝑥))) (B#[isOdd] { 13 }) } −→
Ok,B#[isEven] { (λ𝑥 .suc(suc(𝑥))) 13 } −→∗

Ok,B#[isEven] { 15 } −→ Err(ℓE), 15
Because of the proxy, the contract system intervenes at the application and creates two boundaries,

one around the entire call and another around the argument. CPCF distributes the contract from

the proxy to the new boundaries to ensure that the function adheres to the behavior prescribed

by its contract. In the last step, since the result of the application does not satisfy the range of

isOdd→/c isEven, CPCF sets the register to Err(ℓE).
Figure 5 shows the selected definition of the monitor-related reduction relation of the monitor

calculus. As foreshadowed in Section 1, the main reduction relation is split into a program-related

reduction relation −→p and the monitor-related reduction relation −→m. The −→p relation is

common for all instances of the calculus and contains standard rules such as the application of

functions and the destruction of pairs, hence we focus on −→m in Figure 5.

The −→m relation is the part of the semantics of the monitor calculus that can be tailored by

an instance. There are a fixed set of rules in −→m; each specific instance tailors them by filling in

holes to specify how the 𝐴s and 𝑟s on the left- and right-hand sides of the rule are related to each

other. Overall, the rules with holes act as scaffolding for defining different instances of the monitor

calculus with the goal of balancing the expressiveness of the instances with the opportunities of

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:8 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

[R-CrNat] 𝑟,B#𝐴 { 𝑛 } −→m 𝑟 ′, 𝑛 where 𝐴 = [𝜅1, . . . , 𝜅𝑚], (𝑟, 𝑟 ′) ∈ checkCtcs ([𝜅1, . . . , 𝜅𝑚], 𝑛)
[R-CrCons] 𝑟,B#𝐴 { ⟨𝑣1, 𝑣2⟩ } −→m 𝑟 ′, ⟨B#𝐴1 {𝑣1} , B#𝐴2 {𝑣2} ⟩ where

𝐴 = [𝜅1 ×/c𝜅′1, . . . , 𝜅𝑚 ×/c𝜅′𝑚], 𝐴1 = [𝜅1, . . . , 𝜅𝑚], 𝐴2 = [𝜅′
1
, . . . , 𝜅′𝑚], and (𝑟, 𝑟 ′) ∈ {(Ok,Ok)}

[R-CrRoll] 𝑟,B#𝐴 { roll𝜏 (𝑣) } −→m 𝑟 ′, roll𝜏 (B#𝐴′ { 𝑣 }) where
𝐴= [𝜇/c 𝑡 .𝜅1, . . . , 𝜇/c 𝑡 .𝜅𝑚], 𝐴′= [𝜅1 [(𝜇/c 𝑡 .𝜅1)/𝑡] , . . . , 𝜅𝑚 [(𝜇/c 𝑡 .𝜅𝑚)/𝑡]], and (𝑟, 𝑟 ′) ∈ {(Ok,Ok)}

[R-CrMon] 𝑟,B#𝐴 { 𝑣 } −→m 𝑟 ′, proxy(𝐴′, 𝑣) where

𝑣 = λ𝑥 .𝑒 or 𝑣 = box(𝑣 ′), 𝐴 = [𝜅1, . . . , 𝜅𝑚], 𝐴′ = [𝜅1, . . . , 𝜅𝑚], and (𝑟, 𝑟 ′) ∈ {(Ok,Ok)}
[R-Prxβ] 𝑟, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑟 ′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 {𝑣}) } where

𝐴= [𝜅1 →/c𝜅′
1
, . . . , 𝜅𝑚 →/c𝜅′𝑚], 𝐴𝑟 = [𝜅′

1
, . . . , 𝜅′𝑚], 𝐴𝑎= [𝜅𝑚, . . . , 𝜅1], and (𝑟, 𝑟 ′) ∈ {(Ok,Ok)}

[R-MrgPrx] 𝑟,B#𝐴 { proxy(𝐴′, 𝑒𝑚) } −→m 𝑟 ′, proxy(𝐴′′, 𝑒𝑚) where

𝐴 = [𝜅1, . . . , 𝜅𝑙], 𝐴′ = [𝜅′
1
, . . . , 𝜅′𝑚], 𝐴′′ = [𝜅′

1
, . . . , 𝜅′𝑚, 𝜅1, . . . , 𝜅𝑙], and (𝑟, 𝑟 ′) ∈ {(Ok,Ok)}

checkCtcs ([𝜅1, . . . , 𝜅𝑚], 𝑛) is the binary relation over Status such that

(1) (Ok,Ok) ∈ checkCtcs ([flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], 𝑛) if for all 1 ≤ 𝑖 ≤𝑚, there exists 𝑛′𝑖
such that 𝑒𝑖 [𝑛 /𝑥] −→∗

p suc(𝑛′𝑖).
(2) (Ok, Err(ℓ𝑘)) ∈ checkCtcs ([flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], 𝑛) if 𝑒𝑘 [𝑛 /𝑥] −→∗

p zero and for

all 1 ≤ 𝑖 ≤ 𝑘 − 1, there exists 𝑛′𝑖 such that 𝑒𝑖 [𝑛 /𝑥] −→∗
p suc(𝑛′𝑖).

Fig. 5. The monitor-related reduction relation of the monitor calculus instantiated for CPCF

proof reuse across properties and instances. For example, the bottom portion of Figure 5 shows the

monitor-specific rules for CPCF where the parts in blue correspond to the relations that fill in the

holes of the rules. These relations capture how CPCF checks contracts and updates the register 𝑟

and the annotations 𝐴 as it evaluates a term.

To better understand the instantiation process, first take a look at the second rule, [R-CrCons].

The first line of the rule is black, indicating that no instance can change it. It says that when there

is a boundary that contains a pair of values, it reduces to a pair of boundaries that contain the

values. The instance, however, controls the second and third lines, effectively specifying a relation

that relates the 𝐴s and 𝑟s that appear on the left and right sides of the rule. For the CPCF instance,

the contracts in the 𝐴 on the left of the rule must be pairs (because of the contract type rules in

blue from Figure 4) and the 𝐴1, which appears on the right, must be the contracts from the first

components of those pair contracts; similarly for the second component in 𝐴2. The annotation

portion of this relation has not limited reduction but, in general, there may be reduction sequences

that, for specific instances, get stuck because the relation that the instance specifies does not relate

certain 𝐴s or 𝑟s. The [R-CrCons] also illustrates this situation with its use of 𝑟 and 𝑟 ′, as they must

both be Ok. If an earlier step discovers a contract violation then 𝑟 becomes Err(ℓ) (for some ℓ) and

thus this rule does not apply, nor does any other.

The [R-CrNat] rule checks flat contracts using a more complex relation, but one that still can

be expressed as a relation on the 𝐴s and 𝑟s that appear in the rule. When a number 𝑛 crosses a

boundary with the contracts [𝜅1, . . . , 𝜅𝑚], the checkCtcs relation determines the new content 𝑟 ′

of the register depending on whether a contract violation has occurred. The relation checkCtcs,

defined at the bottom of Figure 5, takes a number and a list of flat contracts, and runs the contracts

in order using the program-related reduction relation (−→p). If the number does not satisfy contract

flatℓ𝑘(𝑥 . 𝑒𝑘), checkCtcs returns (Ok, Err(ℓ𝑘)). Otherwise, it returns (Ok,Ok). And, since the terms

in the flat contracts do not have boundaries or proxies, the process of checking a contract cannot

itself signal a contract violation (but see You [84] for a version that lifts this restriction).

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:9

𝐴 ::= [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩]
𝑟 ::= Ok | Err(ℓ)

𝑏 ::=
{
pos = ℓ𝑝 ; neg = ℓ𝑛

}
blameSwap(𝑏) :≡ {pos = 𝑏.neg; neg = 𝑏.pos}

[R-CrNat] 𝑟,B#𝐴 { 𝑛 }−→m 𝑟
′, 𝑛 𝐴= [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩], (𝑟, 𝑟 ′) ∈ checkCtcs ([𝜅1, . . . , 𝜅𝑚], 𝑛)

[R-Prxβ] 𝑟, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑟 ′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 {𝑣}) } where

𝐴 = [⟨𝑏1, (𝜅1 →/c𝜅′
1
)⟩, . . . , ⟨𝑏𝑚, (𝜅𝑚 →/c𝜅′𝑚)⟩], 𝐴𝑟 = [⟨𝑏1, 𝜅′1⟩, . . . , ⟨𝑏𝑚, 𝜅′𝑚⟩],

𝐴𝑎 = [⟨blameSwap(𝑏𝑚), 𝜅𝑚⟩, . . . , ⟨blameSwap(𝑏1), 𝜅1⟩], and (𝑟, 𝑟 ′) ∈ {(Ok,Ok)}

Fig. 6. The instance of the monitor calculus that adds blame

There are two more rules that are worth paying attention to here. The first one is [R-Prxβ].

As discussed through the example reduction sequence earlier, when applying a proxied function

annotated with the contracts [
(
𝜅1 →/c𝜅′

1

)
, . . . ,

(
𝜅𝑚 →/c𝜅′𝑚

)
] to an argument 𝑣 , the [R-Prxβ] rule

creates two new boundaries: one around the function application and the other around the argument

𝑣 . The [R-Prxβ] rule further annotates the boundary around the function application with the

list of range contracts, [𝜅′
1
, . . . , 𝜅′𝑚], and the boundary around 𝑣 with list of the domain contracts,

[𝜅𝑚, . . . , 𝜅1]. Notably, the CPCF instance reverses the order of the domain contracts: since the

contracts closer to the end of the list of contracts of the proxied function are the ones ascribed to

the function last, their domains are checked first.

The second interesting rule is [R-MrgPrx], which merges annotations when a proxy crosses a

boundary that imposes on it a list of new annotations, as it illustrates an important design choice

in the monitor calculus, namely that proxies never proxy other proxies. Instead, each instance has

an opportunity to merge the contracts in some fashion or possibly even do some checking to see

if the merged contracts make sense. In the case of CPCF, we simply concatenate the two lists of

contracts, as shown in the figure. As before, the order of concatenation is reversed so that contracts

that are attached to the function first are checked first.

The remaining rules decompose and propagate annotations on boundaries and proxies in accor-

dance with the types of the proxies. They follow the same basic ideas, and are omitted here.

2.2 Tracking Errors with Blame Objects
As a second instance of the monitor calculus, this section demonstrates how to add blame to

CPCF, capturing the blame assignment mechanism of Racket’s contract system [23]. To do so, we

instantiate the calculus a second time, this time pairing contracts with new information: blame

objects. As before, the labels on flat contracts pinpoint which predicate fails when contract checking

detects a violation. The additional blame objects, meanwhile, capture Findler and Felleisen [23]’s

blame assignment algorithm. In Section 3, to demonstrate a proof using transition systems, we

establish a relationship between labels on flat contracts and blame objects, following Dimoulas

et al. [15], whose work first provides a semantic justification for Findler and Felleisen [23]’s blame

assignment algorithm. In this section, we simply organize and present the necessary definitions.

To encode both blame assignment and contract checking, we pair each contract with a record that

consists of two labels that name a positive party and a negative party. These two parties correspond

to the producer and the consumer, respectively, for any value that crosses a boundary.

The syntax of the new instance is given in the top of Figure 6 showing only the instantiation of

the parameters of the monitor calculus’ syntax (𝐴 and 𝑟) — the rest of the calculus’ syntax does not

change. The new annotations are lists of blame-contract pairs, where the contract is the same as

our first instance. The blame object is a record with a pos field and a neg field that each store a

label. We use notation
{
pos = ℓ𝑝 ; neg = ℓ𝑛

}
to construct a record and dot to access fields.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:10 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

𝐴 ∈ Ann 𝑟 ∈ Reg
𝑒 ::= B#𝐴 {𝑒} | proxy(𝐴, 𝑒𝑚)

| 𝑥 | λ𝑥 .𝑒 | 𝑒1 𝑒2 | ⟨𝑒1, 𝑒2⟩
| π1 (𝑒) | π2 (𝑒) | · · ·

𝑒 −→p 𝑒
′

𝑟, 𝑒 −→ 𝑟, 𝑒′
[R-Prg]

𝑟, 𝑒 −→m 𝑟 ′, 𝑒′

𝑟, 𝐸 [𝑒] −→ 𝑟 ′, 𝐸 [𝑒′] [R-Mon]

𝐸 [π1 (⟨𝑣1, 𝑣2⟩)] −→p 𝐸 [𝑣1]
𝐸 [π2 (⟨𝑣1, 𝑣2⟩)] −→p 𝐸 [𝑣2]
𝐸 [(λ𝑥 .𝑒) 𝑣] −→p 𝐸 [𝑒 [𝑣 /𝑥]]

[R-CrNat] 𝑟,B#𝐴 { 𝑛 } −→m 𝑟 ′, 𝑛 (𝐴, 𝑟, 𝑟 ′) ∈ 𝑅crnat

[R-CrCons] 𝑟,B#𝐴 { ⟨𝑣1, 𝑣2⟩ } −→m 𝑟 ′, ⟨B#𝐴1 {𝑣1} , B#𝐴2 {𝑣2} ⟩ (𝐴,𝐴1, 𝐴2, 𝑟 , 𝑟
′) ∈ 𝑅crcon

[R-CrMon] 𝑟,B#𝐴 { 𝑣 } −→m 𝑟 ′, proxy(𝐴′, 𝑣) , 𝑣 is λ𝑥 .𝑒 or box(𝑣 ′) (𝐴,𝐴′, 𝑟 , 𝑟 ′) ∈ 𝑅crmon

[R-Prxβ] 𝑟, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑟 ′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 {𝑣}) } (𝐴,𝐴𝑎, 𝐴𝑟 , 𝑟 , 𝑟
′) ∈ 𝑅pxb

[R-MrgPrx] 𝑟,B#𝐴 { proxy(𝐴′, 𝑒𝑚) } −→m 𝑟 ′, proxy(𝐴′′, 𝑒𝑚) (𝐴,𝐴′, 𝐴′′, 𝑟 , 𝑟 ′) ∈ 𝑅mrg
The parameters of the calculus are𝒜 :≡ (Ann,Reg) and𝒯 :≡ (𝑅crnat, 𝑅crcon, 𝑅crmon, . . .).

Fig. 7. Selected rules of the monitor calculus, λm[𝒜;𝒯].

The remainder of Figure 6 shows the new instance’s relations for two of the monitor-related

reduction rules. Importantly, the blame objects do not influence contract checking; they are merely

propagated during evaluation. The [R-CrNat] rule shows this clearly, as the same checkCtcs

function from Figure 5 is used to check the contracts 𝜅1, . . . , 𝜅𝑚 , ignoring the blame objects.

The [R-Prxβ] rule shows how blame objects are propagated; each 𝑏𝑖 is paired with the contract

𝜅𝑖 →/c𝜅′𝑖 on the left-hand side. Thus, 𝑏𝑖 is paired with 𝜅𝑖 and 𝜅
′
𝑖 , respectively, on the right-hand side.

However, since the role of provider and the role of consumer are reversed for function arguments,

the blame objects on the boundary around the argument (i.e., B#𝐴𝑎 {𝑣}) have to be flipped using

blameSwap(𝑏𝑖) to match the reversal of the roles.

The rest of the rules follow the same pattern and are omitted.

3 Proofs For Monitor Calculus Instances Via Transition Systems
Instances of the monitor calculus give rise to transition systems which in turn, serve as the basis

for proving properties of the instances. In general, our proof recipe involves designing a transition

system that satisfies a property by construction, and exhibiting a homomorphism to this transition

system from the one induced by the instance. To explain this process in precise terms, Section 3.1

describes instances formally, Section 3.2 defines induced transition systems, and Section 3.3 brings

in homomorphisms and offers a first proof. Then, in Section 3.4, we discuss a second, more complex

proof about the property involving blame objects and labels on flat contracts mentioned briefly in

Section 2.2. Section 3.5 demonstrates, through a proof, how transition systems enable a modular

metatheory of contract systems; a composite contract system can be projected to simpler ones, and

proofs of properties of the projected contract systems can be composed into a proof of a property of

the composite contract system. Even better, pieces of these proofs are reusable: one of the projected

contract systems is the instance from Section 2.1, and the proof that it does not mask errors, which

we describe in Section 3.3, transfers to the composite system.

3.1 Annotation Languages and Instances
Abstracting from the two instances in Section 2.1 and Section 2.2, Figure 7 provides a formal

overview of the unistantiated monitor calculus. Specifically, it depicts key elements of its syntax,

presents a selection from its reduction rules, and highlights its parameters in blue. Notably, the

main reduction relation, −→, is formed by joining −→p and −→m. The missing rules of −→p are

standard, as are the evaluation contexts, 𝐸.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:11

An instance of the parameters, which we notate as a pair (𝒜,𝒯), is called an annotation language.
Each𝒜 consists of a definition of the annotations (𝐴) and the register (𝑟), and each𝒯 consists of a

set of named relations, one filling in the side conditions in each of the rules in the calculus’s −→m.

For the example annotation language in Section 2.1, we say that𝒜ctc is the blue definitions of

𝐴 and 𝑟 in Figure 3, and that 𝒯c is the set of relations written in blue in Figure 5. Similarly, for

the annotation language from Section 2.2, we say that𝒜bctc is the brown definitions in the upper

part of Figure 6, and that𝒯bc is the set of relations in the lower part of the same figure. For better

readability, we define the relations in𝒯 implicitly with the assertions “𝐴 =” in Figures 5 and 6.

In principle, the blue premise in the upper-right rule in Figure 4 also deserves a place in each

annotation language (𝒜,𝒯). However, all other annotations in the paper either have trivial types

or ones similar to Figure 4, so we omit them hereafter. Also, from this point forward, we work

exclusively with well-typed terms without explicitly naming the typing derivations. Finally, given

an annotation language, we use λm to instantiate the monitor calculus, and obtain an instance. The

two instances from Section 2 are written λm[𝒜ctc;𝒯c] and λm[𝒜bctc;𝒯bc].

3.2 Induced Transition Systems
Each instance λm[𝒜;𝒯] induces a transition system. Its states are pairs consisting of the register 𝑟

of the instance, and a set of (closed) terms of the monitor calculus that all reduce to each other only

via program-related reductions, −→p. Two states are connected with a transition when any of the

terms in one state can reduce to a term in the other via the monitor-related reduction relation, −→m.

To formalize induced transition systems, we define the equivalence relation ∼p as the reflexive,

symmetric, and transitive closure of −→p and we notate the equivalence class of 𝑒 as [𝑒]p.

Definition 3.1. We write Tind[𝒜;𝒯] to denote the induced transition system of an instance

λm[𝒜;𝒯]. Its set of states is { (𝑟, [𝑒]p) | any term 𝑒 and register 𝑟 }. For any two states (𝑟1, [𝑒1]p)
and (𝑟2, [𝑒2]p), there is a transition if and only if there exists 𝐸, 𝑒′

1
, and 𝑒′

2
such that 𝐸

[
𝑒′
1

]
∼p 𝑒1,

𝐸
[
𝑒′
2

]
∼p 𝑒2 and 𝑟1, 𝑒

′
1
−→m 𝑟2, 𝑒

′
2
.

As a concrete example of an induced transition system, the diagram on the left of Figure 1

visualizes Tind[𝒜ctc;𝒯c], which is induced by λm[𝒜ctc;𝒯c] from Section 2.1. In particular, the states

of the transition system pair the status Ok or Err(ℓ𝑘) with the equivalence class [𝑒]p.

3.3 Using Homomorphisms from Induced Transition Systems, a First Proof
Our primary approach to proving facts about contract systems is via establishing homomorphisms

between transition systems. Typically, we construct a transition system that obviously has some

desirable property, just by the way it is defined. Then, we exhibit a homomorphism from the

induced transition systems of an instance to the one with the desirable property, proving that the

instance also possesses the property.

As a first example, we prove that CPCF never masks errors, as promised in Section 1. Although

this is a simple property, it serves to illustrate the key ideas of proofs done with the monitor

calculus. Specifically, we show that the register 𝑟 of λm[𝒜ctc;𝒯c] never goes from Err(ℓ) to Ok by

demonstrating a homomorphism from the induced transition system Tind[𝒜ctc;𝒯c] to the transition
system on the right-hand side of Figure 1.

To start, we state the formal definition of transition system homomorphisms from Rutten [57].

A homomorphism is a mapping ℎ from the states of a source transition system to the states of a

destination transition system that satisfies two properties. First, it must preserve transitions, i.e.,

if there is a transition between 𝑠1 and 𝑠2, then there must be a transition between ℎ(𝑠1) and ℎ(𝑠2).
Second, it must reflect transitions, i.e., if there is a transition between ℎ(𝑠1) and some state 𝑡2 in

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:12 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

𝑏 ⊢ 𝜅 consistent 𝑝 ::= + | − 𝛿 :≡ {𝑡1 : 𝑝1, . . . , 𝑡𝑚 : 𝑝𝑚} 𝛿 ⊢𝑝 𝜅 sgn

𝑏.pos = ℓ

𝑏 ⊢ flatℓ(𝑥 . 𝑒) consistent
[C-Nat]

blameSwap(𝑏) ⊢ 𝜅𝑎 consistent 𝑏 ⊢ 𝜅𝑟 consistent
𝑏 ⊢ (𝜅𝑎 →/c𝜅𝑟) consistent

[C-App]

𝛿 (𝑡) = 𝑝

𝛿 ⊢𝑝 𝑡 sgn
𝛿, 𝑡 : 𝑝 ⊢𝑝 𝜅 sgn
𝛿 ⊢𝑝 (𝜇/c 𝑡 .𝜅) sgn

𝛿 ⊢− 𝜅𝑎 sgn 𝛿 ⊢+ 𝜅𝑟 sgn
𝛿 ⊢+ (𝜅𝑎 →/c𝜅𝑟) sgn

𝛿 ⊢+ 𝜅𝑎 sgn 𝛿 ⊢− 𝜅𝑟 sgn
𝛿 ⊢− (𝜅𝑎 →/c𝜅𝑟) sgn

⊢ 𝑒 econsistent 𝑏1 ⊢ 𝜅1 consistent · · · 𝑏𝑚 ⊢ 𝜅𝑚 consistent 𝛿 ⊢𝑝 𝜅1 sgn · · · 𝛿 ⊢𝑝 𝜅𝑚 sgn
⊢ B#[⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩] {𝑒} econsistent

[E-B]

Fig. 8. Consistency of blame objects and the labels on contracts

the destination transition system, then there must be some state 𝑠2 in the source transition system

such that ℎ(𝑠2) = 𝑡2 and a transition in the source transition system from 𝑠1 to 𝑠2.

When the destination transition system is explicitly designed to demonstrate that certain bad

transition can never happen (as in our non-masking example) then we need only transition preser-

vation, not reflection. Accordingly, we define a weak homomorphism as a mapping ℎ between the

states of the transition systems that satisfies preservation, but might not satisfy reflection.

Next, we formally define the destination transition system through ≼, a relation on the set

{Ok} ∪ {Err(ℓ) | any label ℓ}. ≼ is the smallest reflexive relation such that Ok ≼ Err(ℓ). Then, our
transition system that, prevents masking by construction, has a transition between any two states

𝑟1, 𝑟2, iff 𝑟1 ≼ 𝑟2 and 𝑟1, 𝑟2 are not both Err(ℓ).
With the two transition systems defined and the notion of a homomorphism in hand, establishing

that CPCF never masks errors is straightforward. We define the function ℎchecking as (𝑟, [𝑒]p) ↦−→ 𝑟 .

Then, we complete the proof by verifying that ℎchecking is well-defined and a weak homomorphism.

It is worth noting that despite this being a simple property with a proof that is easily obtained

otherwise, our approach still manages to save work by automating away the traditional induction

over the evaluation contexts and limiting the tedious inspection of the rules to those in the −→m

relation. Of course these may seem like small benefits for a pretty simple property and contract

system, but, as we discuss further on, our approach unlocks further savings by enabling the reuse

of the proof of non-masking as-is when proving composite properties of the same or even different

contract systems. In comparison, the standard approach requires defining new formal models that

support proving all the properties together through either the usual subject reduction avenue, or

through ad-hoc (bi)simulation arguments.

3.4 Using the Annotations of a Monitor Calculus Instance, a Second Proof
Beyond global information, i.e., what the register of an instance records, most properties of contract

systems also concern local information, that is, information recorded in the annotations 𝐴 of an

instance. As an example, we return to λm[𝒜bctc;𝒯bc], the instance described in Section 2.2, and

discuss a consistency property between labels on flat contracts and blame objects. Consistency

dictates that when blame objects and labels on flat contracts are appropriately matched up for a

term, they remain in sync during its evaluation.

Naturally, we formalize consistency as a judgment that imposes constraints on the annotations

of λm[𝒜bctc;𝒯bc]. Intuitively, a blame object 𝜅 is associated with the term it protects. Hence, for flat

contracts, which check values produced by the protected term, the positive part of the corresponding

blame object, 𝑏.pos, should match the label on the contract. After all, if the check fails, it is the

producer of the value that should be blamed. The top row of Figure 8 turns this intuition into a

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:13

pair of inference rules. For a flat contract, rule [C-Nat] checks that 𝑏.pos equals the label on the

contracts . For a function contract, rule [C-App] recursively checks the domain contract and the

range contract, after swapping the fields of the blame object for the domain contract to reflect that

the argument of a function is produced by the function’s consumer.

There is an issue for consistency, having to do with recursive contracts. Intuitively, in a recursive

contract 𝜇/c 𝑡 .𝜅, the 𝑡 can appear in a negative position, which means there is no assignment of

labels to flat contracts that stay in sync with blame objects as the 𝜇 unfolds.

Concretely, consider the recursive contract 𝜇/c 𝑡 .(𝑡 →/c isEven), where isEven is as defined in

Section 2.1. Importantly, isEven has label ℓE. Assume that 𝑏 ⊢ 𝜇/c 𝑡 .(𝑡 →/c isEven) consistent holds
for some blame object 𝑏 whose two components, 𝑏.pos and 𝑏.neg, are distinct. Thus, we know
that 𝑏.pos = ℓE must hold. During evaluation, due to [R-CrRoll] from Figure 5, consistency

preservation means that we need to prove 𝑏 ⊢ ((𝜇/c 𝑡 .(𝑡 →/c isEven)) →/c isEven) consistent. In
this contract, however, the domain contract is again 𝜇/c 𝑡 .(𝑡 →/c isEven). Hence, we need to show

𝑏.neg = ℓE, which would be a contradiction.
1

Accordingly, we define 𝛿 ⊢𝑝 𝜅 sgn that limits all contract variables in recursive contracts to posi-

tive positions, similar to the standard subtyping restriction for recursive types [6, 3, 53, Chapter 21].

To complete the definition of consistency, we also have to lift 𝑏 ⊢ 𝜅 consistent and 𝛿 ⊢𝑝 𝜅 sgn to

all term forms of the instance. The rule for the boundary form, rule [E-B], is the only noteworthy

rule as it connects consistency for contracts (in blue) with consistency for the terms of the monitor

calculus (in black). Looking ahead, the rest of our development eliminates altogether the need for

the black portions to be defined explicitly.

With these definitions in hand, we wish to prove that consistency is preserved. To do so, we first

define a transition system that captures consistency by construction. As before, the states of the

transition system are pairs, but where the set of terms in the pair consists only of consistent ones.

That is, the states are (𝑟, [𝑒]𝑐) where [𝑒]𝑐 are elements of the partition induced by ∼𝑝 , but with

only terms that are consistent. Clearly, this transition system preserves consistency.

To establish that consistency holds for λm[𝒜bctc;𝒯bc], we need to construct a homomorphism

from the induced transition system of the instance to the one that satisfies consistency by construc-

tion. There is one wrinkle, however, as there is no homomorphism from the first to the second

because the induced transition system contains inconsistent terms. Of course, this is not a problem,

as we are not interested in such terms.

Rather than directly using Tind[𝒜bctc;𝒯bc], we resort to its subsystem whose states are a subset of

the states in Tind[𝒜bctc;𝒯bc] that are closed under the original transition relation. Then to complete

the proof we show that there is a homomorphism from the subsystem to the transition system that

satisfies consistency by construction.

At this point, the definitions required to complete the proofs may not seem like a net win for our

approach, as showing that the subsystem is closed under the original transition relation and that

the homomorphism exists amounts to the same work that would have to be done with a standard

subject reduction approach. There are two ways, however, that these additional definitions save us

work. The first comes from couching these definitions in homomorphisms which enables proof

reuse as we show in the next subsection. The other comes from our framework that provides

scaffolding for simplifying the proofs and is the subject of the section after that.

1
Studying this issue led the first author to uncover a bug in the Racket contract system, which is now fixed.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:14 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

3.5 Transition Systems Enable Proof Reuse
Beyond proving specific results, homomorphisms between transition system also offer an oppor-

tunity for proof reuse. Specifically, we can prove composite properties of an instance by putting

together existing proofs, including proofs of properties of different instances.

As a concrete example, consider λm[𝒜bctc;𝒯bc] and the proof that it both preserves consistency

and does not mask errors. Clearly, we can prove the two properties independently as discussed in

Sections 3.3 and 3.4 and then put them together. However, for the non-masking property, Section 3.3

actually presents its proof for λm[𝒜ctc;𝒯c], not λm[𝒜bctc;𝒯bc]. Thankfully, the view of contracts as

transition systems helps alleviate the labor of repeating the same proof for λm[𝒜bctc;𝒯bc].
As mentioned in Section 1, we can connect the induced transition systems Tind[𝒜ctc;𝒯c] and

Tind[𝒜bctc;𝒯bc], and transfer the non-masking property from the first to the second. Figure 2 demon-

strates how, graphically. Specifically, ℎproj is a weak homomorphism that turns Tind[𝒜bctc;𝒯bc]
to Tind[𝒜ctc;𝒯c], while ℎchecking is the homomorphism that proves the non-masking property of

Tind[𝒜ctc;𝒯c]. The composition of the two (weak) homomorphismsℎchecking◦ℎproj sends the induced
transition system, Tind[𝒜bctc;𝒯bc], to the simple transition system on the right of Figure 1, and,

switching back to instances, we see that λm[𝒜bctc;𝒯bc] does not mask errors.

The key to the construction of ℎproj and similar weak homomorphisms is the concept of instance

projection. Intuitively, we can transform λm[𝒜bctc;𝒯bc] to λm[𝒜ctc;𝒯c] by simply erasing blame

objects. Formally, instance projections relate a composite instance to its constituents.

Definition 3.2 (Instance Projection). Let λm[𝒜;𝒯] and λm[𝒜′
;𝒯

′] be two instances where𝒜 is

(Ann,Reg) and𝒜
′
is (Ann′,Reg′). An instance projection from λm[𝒜;𝒯] to λm[𝒜′

;𝒯
′] is a pair

of functions πA : Ann → Ann′ and πR : Reg → Reg′ that map annotations and register contents of

𝒜 to that of 𝒜
′
such that for any relation 𝑅 in 𝒯, and for any annotations and registers related by

𝑅, their images under πA (−) and πR (−) are also related by the corresponding relation 𝑅′
in𝒯

′
.

The last condition entails that, given an instance projection (πA, πR) fromλm[𝒜;𝒯] to λm[𝒜′
;𝒯

′],
when 𝑟1, 𝑒1 −→m 𝑟2, 𝑒2 in λm[𝒜;𝒯] then πR (𝑟1), πexpr (𝑒1) −→m πR (𝑟2), πexpr (𝑒2) in λm[𝒜′

;𝒯
′]

where πexpr (−) recursively applies πA (−) to the given term. As an example, the instance projection

from λm[𝒜bctc;𝒯bc] to λm[𝒜ctc;𝒯c] consists of the πA that erases blame objects from the annotations

of λm[𝒜bctc;𝒯bc], and an identity πR for the register.

The important property of instance projections is that they give rise to weak homomorphisms

from their source to their target instance, exactly like ℎproj from Figure 2. It is worth explaining here

though, the significance of the adjective “weak” in the context of the monitor calculus. An instance

of the monitor calculus can have an arbitrary relation in each of the monitor-related reduction rules,

e.g., the blue text in Figure 5. In many situations, these relations merely move information from

one annotation to another, but the relations may also block reduction, in the simplest case by being

empty. Accordingly, in the general case, the second condition in the definition of a homomorphism,

about reflecting transitions, may not hold. Intuitively, this means that there may be transitions in the

destination transition system that are absent in the source transition system. In all of the properties

we have established using the monitor calculus, e.g., the non-masking property of λm[𝒜bctc;𝒯bc]
(but also properties we discuss in following sections), the theorems we are interested in seek to

show that certain bad transitions never happen, and thus weak homomorphisms are sufficient.

Theorem 3.3. Let (𝒜,𝒯) and (𝒜′,𝒯′) be two annotation languages such that there is an instance
projection (πA, πR) from λm[𝒜;𝒯] to λm[𝒜;𝒯

′], then ℎ : (𝑟, [𝑒]p) ↦−→ (πR (𝑟), [πexpr (𝑒)]p) mapping

Tind[𝒜;𝒯] to Tind[𝒜′
;𝒯

′] is a weak homomorphism. Here, πexpr (−) is the function that recursively

applies πA (−) to all annotations in a given term.

Thus, due to Theorem 3.3, just by constructing the instance projection that erases blame objects in

λm[𝒜bctc;𝒯bc], we obtain a proof of its non-masking property, by reusing the proof for λm[𝒜ctc;𝒯c].

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:15

4 Simplifying Proofs about Monitor Calculus Instances via Invariants
Building on the monitor calculus, we provide scaffolding that simplifies proofs based on transition

systems like the ones in Section 3.3, Section 3.4, and Section 3.5. First, in Section 4.1, we introduce

the notion of an invariant that captures the details of a specific property of a contract system. The

invariant specifies the property in terms of the annotations and the register of an instance so, in

Section 4.2, we introduce the satisfaction relation that lifts an invariant to the instance’s terms. With

the satisfaction relation in hand, Section 4.3 presents a systematic way for constructing a transition

system that satisfies an invariant by construction. Given such an invariant-satisfying transition

system, the metatheory of the monitor calculus provides additional help for transferring an invariant

to the induced transition system of an instance, thereby establishing that the corresponding contract

system has the desired property.

4.1 Abstracting out Properties of Monitor Calculus Instances as Invariants
Properties of contract systems typically concern three aspects of the information encoded in

the semantics: global information (facts about the register 𝑟 of an instance), local information

(facts about its annotations 𝐴), and contextual information (facts about the terms around the

boundaries and proxies that contain specific annotations). The invariant is a five tuple whose

first two components cover the global information and whose last three cover both the local and

contextual information.

Definition 4.1 (Invariant). An invariant I for an instance λm[𝒜;𝒯] consists of five components:

R A predicate over the register.

≼ A preorder over the set { 𝑟 | R(𝑟) holds }.
𝒥 Indices, an arbitrary (countable) set.

◁𝐴 A binary relation over 𝒥 for each 𝐴.

A⟦𝐴 𝑗, 𝑗 ′ ⟧ A function interpreting each𝐴 𝑗, 𝑗 ′
as a proposition.

2

The first component of the invariant restricts the shape of registers; the second dictates how they

can change. As an example, the non-masking property corresponds to an invariant Inonmsk where

R imposes no restrictions, and ≼ is the preorder from the first step of the proof in Section 3.3.

The A function describes properties of the annotations of boundaries and proxies that hold for

all states, capturing invariants of the local information encoded by the annotations. It takes three

arguments, an annotation and two 𝑗s. The 𝑗 ’s capture contextual information, so let’s ignore them

to start, as not all properties require them. For example, the blue parts of the consistency in Figure 8

is wired into an invariant Icons via a definition of A that returns the consistency judgment.

Besides global and local information, in order to accommodate the varied requirements of

different properties, invariants also need access to the third kind of information: contextual in-

formation. Looking ahead, Section 5 proves complete monitoring, which requires establishing a

well-formedness property similar to consistency, but with a twist: the blame objects on a boundary

or proxy term also need to match with blame objects in surrounding boundaries and proxies. The

first component for context information is an index set 𝒥 that represents the relevant information

about the contexts. The second one is a family of binary relations ◁𝐴 that, given an annotation 𝐴,

relates pairs of elements 𝑗 and 𝑗 ′ of 𝒥. Intuitively, when 𝑗 ◁𝐴 𝑗 ′, which we indicate with 𝐴 𝑗, 𝑗 ′
, 𝑗

represents a surrounding context of a boundary or proxy with annotation𝐴, and index 𝑗 ′ represents
a new context for its sub-term. Put differently, 𝐴 𝑗, 𝑗 ′

describes a constraint between annotations

and the contexts they can appear in. And, thus, the A actually receives these triples.

2
For example, in our Agda mechanization [84], A returns a type, i.e. a value of type Set0.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:16 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

I ⊨𝑗 𝑒
I ⊨𝑗 B#𝐴 {𝑒} iff there exists 𝑗 ′ such that 𝑗 ◁𝐴 𝑗 ′, A⟦𝐴 𝑗, 𝑗 ′ ⟧ and I ⊨𝑗

′
𝑒

I ⊨𝑗 proxy(𝐴, 𝑒𝑚) iff there exists 𝑗 ′ such that 𝑗 ◁𝐴 𝑗 ′, A⟦𝐴 𝑗, 𝑗 ′ ⟧ and I ⊨𝑗
′
𝑒𝑚

I ⊨𝑗 ()
I ⊨𝑗 ⟨𝑒1, 𝑒2⟩ iff I ⊨𝑗 𝑒1 and I ⊨𝑗 𝑒2
I ⊨𝑗 𝑒 𝑒𝑎 iff I ⊨𝑗 𝑒 and I ⊨𝑗 𝑒𝑎

Fig. 9. Selected rules of the satisfaction relation where I :≡ (𝒥,◁𝐴,R,≼,A).

Given the formal definition of invariants, we revisit the definition of the non-masking and

consistency properties as the invariants Inonmsk and Icon, respectively.

Definition 4.2. The invariant Inonmsk for λm[𝒜ctc;𝒯c] equals (𝒥, {◁𝐴}𝐴, R, ≼, A) where𝒥 :≡⊤,
◁𝐴 relates all indices, ≼ is the smallest reflexive relation including Ok ≼ Err(ℓ) for all ℓ , and both

R(·) and A always hold.

Definition 4.3. The invariant Icon for λm[𝒜bctc;𝒯bc] equals (𝒥, {◁𝐴}𝐴, R, ≼, A) where 𝒥 :≡⊤,
◁𝐴 relates all indices, ≼ and R(·) always hold, and

A⟦ [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩] 𝑗, 𝑗
′ ⟧ :≡ (𝑏1 ⊢ 𝜅1 consistent) ∧ · · · ∧ (𝑏𝑚 ⊢ 𝜅𝑚 consistent)

∧ (⊢+ 𝜅1 sgn) ∧ · · · ∧ (⊢+ 𝜅𝑚 sgn)

4.2 The Satisfaction Relation
The satisfaction relation lifts an invariant I to the terms of an instance, and hence, it bridges the

gap between the proof-specific I and the generic pieces of the monitor calculus. Formally, the

satisfaction relation is an indexed binary relation I ⊨𝑗 𝑒 that determines whether all annotations

appearing in 𝑒 satisfy I in context 𝑗 . As an example, and to connect to the proofs in Section 3, we

can replace ⊢ 𝑒 econsistent from Figure 8 with Icon ⊨() 𝑒 .
Figure 9 presents the interesting cases of I ⊨𝑗 𝑒 . The boundary case (and the proxy case,

respectively) is the workhorse of the satisfaction relation. Ignoring 𝑗 and 𝑗 ◁𝐴 𝑗 ′ for the moment,

for I ⊨𝑗 B#𝐴 {𝑒} to hold, the satisfaction relation extracts the A function from I and demands

A⟦𝐴 𝑗, 𝑗 ′ ⟧ to hold, in addition to the requirement that I ⊨𝑗
′
𝑒 recursively holds. The rest of the

cases simply recur over the sub-terms of the given term, 𝑒 .

Returning to the indices, their goal is to thread contextual information through the pieces of

a term. For instance, consider the boundary case. I ⊨𝑗 B#𝐴 {𝑒} asks for the existence of 𝑗 ′ ∈ 𝒥

such that 𝑗 ◁𝐴 𝑗 ′ and I ⊨𝑗
′
𝑒 , and therefore, it asks for two contexts related by ◁𝐴 such that 𝑗

describes the context of the boundary term and 𝑗 ′ describes the context the boundary “creates” for

its sub-terms. Hence, the satisfaction relation pipes context information through terms so that I
can use it to check contextual properties through the appropriate design of 𝒥 and ◁𝐴. In Section 5

we put this idea to work to establish complete monitoring. As a simpler example, if we design an

invariant with 𝒥 :≡ {𝑛 | 0 ≤ 𝑛 < 𝑘} and 𝑛 + 1 ◁𝐴 𝑛 for all 𝑛, the satisfaction relation entails that all

boundaries and proxies in a term can appear in at most 𝑘 enclosing boundaries or proxies.

4.3 Systematic Construction of Invariant-Satisfying Transition Systems
Given an invariant I for an instance λm[𝒜;𝒯], the satisfaction relation I ⊨𝑗 𝑒 is sufficient for

constructing an invariant-satisfying transition system Tsat[𝒜;𝒯;I, 𝑗]. Tsat[𝒜;𝒯;I, 𝑗] is similar to

Tind[𝒜;𝒯] except that its states are restricted based onI. Formally, the definition ofTsat[𝒜;𝒯;I, 𝑗]
follows that of Tind[𝒜;𝒯] except that it only uses registers that satisfy R(−) from I, and refers to

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:17

alternative equivalence classes which we notate as [𝑒]I, 𝑗 . Specifically, for any (closed) term 𝑒 such

that I ⊨𝑗 𝑒 holds, 𝑒′ ∈ [𝑒]I, 𝑗 iff 𝑒′ ∼p 𝑒 and I ⊨𝑗 𝑒′ where ∼p is as defined in Section 3.2.

Definition 4.4. For any (𝒜,𝒯), any I :≡ (𝒥, {◁𝐴}𝐴,R,≼,A), and any index 𝑗 ∈ 𝒥, we write

Tsat[𝒜;𝒯;I, 𝑗] to denote the invariant-satisfying transition system constructed using I. Its set of
states is { (𝑟, [𝑒]I, 𝑗) | any 𝑒 and 𝑟 such that R(𝑟) and I ⊨𝑗 𝑒 }. For any two states (𝑟1, [𝑒1]I, 𝑗) and
(𝑟2, [𝑒2]I, 𝑗), there is a transition if and only if there exists 𝐸, 𝑒′

1
, and 𝑒′

2
such that 𝐸

[
𝑒′
1

]
∈ [𝑒1]I, 𝑗 ,

𝐸
[
𝑒′
2

]
∈ [𝑒2]I, 𝑗 and 𝑟1, 𝑒′1 −→m 𝑟2, 𝑒

′
2
.

The construction of Tsat[𝒜;𝒯;I, 𝑗] points to a way to transfer I to Tind[𝒜;𝒯] by simply

mapping states generated by 𝑒 and an 𝑟 in Tind[𝒜;𝒯] to the ones generated by the same 𝑒 and

𝑟 in Tsat[𝒜;𝒯;I, 𝑗], ignoring the states where I does not hold. To do so, however, we need two

requirements for invariants: monotonicity and soundness which, essentially, ask that the transitions

of Tind[𝒜;𝒯] “preserve” I.

Definition 4.5 (Monotonic Invariant). I :≡ (𝒥, {◁𝐴}𝐴:Ann𝜏 ,R,≼,A) is monotonic if for any 𝑟1,𝑟2,𝑒1,

𝑒2, if R(𝑟1) holds, 𝑟1, 𝑒1 −→m 𝑟2, 𝑒2 and I ⊨𝑗 𝑒1 then R(𝑟2) holds and 𝑟1 ≼ 𝑟2.

Definition 4.6 (Sound Invariant). I :≡ (𝒥, {◁𝐴}𝐴:Ann𝜏 ,R,≼,A) is sound if for any 𝑟1, 𝑟2, 𝑒1, 𝑒2 such

that R(𝑟1) and R(𝑟2) both hold, if 𝑟1 ≼ 𝑟2, 𝑟1, 𝑒1 −→m 𝑟2, 𝑒2 and I ⊨𝑗 𝑒1 then I ⊨𝑗 𝑒2.

Equipped with the precise definitions of monotonicity and soundness, we construct a homomor-

phism from a subsystem of the induced transition system to the invariant-satisfying system.

Theorem 4.7. Let I :≡ (𝒥, {◁𝐴}𝐴:Ann𝜏 ,R,≼,A) be a monotonic and sound invariant. Assume that

for some 𝑟0, 𝑒0 and 𝑗 , both of R(𝑟0) and I ⊨𝑗 𝑒0 hold. Let T be the transition system obtained by

restricting the states of Tind[𝒜;𝒯] to those reachable from (𝑟0, [𝑒0]p), i.e. T is the smallest subsystem

of Tind[𝒜;𝒯] containing (𝑟0, [𝑒0]p). Then, the map (𝑟, [𝑒]p) ↦−→ (𝑟, [𝑒]I, 𝑗) is a well-defined function
from T to Tsat[𝒜;𝒯;I, 𝑗], and it is a homomorphism.

As an illustration of how Theorem 4.7 simplifies proofs about contract systems, we follow up

on the non-masking property from Section 3.3 and the consistency property from Section 3.4. For

the non-masking property, by Theorem 4.7, we only need to prove that Inonmsk is monotonic and

sound. But R and A in Inonmsk always hold, so it boils down to showing that 𝑟1 ≼ 𝑟2 whenever

𝑟1, 𝑒1 −→m 𝑟2, 𝑒2. This is easily verified by a case analysis on𝒯c. Similarly, for consistency, we prove

that Icon is monotonic and sound, and use Theorem 4.7.

As a bonus to the above definitions of monotonicity and soundness, our Agda development

streamlines their presentation. For instance, the [R-CrCons] case of soundness becomes:

Rule [R-CrCons] 𝑟1,B#𝐴 { ⟨𝑣1, 𝑣2⟩ } −→m 𝑟2, ⟨B#𝐴1 {𝑣1} , B#𝐴2 {𝑣2} ⟩
Assumption R(𝑟1), R(𝑟2), 𝑟1 ≼ 𝑟2, 𝑗 ◁𝐴 𝑗 ′ and A⟦𝐴 𝑗, 𝑗 ′ ⟧
Obligation 𝑗◁𝐴1

𝑗 ′, 𝑗◁𝐴2
𝑗 ′, A⟦𝐴 𝑗, 𝑗 ′

1
⟧, and A⟦𝐴 𝑗, 𝑗 ′

2
⟧

5 Complete Monitoring
As a first application of our proof framework, we revisit complete monitoring [15, 19]. Complete

monitoring builds on the notions of ownership and obligations. Intuitively, a region of code, that is, a

term that resides in a boundary, owns the values it creates until it hands them off to another region.

If the hand-off is through a boundary, the original owner relinquishes the value to the receiving

region since the contract system can inspect it and “bless” its migration. Otherwise, the originating

and the receiving region co-own the value, and hence, are both responsible for its behavior. In

this context, ownership indicates which region of code is responsible for which value during the

evaluation of a program; when a contract system is a complete monitor, a value is never co-owned

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:18 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

𝐴 ::= ⟨ℓ𝑛, ℓ𝑝⟩ (ℓ𝑛, ℓ𝑝 are labels) 𝑟 ::= ()

[R-CrNat] 𝑟,B#𝐴 { 𝑛 } −→m 𝑟 ′, 𝑛 where 𝐴 = ⟨ℓ𝑛, ℓ𝑝⟩ and (𝑟, 𝑟 ′) ∈ {((), ())}
[R-CrCons] 𝑟,B#𝐴 { ⟨𝑣1, 𝑣2⟩ } −→m 𝑟 ′, ⟨B#𝐴1 {𝑣1} , B#𝐴2 {𝑣2} ⟩ where

𝐴 = ⟨ℓ𝑛, ℓ𝑝⟩, 𝐴1 = ⟨ℓ𝑛, ℓ𝑝⟩, 𝐴2 = ⟨ℓ𝑛, ℓ𝑝⟩, and (𝑟, 𝑟 ′) ∈ {((), ())}
[R-CrMon] 𝑟,B#𝐴 { 𝑣 } −→m 𝑟 ′, proxy(𝐴′, 𝑣) where

𝑣 = λ𝑥 .𝑒 or 𝑣 = box(𝑣 ′), 𝐴 = ⟨ℓ𝑛, ℓ𝑝⟩, 𝐴′ = ⟨ℓ𝑛, ℓ𝑝⟩, and (𝑟, 𝑟 ′) ∈ {((), ())}
[R-Prxβ] 𝑟, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑟 ′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 {𝑣}) } where

𝐴 = ⟨ℓ𝑛, ℓ𝑝⟩, 𝐴𝑟 = ⟨ℓ𝑛, ℓ𝑝⟩, 𝐴𝑎 = ⟨ℓ𝑝 , ℓ𝑛⟩, and (𝑟, 𝑟 ′) ∈ {((), ())}
[R-MrgPrx] 𝑟,B#𝐴 { proxy(𝐴′, 𝑒𝑚) } −→m 𝑟 ′, proxy(𝐴′′, 𝑒𝑚) where

𝐴 = ⟨ℓ𝑛, ℓ𝑠⟩, 𝐴′ = ⟨ℓ𝑠 , ℓ𝑝⟩, 𝐴′′ = ⟨ℓ𝑛, ℓ𝑝⟩, and (𝑟, 𝑟 ′) ∈ { ((), ()) }

Fig. 10. The annotation language (𝒜owner,𝒯o).

by two or more regions. Obligations denote which region of code is responsible for which flat

contract; when a contract system is a complete monitor, it blames a region only when there is a

violation of one of its obligations by one of the values it owns.

In the original formulation of complete monitoring, ownership and obligations are encoded

as annotations that are propagated during evaluation by an annotated semantics. Given these

annotations, complete monitoring becomes preservation and progress for a convoluted notion of

well-formedness for annotated terms and contracts, and its proof is a tedious subject reduction.

In our reformulation of complete monitoring, we split it into three orthogonal conditions, each of

which we prove in isolation and without unnecessary boilerplate, and then we simply compose the

proofs. In our framework, complete monitoring comprises three invariants: obligation consistency,

which says that blame objects stay in sync with obligations; the single-owner policy, which matches

the corresponding restriction of the original formulation; and owner consistency, which says that

blame objects stay in sync with ownership. For obligation consistency, since labels on flat contracts

are essentially Dimoulas et al. [15, 19]’s obligations, we reuse the proof of consistency (Icon)
for λm[𝒜bctc;𝒯bc] from Section 4.3. For the single-owner policy, we prove it for a new instance,

λm[𝒜owner;𝒯o], with just ownership annotations. For owner consistency, we prove it for a third

instance, λm[𝒜obctc;𝒯obc], that combines ownership annotations, blame objects and contracts.

Since there are instance projections from λm[𝒜obctc;𝒯obc] to λm[𝒜bctc;𝒯bc] and λm[𝒜owner;𝒯o], by

Theorem 3.3, λm[𝒜obctc;𝒯obc] meets all three conditions. To complete the proof that extended CPCF

is a complete monitor, we also have to show that the ownership annotations do not cause the

evaluation to get stuck. For λm[𝒜owner;𝒯o], the proof is straightforward, but for λm[𝒜obctc;𝒯obc],
contract checking can complicate matters. Hence, we also prove a progress theorem for the instance

λm[𝒜obctc;𝒯obc]; its corresponding Agda proof is in You [84].

5.1 The Single-Owner Policy
Figure 10 shows the syntax of𝒜owner and the monitor-related reduction rules𝒯o. As usual, blue

indicates the instance-specific parts of the definitions. In𝒜owner, annotations are pairs of labels,

and the register is unused. An annotated boundary B#⟨ℓ𝑛, ℓ𝑝⟩ {𝑒} marks that ℓ𝑛 is the owner of

the boundary term itself, while ℓ𝑝 is the owner of the region 𝑒 . As an example, consider the term

B#⟨ℓC, ℓS⟩
{
(λ𝑥 .𝑥)

(
B#⟨ℓS, ℓQ⟩ { λ𝑦.𝑦 }

)}
. It is divided into three regions: the outer boundary, the

application inside the outer boundary, including the function but excluding its argument, and

the argument. ℓC owns the outer boundary, ℓS owns the application, ℓQ owns the argument. This

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:19

𝐴 ::= ⟨𝐴own , 𝐴bctc⟩, 𝐴own
::= ⟨ℓ𝑛, ℓ𝑝⟩, 𝐴bctc

::= [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩], 𝑟 ::= Ok | Err(ℓ)
[R-MrgPrx] 𝑟,B#𝐴 { proxy(𝐴′, 𝑒𝑚) } −→m 𝑟 ′, proxy(𝐴′′, 𝑒𝑚) where

𝐴 = ⟨⟨ℓ𝑛, ℓ𝑠⟩, [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑙 , 𝜅𝑙 ⟩]⟩, 𝐴′ = ⟨⟨ℓ𝑠 , ℓ𝑝⟩, [⟨𝑏′1, 𝜅′1⟩, . . . , ⟨𝑏′𝑚, 𝜅′𝑚⟩]⟩,
𝐴′′ = ⟨⟨ℓ𝑛, ℓ𝑝⟩, [⟨𝑏′1, 𝜅′1⟩, . . . , ⟨𝑏′𝑚, 𝜅′𝑚⟩, ⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑙 , 𝜅𝑙 ⟩]⟩, and (𝑟, 𝑟 ′) ∈ { (Ok,Ok) }

Fig. 11. The combined annotation language (𝒜obctc,𝒯obc).

example satisfies the single-owner policy as each sub-term has a single owner, because the two ℓSs

match. But, not all terms satisfy single ownership. For instance, if the inner boundary’s annotation

were ⟨ℓP, ℓQ⟩, then both ℓP and ℓS own the function, violating the policy. In general, a term adheres

to the single-owner policy when the owner of each boundary (or a proxy) term matches the owner

of the region it appears immediately inside.

The reduction rules in Figure 10 adjust ownership annotations as values migrate from one

region to another, and halt the evaluation when they detect a violation of the single-owner policy.

[R-CrNat] removes the boundary form around 𝑛 to mark the hand-off from ℓ𝑝 to ℓ𝑛 — ℓ𝑛 , the owner

of the surrounding region obtains ownership of 𝑛 implicitly. [R-CrCons] pushes the boundary

inside the pair as the pair crosses the boundary — ownership for the elements of the pair becomes

the same as the pair before the reduction as those do not migrate to the surrounding region until

a projection on the pair. Most of the remaining rules are similar, with two exceptions. [R-Prxβ]

inserts a boundary around the argument 𝑣 to keep track of its migration from the region that

owns the application to the region that owns the function λ𝑥 .𝑒 — the new boundary around 𝑣

has a flipped pair of labels since 𝑣 retains its owner but the owner of the function gets ahold of

the boundary term. [R-MrgPrx] ensures that when a proxy crosses a boundary it respects the

single-owner policy — the two ℓ𝑠 labels equate the owner of the proxy with the owner of the region

that the proxy resides in. If the owners do not match, [R-MrgPrx] would not fire.

The single-owner policy is formalized as the invariant Isingle of λm[𝒜owner;𝒯o]. It relies on local

information, i.e., ownership annotations, and contextual information, i.e. indices, to express that

ownership of a boundary (and proxy) must match ownership of the region the boundary (or proxy)

appears in. Specifically, the satisfaction relation takes care of threading ownership so that for every

boundary (and proxy) 𝑗 is the owner of the surrounding context and 𝑗 ′ is the owner of the new
region the boundary (or proxy) delimits.

Definition 5.1. Isingle is (Label, {◁𝐴}𝐴, Rsingle, ≼single, A) where Rsingle and ≼single impose no

constraints and ◁𝐴 :≡ {(ℓ𝑛, ℓ𝑝)}, for 𝐴 = ⟨ℓ𝑛, ℓ𝑝⟩
A⟦ ⟨ℓ𝑛, ℓ𝑝⟩ 𝑗, 𝑗

′ ⟧ :≡ 𝑗 = ℓ𝑛 ∧ 𝑗 ′ = ℓ𝑝

Because Isingle insists that the labels match, all invariant-satisfying terms either take a step or

are values. Thus, the preservation of Isingle entails that λm[𝒜owner;𝒯o] never detects a violation

of the single-owner policy as it evaluates a term that satisfies Isingle. Based on Theorem 4.7, in

order to establish preservation of Isingle, it is sufficient to show that Isingle is monotonic and sound,

which follows the same simple proof pattern as that for consistency (Icon) in Section 4.3.

Theorem 5.2. Isingle is monotonic and sound.

5.2 Ownership Consistency
To capture the relationship between ownership and blame objects, we combine the annotation lan-

guages (𝒜owner,𝒯o) and (𝒜bctc,𝒯bc) to form (𝒜obctc,𝒯obc). Figure 11 gives the relevant definitions

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:20 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

and one example transition rule, where the components from𝒜owner are in blue and those from

𝒜bctc are in brown. To distinguish the annotations of (𝒜obctc,𝒯obc) from those of (𝒜owner,𝒯o) and
(𝒜bctc,𝒯bc), we decorate the metavariable 𝐴s as 𝐴own

and 𝐴bctc
, respectively.

Similar to the invariant Icons from Section 4.1, we define a judgment BlameSeq as part of charac-

terizing ownership consistency in an invariant. To be concrete, for any annotation ⟨𝐴own, 𝐴bctc⟩
where 𝐴own = ⟨ℓ𝑛, ℓ𝑝⟩ and 𝐴bctc = [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩], BlameSeq(ℓ𝑝 , ℓ𝑛, [𝑏1, . . . , 𝑏𝑚]) holds iff:

(1) ℓ𝑝 = 𝑏1 .pos and 𝑏𝑚 .neg = ℓ𝑛 , and

(2) 𝑏1.neg = 𝑏2.pos, 𝑏2 .neg = 𝑏3.pos, . . . , and 𝑏𝑛−1.neg = 𝑏𝑛 .pos.

Condition (1) relates ownership to blame parties, making sure that the the owner of the region in

the boundary (or proxy) matches the positive party of the blame object at the front, and similarly

the owner of the boundary (or proxy) itself matches the negative party of the blame object at the

end. Condition (2) makes sure that there are no dangling blame parties in the middle. In other

words, BlameSeq enforces that ownership and blame objects are in sync, which together with

consistency of blame objects, entails that the book keeping of extended CPCF for assigning blame

is in sync with ownership.

Theorem 5.3 defines the invariant for ownership consistency, Iocons. The indices of Iocons are
labels, and two indices 𝑗, 𝑗 ′ are related at annotation𝐴 = ⟨𝐴own, [⟨𝑏1, 𝜅1⟩, . . . , ⟨𝑏𝑚, 𝜅𝑚⟩]⟩ ifBlameSeq
determines that 𝑗 ′ and 𝑗 are consistent with the blame objects. Moreover, the A function of Iocons
asks that ownership labels and indices match appropriately.

Definition 5.3. Iocons is the six tuple (Label, {◁𝐴}𝐴:Ann𝜏 , Rocons, ≼ocons, A) where Rocons and ≼ocons

always hold, and ◁⟨𝐴own,[⟨𝑏1,𝜅1 ⟩,...,⟨𝑏𝑚,𝜅𝑚 ⟩] ⟩ :≡ {(𝑗, 𝑗 ′) | BlameSeq(𝑗 ′, 𝑗, [𝑏1, . . . , 𝑏𝑚])}
A⟦ ⟨⟨ℓ𝑛, ℓ𝑝⟩, 𝐴bctc⟩ 𝑗, 𝑗 ′ ⟧ :≡ (𝑗 = ℓ𝑛 ∧ 𝑗 ′ = ℓ𝑝)

Similar to Section 5.1, preservation of Iocons is a consequence of its monotonicity and soundness.

Theorem 5.4. The invariant Iocons is monotonic and sound.

6 Space-Efficient Contracts
Due to the accumulation of redundant proxies around values, contract checking can result in

unnecessary space and time cost. Indeed, the issue is bad both in theory [72, bubble example] and

in practice [73]. In response, Feltey et al. [21] take inspiration from Greenberg [29]’s space-efficient

latent contracts and develop collapsible contracts as a practical way to mitigate certain pathologies

in the performance of gradual typing due to duplicate checks [73].

Greenberg [29]’s space-efficient contracts capture the essential, general principles for avoid-

ing redundancy by merging proxies. In Section 6.1, we introduce λm[𝒜se;𝒯s], an instance with

space-efficient contracts, and prove its space-efficiency. λm[𝒜se;𝒯s] relies on a decidable predicate

isStronger to determine whether one flat contract rejects a superset of the values another one

rejects, and hence, avoid space explosion. The proof of space-efficiency proceeds by establishing the

invariant that, as long as there are no recursive contracts in the program, the size of each contract

is in 𝑂 (|K | · 2𝐻), where K is the set of all distinct flat contracts and 𝐻 is the height of the tallest

contract in the initial program.

Section 6.2 tackles time complexity. It does so in two steps via the instance λm[𝒜ccs;𝒯ccs] that

records the number of different operations in its register. First, since time complexity depends on

the number of contract checks, we prove that the total number of flat contract checks performed by

λm[𝒜ccs;𝒯ccs] is bounded linearly by the number of monitor-related reductions. Since the monitor

calculus takes a single step when checking an entire list of flat contracts, the bound implies that

space-efficient contracts avoid an asymptotic increase in the number of contract checks. Second,

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:21

𝐴 ::= se𝜅

𝑟 ::= Ok | Err(ℓ)
se𝜅 ::= unit/se | [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)] | se𝜅1 ×/se se𝜅2

| se𝜅1 +/se se𝜅2 | box/se se𝜅 | se𝜅𝑎 →/se se𝜅𝑟 | 𝑡 | 𝜇/se 𝑡 .se𝜅
[R-CrNat] 𝑟,B#𝐴 { 𝑛 } −→m 𝑟 ′, 𝑛 where

𝐴 = [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], (𝑟, 𝑟 ′) ∈ checkCtcs ([flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], 𝑛)
[R-Prxβ] 𝑟, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑟 ′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 {𝑣}) } where

𝐴 = se𝜅𝑎 →/se se𝜅𝑟 , 𝐴𝑟 =
se𝜅𝑟 , 𝐴𝑎 = se𝜅𝑎, and (𝑟, 𝑟 ′) ∈ {(Ok,Ok)}

[R-MrgPrx] 𝑟,B#𝐴 { proxy(𝐴′, 𝑒𝑚) } −→m 𝑟 ′, proxy(𝐴′′, 𝑒𝑚) where

𝐴 = se𝜅1, 𝐴
′ = se𝜅2, 𝐴

′′ = join(se𝜅2, se𝜅1), and (𝑟, 𝑟 ′) ∈ {(Ok,Ok)}

join([𝜅′
1
, . . . , 𝜅′

𝑘
], [𝜅1, . . . , 𝜅𝑚]) ≡ joinp([𝜅′

1
, . . . , 𝜅′

𝑘
], [𝜅1, . . . , 𝜅𝑚])

join((se𝜅1 →/se se𝜅3), (se𝜅2 →/se se𝜅4)) ≡ join(se𝜅2, se𝜅1) →/se join(se𝜅3, se𝜅4)
joinp([], [𝜅1, . . . , 𝜅𝑚]) ≡ [𝜅1, . . . , 𝜅𝑚]
joinp([flatℓ(𝑥 . 𝑒), 𝜅′

2
, . . . , 𝜅′

𝑘
], [𝜅1, . . . , 𝜅𝑚]) ≡ flatℓ(𝑥 . 𝑒) :: drop(joinp([𝜅′

2
, . . . , 𝜅′

𝑘
], [𝜅1, . . . , 𝜅𝑚]), 𝑒)

drop([], 𝑒) ≡ []
drop([flatℓ(𝑥 . 𝑒′), 𝜅2, . . . , 𝜅𝑚], 𝑒) ≡ if isStronger (𝑒, 𝑒′) then drop([𝜅2, . . . , 𝜅𝑚], 𝑒)

else flatℓ(𝑥 . 𝑒′) :: drop([𝜅2, . . . , 𝜅𝑚], 𝑒)

Fig. 12. The space-efficient annotation language (𝒜se,𝒯s)

since time complexity also depends on merging contracts, we prove that the number of operations

needed for merging is in 𝑂 (𝑘 · |K |2 · 2𝐻), where 𝑘 is the number of monitor-related reductions.

Hence, maintaining space-efficiency does not cause asymptotic slowdowns.

Finally, Section 6.3 shows that space-efficient contracts signal the same errors as extended CPCF

through the instance λm[𝒜scctc;𝒯sc] that combines λm[𝒜se;𝒯s] and λm[𝒜ctc;𝒯c] into one instance.

6.1 Space Efficiency
Figure 12 presents the syntax and the monitor-related rules of (𝒜se,𝒯s). We use

se𝜅 to denote

space-efficient contracts. Similar to ordinary contracts,
se𝜅 also has one constructor for each type,

but for the nat type, se𝜅 contains a list of flat contracts instead of just one. Accordingly, each𝒜se

annotation contains only a single contract, unlike 𝒜ctc, which has a list of contracts. Intuitively, a

space-efficient contract
se𝜅 represents a contract without redundancy as long as the reduction rules

eliminate the redundant checks in the leaves of
se𝜅.

We parameterize the annotation language (𝒜se,𝒯s) by a decision procedure isStronger that takes

two flat contracts and determines whether the first flat contract subsumes the second. Specifically,

for any 𝑒, 𝑒′ that have only one free variable 𝑥 , if isStronger (𝑒, 𝑒′) is true then it should be the case

that for all 𝑛, if 𝑒 [𝑛 /𝑥] terminates with a positive integer, 𝑒′ [𝑛 /𝑥] also terminates with a positive

integer. If isStronger (𝑒, 𝑒′) is false, the decision procedure makes no claims about the relationship

between the flat contracts and this is always allowed, unless 𝑒 and 𝑒′ are the same term. When 𝑒

and 𝑒′ are the same, isStronger (𝑒, 𝑒′) must be true. This decision procedure, and the interpretation

of its results, matches the Racket contract system’s contract-stronger? operation.

The reduction rules 𝒯s are similar to𝒯c but simpler, because some complexity moves into join,

used in [R-MrgPrx] to combine the contract on the boundary and the contract on the proxy.

The join function is adapted from Greenberg [29]’s work. It takes two space-efficient contracts

and merges the lists of flat contracts in the inputs. To combine the flat contracts, join calls joinp,

which removes redundant checks. Specifically, joinp takes two lists of flat contracts and, for each in

the first list, calls drop to filter out those in the second list that isStronger reports as redundant.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:22 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

𝐴 ::= se𝜅 𝑟 ::= ⟨𝑠, 𝑐,𝑤, 𝑘⟩ 𝑠 ∈ Status ::= Ok | Err(ℓ) 𝑐,𝑤, 𝑘 ∈ N

[R-CrNat] 𝑟,B#𝐴 { 𝑛 } −→m 𝑟 ′, 𝑛 where

𝐴 = [flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], (𝑟, 𝑟 ′) ∈ {(⟨𝑠, 𝑐,𝑤, 𝑘⟩, ⟨𝑠′, 𝑐′,𝑤, 𝑘 + 1⟩) |
𝑐′ = 𝑐 +𝑚 and (𝑠, 𝑠′) ∈ checkCtcs ([flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], 𝑛)}

[R-MrgPrx] 𝑟,B#𝐴 { proxy(𝐴′, 𝑒𝑚) } −→m 𝑟 ′, proxy(𝐴′′, 𝑒𝑚) where

𝐴 = se𝜅1, 𝐴
′ = se𝜅2, 𝐴

′′ = join(se𝜅2, se𝜅1), and
(𝑟, 𝑟 ′) ∈ {⟨⟨Ok, 𝑐,𝑤, 𝑘⟩, ⟨Ok, 𝑐,𝑤 ′, 𝑘 + 1⟩⟩ | 𝑤 ′ =𝑤 + tickCount(join(se𝜅2, se𝜅1))}

Fig. 13. The annotation language (𝒜ccs,𝒯ccs) that counts contract checks.

To present the formal definition of the invariant Isize in Theorem 6.1, we need to introduce a

few more definitions to capture the prerequisites. First, the ht(·) and sz(·) functions compute the

height and the size of a contract in the usual way; here are two of their cases:

sz
(
[flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)]

)
=𝑚 ht

(
[flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)]

)
= 0

sz(se𝜅𝑎 →/se se𝜅𝑟) = 1 + sz(se𝜅𝑎) + sz(se𝜅𝑟) ht(se𝜅𝑎 →/se se𝜅𝑟) = 1 +max(ht(se𝜅𝑎) , ht(se𝜅𝑟))
Second, theNonRec(se𝜅) predicate holds iff se𝜅 contains no recursive contracts. Third, AllFlats(𝐽 , se𝜅)
takes a judgment, a space-efficient contract, and asserts that all lists of flat predicates in

se𝜅 satisfy

𝐽 . We introduce two judgments for use in conjunction with AllFlats: NonEmpty(xs) takes a list, xs,
and asserts that it is non-empty. UniqSub(xs, ys) takes two lists and asserts that xs contains only

the distinct elements of ys. Finally, the constant 𝑐0 > 0 captures the constant factor in the bound.

Definition 6.1. Isize is the six tuple (𝒥, {◁𝐴}𝐴, Rsize, ≼size, A) where𝒥 :≡⊤,Rsize,◁𝐴, and≼size al-

ways hold, andA⟦ se𝜅 𝑗, 𝑗 ′ ⟧ :≡NonRec(se𝜅)∧AllFlats(NonEmpty, se𝜅)∧AllFlats(UniqSub(−,K), se𝜅)∧
ht(se𝜅) ≤ 𝐻 ∧ sz(se𝜅) ≤ 𝑐0 · 2𝐻 · |K |.

Theorem 6.2. There exists 𝑐0 > 0 such that Isize is monotonic and sound.

6.2 Asymptotic Time Complexity
Figure 13 displays the instance λm[𝒜ccs;𝒯ccs] we use for proving time complexity bounds for

space-efficient contracts. To reason about time complexity, we introduce three counters in the

register: 𝑐 tracks the number of flat contract checks,𝑤 represents how many primitive operations

join has performed, and 𝑘 counts the total number of monitor-related reduction steps.

In rule [R-CrNat], we increment 𝑐 by𝑚 as𝑚 more flat contracts have been checked. In rule [R-

MrgPrx], we presuppose that tickCount(join(se𝜅2, se𝜅1)) returns the number of primitive operations

join(se𝜅2, se𝜅1) performs. In our Agda proof [84], we follow Danielsson [10] and define join(·, ·) in a

monadic style to track the number of primitive operations. Also, we follow Guéneau et al. [36] and

Guéneau [35] to work with asymptotic complexity in a precise and correct manner.

Definition 6.3. Ichkbnd is the six tuple (𝒥, {◁𝐴}𝐴, Rchk, ≼chk, A) where 𝒥 :≡⊤, ◁𝐴, and ≼chk

always hold, A⟦ se𝜅 𝑗, 𝑗 ′ ⟧ :≡AllFlats(UniqSub(−,K), se𝜅), and Rchk (⟨𝑠, 𝑐,𝑤, 𝑘⟩) holds iff 𝑐 ≤ 𝑘 · |K |.

Theorem 6.4. Ichkbnd is monotonic and sound.

To give an upper bound of𝑤 , we develop the asymptotic complexity of join, joinp and drop. In

particular, in Theorem 6.5, the factor |K |2 comes from joinp, and the factor 2
𝐻
, the maximum size

of contracts of height 𝐻 , comes from join. The constant 𝑐0 > 0 is existentially quantified across

Theorem 6.5 and Theorem 6.6.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:23

𝐴 ::= ⟨se𝜅, [𝜅1, . . . , 𝜅𝑚]⟩ 𝑟 ::= ⟨𝑠, 𝑠⟩ 𝑠 ∈ Status

[R-CrNat] 𝑟,B#𝐴 { 𝑛 } −→m 𝑟 ′, 𝑛 where

𝐴 = ⟨[flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], [𝜅1, . . . , 𝜅𝑚]⟩,
(𝑟, 𝑟 ′) ∈ {(⟨𝑠1, 𝑠2⟩, ⟨𝑠′1, 𝑠′2⟩) | (𝑠2, 𝑠′2) ∈ checkCtcs ([𝜅1, . . . , 𝜅𝑚], 𝑛), and

(𝑠1, 𝑠′1) ∈ checkCtcs ([flatℓ1(𝑥 . 𝑒1), . . . , flatℓ𝑚(𝑥 . 𝑒𝑚)], 𝑛)}
[R-Prxβ] 𝑟, proxy(𝐴, λ𝑥 .𝑒) 𝑣 −→m 𝑟 ′,B#𝐴𝑟 { (λ𝑥 .𝑒) (B#𝐴𝑎 {𝑣}) } where

𝐴 = ⟨se𝜅𝑎 →/se se𝜅𝑟 , [(𝜅1 →/c𝜅′
1
), . . . , (𝜅𝑚 →/c𝜅′𝑚)]⟩, 𝐴𝑟 = ⟨se𝜅𝑟 , [𝜅′1, . . . , 𝜅′𝑚]⟩,

𝐴𝑎 = ⟨se𝜅𝑎, [𝜅𝑚, . . . , 𝜅1]⟩, and (𝑟, 𝑟 ′) ∈ {(⟨Ok,Ok⟩, ⟨Ok,Ok⟩)}
[R-MrgPrx] 𝑟,B#𝐴 { proxy(𝐴′, 𝑒𝑚) } −→m 𝑟 ′, proxy(𝐴′′, 𝑒𝑚) where

𝐴′′ = ⟨join(se𝜅2, se𝜅1), [𝜅′1, . . . , 𝜅′𝑚, 𝜅1, . . . , 𝜅𝑙]⟩, 𝐴 = ⟨se𝜅1, [𝜅1, . . . , 𝜅𝑙]⟩,
𝐴′ = ⟨se𝜅2, [𝜅′1, . . . , 𝜅′𝑚]⟩, and (𝑟, 𝑟 ′) ∈ {(⟨Ok,Ok⟩, ⟨Ok,Ok⟩)}

Fig. 14. The annotation language (𝒜sctc,𝒯sc) for establishing the correctness of space-efficient contracts.

Definition 6.5. Isebnd is the six tuple (𝒥, {◁𝐴}𝐴, Rsebnd, ≼sebnd, A) where 𝒥 :≡⊤, ◁𝐴, and ≼sebnd

always hold, A⟦ se𝜅 𝑗, 𝑗 ′ ⟧ :≡NonRec(se𝜅) ∧AllFlats(NonEmpty, se𝜅) ∧AllFlats(UniqSub(−,K), se𝜅) ∧
ht(se𝜅) ≤ 𝐻 , and Rsebnd (⟨𝑠, 𝑐,𝑤, 𝑘⟩) holds iff𝑤 ≤ 𝑐0 · 𝑘 · |K |2 · 2𝐻 .

Theorem 6.6. Isebnd is monotonic and sound.

6.3 Equivalence of Space-Efficient Contracts and Finder-Felleisen Contracts
Since space-efficient contracts remove checks at run time, we need to ensure that the remaining

checks are sufficient to detect contract violations correctly. To prove the equivalence, we follow

the ideas from Pottier and Simonet [55, 56]’s non-interference proof and create (𝒜scctc,𝒯sc), an
annotation language that runs two contract systems from (𝒜ctc,𝒯c) and (𝒜se,𝒯s) simultaneously.

As the monitor calculus separates monitor-related rules from program-related rules, the two

contract systems, (𝒜ctc,𝒯c) and (𝒜se,𝒯s), are completely encapsulated in the annotations and the

registers of (𝒜scctc,𝒯sc). Consequently, their equivalence boils down to proving that the register of

(𝒜scctc,𝒯sc) always has equal components.

Figure 14 shows the syntax and the monitor-related rules of (𝒜scctc,𝒯sc). The annotations pair a
space-efficient contract with a list of ordinary contracts, and the register keeps two distinct copies

of contract-checking status. As one would expect, the monitor-related rules defined in𝒯sc apply

the rules from both𝒯s and𝒯c to propagate the contracts and separately manage the register.

To prove that λm[𝒜ctc;𝒯c] and λm[𝒜se;𝒯s] always produce the same contract-checking results,

we define an invariant Isim, which asks that the register of (𝒜scctc,𝒯sc) always contains equal
components. Since, in 𝒯sc, the register is updated by [R-CrNat] through two independent uses of

checkCtcs, we must ensure they return identical results. We relate their inputs by ∼, which becomes

a restriction captured by A in Isim. The definition of ∼ requires that the list of flat contracts in the

𝒜se annotation is a sublist of the flat contracts in the𝒜ctc annotation, and that each removed flat

contract is subsumed by a preceding contract in the 𝒜se annotation. Formally, for flat contracts 𝜅1
through 𝜅𝑚 , [𝜅𝑎1 , . . . , 𝜅𝑎𝑙] ∼ [𝜅1, . . . , 𝜅𝑚] if and only if 1 = 𝑎1 < · · · < 𝑎𝑙 ≤𝑚 and, for each 𝑗 and

each 𝑎 𝑗 < 𝑖 < 𝑎 𝑗+1, at least one of 𝜅𝑎1 , . . . , 𝜅𝑎 𝑗
subsumes 𝜅𝑖 .

There is one caveat, however: ∼ is preserved by −→m only when all recursive contracts appearing

in the program are covariant. Hence, we add the condition ⊢+ se𝜅 sgn inA. Without this prerequisite,

a recursive contract that is referenced in negative positions can cause space-efficient contracts to

blame the wrong party, as we saw with blame consistency in Section 3.4.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:24 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

Definition 6.7. Isim equals (𝒥, {◁𝐴}𝐴, R, ≼, A) where 𝒥 :≡⊤, ◁𝐴 are relations that always

hold, ≼ is the smallest reflexive relation that includes ⟨Ok,Ok⟩ ≼ ⟨Err(ℓ), Err(ℓ)⟩ for all labels ℓ ,
R(⟨𝑠, 𝑠′⟩) ⇔ 𝑠 = 𝑠′, and A⟦ ⟨se𝜅, [𝜅1, . . . , 𝜅𝑚]⟩ 𝑗, 𝑗

′ ⟧ :≡ (⊢+ se𝜅 sgn) ∧ (se𝜅 ∼ [𝜅1, . . . , 𝜅𝑚]).
Theorem 6.8. The invariant Isim is monotonic and sound.

Crucial to the proof is that the ∼ relation forces the set of all flat contracts appearing in the

program to be partially ordered in accordance with the set of values each flat contract accepts, and

that isStronger approximates this partial order.

7 Related Work
Our work lives in the context of the vast literature on the foundations of (higher-order) contracts [4,

12, 13, 15, 16, 18–20, 22, 23, 28–30, 38, 39, 45, 58, 68, 70, 71, 75, 77, 82, 83] and those of contracts’

most prominent application, gradual typing [1, 2, 21, 25–27, 31–34, 37, 43, 51, 59–67, 76, 74, 78–80].

This vast literature is ample with formal models, and their theorems and proofs. Often, new

models build on previous ones by extending themwith new features, or bymodifying their semantics

to introduce new mechanisms for enforcing contracts and gradual types. But in most cases, new

models, which inevitably share features with previous ones, are similar but subtly different from

their predecessors. This variability trickles down to theorems and proofs; analogous properties

“feel” the same but look formally different from one model to another, and their proofs have to be

repeated. Even in publications, such as those of Greenman et al. [33, 31], that claim to present a

unifying framework for a spectrum of models, the shared part between the models is the definition

of their source syntax; semantics, theorems, and proofs are redone for every point in the spectrum.

In fact, Greenman et al.’s work offers an opportunity for examining how well our framework

can support the comparison of different models as well as revealing general limitations of our

approach and our specific monitor calculus. Overall, we believe that Greenman et al.’s work would

benefit significantly from our framework. Specifically, we conjecture that Greenman et al.’s Natural,

Amnesic, and Forgetful semantics can be defined as instances of the same monitor calculus with

different annotation languages that reflect the variation of the type-enforcingwrappers. For example,

one annotation language can encode Natural’s “solid” wrappers while another can encode the

“fluid” wrappers of Amnesic and Forgetful that become inactive as they accumulate around values.

Moreover, our framework can model Co-natural with the same instance as that for Natural but with

the restriction that pairs are always pairs of boxes so that they encode Co-natural’s lazy pairs. This

way, Co-natural trivially inherits all properties of Natural without the need for additional proofs.

As for properties and their proofs, complete monitoring, blame soundness, blame completeness and

error preorder for Natural, Co-natural, Amnesic, and Forgetful can be expressed in a similar manner

as the properties in Section 5 and Section 6. For instance, in Section 5 we combine the annotation

languages (𝒜owner,𝒯o) and (𝒜bctc,𝒯bc) to obtain the composite instance λm[𝒜obctc;𝒯obc]. We

expect the same to apply to Greenman et al.’s work allowing for ownership to be defined separately

and reused across Natural, Co-natural, Amnesic, and Forgetful.

That said, our framework cannot handle all of Greenman et al.’s work. One central design decision

in our approach is that the notions of boundaries and proxies are required, as they provide the basic

structure on which the monitor calculus is built. As a result, the Transient semantics, which utilizes

a check-injection compilation pass rather than proxies, is out of reach. Furthermore, due to the

critical role of boundaries and proxies, properties that require annotating arbitrary subexpressions

are challenging to state and prove with our approach. For instance, since ownership annotations

can only be associated with boundary and proxy expressions, establishing blame soundness for

a Transient-like semantics is not possible in our framework even if it were possible to capture

the semantics as an instance of the calculus. Finally, the present monitor calculus has a standard

type system, meaning that certain tag errors are impossible. These errors might be important in

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

Contract System Metatheories à la Carte 419:25

applications of contract systems to mixed-type systems, which would require a variation of the

monitor calculus with a different underlying type system in order to reflect them faithfully.

Of course, we are not the first to observe that the repetition of contract systems and gradual

typing metatheory. Siek and Chen [62] develop a parameterized cast calculus that abstracts certain

parts of the enforcement mechanism for gradual types away, allowing the blame-subtyping theorem

and the dynamic gradual guarantee to be reused across different instantiations of their cast calculus.

Gierczak et al. [27] also introduce a parameterized model and use it to streamline the design of the

logical relations that underpin their vigilance property. But, despite a uniform presentation of the

property there is little reuse in the proofs. Swords [69] and Swords et al. [70, 71] build a model based

on Concurrent ML that uniformly represents contract enforcement mechanisms as communicating

processes, essentially explicating their workings as programs. They do not abstract over properties

and proofs, however. Our work is the first that aims for a general unifying framework for the

metatheory of contracts that puts an emphasis on proof reuse.

Beyond the prior work on contracts, an important, direct source of inspiration for our work is the

foundations of safe language interoperability [5, 44, 52]. Specifically, we owe the idea of boundaries

and proxies as the building blocks for a unifying, parameterized framework to that work.

8 Conclusion
Every researcher with an interest in the metatheory of contract systems has experienced the

banality of proving their properties. Whether the target is complete monitoring or the correctness

of space-efficient contracts, the only creative step in the proof is constructing an invariant of

evaluation that implies the target property. After that, and despite the variability of properties, the

proofs devolve into tedious inductive arguments and painful case analyses that repeat endlessly

across contract systems and properties. The central offering of this paper is how to separate the

creative from the routine; researchers should focus on the information needed for distilling the

target property to an invariant — given a few facts about the invariant, the rest can be abstracted

away. Our hope with this work is not that it facilitates work that might be labeled “theory for

theory’s sake”, but rather that it enables researchers to focus on designing novel, practical contract

systems, and to answer any truly challenging metatheoretical questions that arise through such

design work without getting distracted or bogged down by insignificant details.

While the paper provides evidence in favor of its approach, it also points out next steps for

realizing its vision in full. First, Section 5 shows that the preservation of invariants often needs

to be combined with progress, which currently lives outside our framework. However, since

homomorphisms reflect transitions, some form of progress property should be transferable across

transition systems. Second, the paper just scratches the surface of structured information in registers.

Beyond recording information about different events, such as different operations, systematically

structured registers open the way for supporting expressive, stateful contracts [17, 46, 49, 48]. Third,

the framework does not easily accommodate the addition of new language features, a common

activity in the literature of contract systems. Currently, such extensions require reproving the

monitor calculus metatheory even though they are typically orthogonal. Therefore, in principle,

they should be as amenable to proof reuse as the monitor calculus’s composite instances are.

Acknowledgments
We would like to thank the anonymous reviewers for their insightful comments and suggestions.

You was partially supported during this work by the National Science Foundation under Awards

No. 2237984 and No. 2421308. Dimoulas was partially supported by NSF under Awards No. 2237984

and No. 2412400. Findler was partially supported by NSF under Award No. 2421308. Any opinions,

findings and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science Foundation.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

419:26 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

References
[1] Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017. Theorems for Free for Free: Parametricity,

with and without Types. Proceedings of the ACM on Programming Languages (PACMPL) 1, ICFP, Article 39 (Aug 2017),

28 pages. doi:10.1145/3110283

[2] Esteban Allende, Johan Fabry, and Éric Tanter. 2013. Cast Insertion Strategies for Gradually-Typed Objects. In

Proceedings of the 9th Symposium on Dynamic Languages (Indianapolis, Indiana, USA) (DLS ’13). 27–36. doi:10.1145/

2508168.2508171

[3] Roberto M. Amadio and Luca Cardelli. 1993. Subtyping recursive types. ACM Transactions on Programming Languages

and Systems (TOPLAS) 15, 4 (Sep 1993), 575–631. doi:10.1145/155183.155231

[4] Matthias Blume and David McAllester. 2004. A Sound (and Complete) Model of Contracts. In Proceedings of the Ninth

ACM SIGPLAN International Conference on Functional Programming (ICFP ’04). 189–200. doi:10.1145/1016850.1016876

[5] Samuele Buro and Isabella Mastroeni. 2019. On the Multi-Language Construction. In Programming Languages and

Systems (ESOP’19). 293–321. doi:10.1007/978-3-030-17184-1_11

[6] Luca Cardelli. 1986. Amber. In Combinators and Functional Programming Languages (LITP’85). 21–47. doi:10.1007/3-

540-17184-3_38

[7] Feng Chen and Grigore Roşu. 2007. Mop: An Efficient and Generic Runtime Verification Framework. In Proceedings

of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications

(Montreal, Quebec, Canada) (OOPSLA ’07). 569–588. doi:10.1145/1297027.1297069

[8] Olaf Chitil. 2012. Practical Typed Lazy Contracts. In Proceedings of the 17th ACM SIGPLAN International Conference on

Functional Programming (ICFP ’12). 67–76. doi:10.1145/2364527.2364539

[9] Olaf Chitil, Dan McNeill, and Colin Runciman. 2003. Lazy Assertions. In Implementation of Functional Languages (IFL

’03). 1–19. doi:10.1007/978-3-540-27861-0_1

[10] Nils Anders Danielsson. 2008. Lightweight semiformal time complexity analysis for purely functional data structures.

In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL

’08). 133–144. doi:10.1145/1328438.1328457

[11] Markus Degen, Peter Thiemann, and Stefan Wehr. 2009. True Lies: Lazy Contracts for Lazy Languages (Faithfulness

is Better than Laziness). In 4. Arbeitstagung Programmiersprachen (ATPS’09). Lübeck, Germany, 14. http://www.

stefanwehr.de/publications/DegenThiemannWehr2009.html

[12] Markus Degen, Peter Thiemann, and Stefan Wehr. 2012. The Interaction of Contracts and Laziness. In Proceedings of

the ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation (PEPM ’12). 97–106. doi:10.1145/

2103746.2103766

[13] Christos Dimoulas and Matthias Felleisen. 2011. On Contract Satisfaction in a Higher-Order World. ACM Transactions

on Programming Languages and Systems 33, 5, Article 16 (Nov 2011), 29 pages. doi:10.1145/2039346.2039348

[14] Christos Dimoulas, Robert Bruce Findler, and Matthias Felleisen. 2013. Option Contracts. In Object-Oriented Program-

ming, Systems, Languages, and Applications (OOPSLA).

[15] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. 2011. Correct Blame for Con-

tracts: No More Scapegoating. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’11). 215–226. doi:10.1145/1926385.1926410

[16] Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. 2014. Declarative Policies for Capability Control.

In 2014 IEEE 27th Computer Security Foundations Symposium. 3–17. doi:10.1109/CSF.2014.9

[17] Christos Dimoulas, Max S. New, Robert Bruce Findler, and Matthias Felleisen. 2016. Oh Lord, Please Don’t Let Contracts

Be Misunderstood (Functional Pearl). In Proceedings of the 21st ACM SIGPLAN International Conference on Functional

Programming (ICFP 2016). 117–131. doi:10.1145/2951913.2951930

[18] Christos Dimoulas, Riccardo Pucella, and Matthias Felleisen. 2009. Future Contracts. In Proceedings of the 11th ACM

SIGPLAN Conference on Principles and Practice of Declarative Programming (Coimbra, Portugal) (PPDP ’09). 195–206.

doi:10.1145/1599410.1599435

[19] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete Monitors for Behavioral Contracts.

In Programming Languages and Systems (ESOP ’12). 214–233. doi:10.1007/978-3-642-28869-2_11

[20] Tim Disney, Cormac Flanagan, and Jay McCarthy. 2011. Temporal Higher-Order Contracts. In Proceedings of the 16th

ACM SIGPLAN International Conference on Functional Programming (ICFP ’11). 176–188. doi:10.1145/2034773.2034800

[21] Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour. 2018. Collapsible

Contracts: Fixing a Pathology of Gradual Typing. Proceedings of the ACM on Programming Languages (PACMPL) 2,

OOPSLA, Article 133 (Oct 2018), 27 pages. doi:10.1145/3276503

[22] Robert Bruce Findler and Matthias Blume. 2006. Contracts as pairs of projections. In International Symposium on

Functional and Logic Programming (FLOPS ’06). Springer, 226–241.

[23] Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In Proceedings of the Seventh

ACM SIGPLAN International Conference on Functional Programming (ICFP ’02). 48–59. doi:10.1145/581478.581484

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

https://doi.org/10.1145/3110283
https://doi.org/10.1145/2508168.2508171
https://doi.org/10.1145/2508168.2508171
https://doi.org/10.1145/155183.155231
https://doi.org/10.1145/1016850.1016876
https://doi.org/10.1007/978-3-030-17184-1_11
https://doi.org/10.1007/3-540-17184-3_38
https://doi.org/10.1007/3-540-17184-3_38
https://doi.org/10.1145/1297027.1297069
https://doi.org/10.1145/2364527.2364539
https://doi.org/10.1007/978-3-540-27861-0_1
https://doi.org/10.1145/1328438.1328457
http://www.stefanwehr.de/publications/DegenThiemannWehr2009.html
http://www.stefanwehr.de/publications/DegenThiemannWehr2009.html
https://doi.org/10.1145/2103746.2103766
https://doi.org/10.1145/2103746.2103766
https://doi.org/10.1145/2039346.2039348
https://doi.org/10.1145/1926385.1926410
https://doi.org/10.1109/CSF.2014.9
https://doi.org/10.1145/2951913.2951930
https://doi.org/10.1145/1599410.1599435
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1145/2034773.2034800
https://doi.org/10.1145/3276503
https://doi.org/10.1145/581478.581484

Contract System Metatheories à la Carte 419:27

[24] Robert Bruce Findler, Shu-yu Guo, and Anne Rogers. 2008. Lazy Contract Checking for Immutable Data Structures. In

Implementation and Application of Functional Languages (IFL ’07). 111–128.

[25] Ronald Garcia. 2013. Calculating threesomes, with blame. In Proceedings of the 18th ACM SIGPLAN International

Conference on Functional Programming (ICFP ’13). 417–428. doi:10.1145/2500365.2500603

[26] Ronald Garcia, AlisonM. Clark, and Éric Tanter. 2016. Abstracting gradual typing. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). 429–442. doi:10.1145/2837614.2837670

[27] Olek Gierczak, Lucy Menon, Christos Dimoulas, and Amal Ahmed. 2024. Gradually Typed Languages Should Be

Vigilant! Proceedings of the ACM on Programming Languages (PACMPL) 8, OOPSLA1, Article 125 (April 2024), 29 pages.

doi:10.1145/3649842

[28] Michael Greenberg. 2015. Space-Efficient Manifest Contracts. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’15). 181–194. doi:10.1145/2676726.2676967

[29] Michael Greenberg. 2016. Space-Efficient Latent Contracts. In Trends in Functional Programming (TFP). 3–23.

[30] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. 2010. Contracts Made Manifest. In Proceedings of

the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10). 353–364.

doi:10.1145/1706299.1706341

[31] Ben Greenman, Christos Dimoulas, andMatthias Felleisen. 2023. Typed–Untyped Interactions: A Comparative Analysis.

ACM Transactions on Programming Languages and Systems 45, 1, Article 4 (Mar 2023), 54 pages. doi:10.1145/3579833

[32] Ben Greenman and Matthias Felleisen. 2018. A Spectrum of Type Soundness and Performance. Proceedings of the ACM

on Programming Languages (PACMPL) 2, ICFP, Article 71 (Jul 2018), 32 pages. doi:10.1145/3236766

[33] Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019. Complete Monitors for Gradual Types. Proceedings

of the ACM on Programming Languages (PACMPL) 3, OOPSLA, Article 122 (Oct 2019), 29 pages. doi:10.1145/3360548

[34] Jessica Gronski and Cormac Flanagan. 2007. Unifying Hybrid Types and Contracts. In Trends in Functional Programming

(TFP’07). 54–70.

[35] Armaël Guéneau. 2019. Mechanized verification of the correctness and asymptotic complexity of programs : the right

answer at the right time. Thèse de doctorat. Université Paris Cité. https://theses.hal.science/tel-03071720 Logic in

Computer Science [cs.LO]. NNT : 2019UNIP7110. tel-03071720.

[36] Armaël Guéneau, Arthur Charguéraud, and François Pottier. 2018. A Fistful of Dollars: Formalizing Asymptotic

Complexity Claims via Deductive Program Verification. In Programming Languages and Systems (ESOP ’18). 533–560.

[37] David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient gradual typing. Higher-Order and Symbolic

Computation 23, 2 (2010), 167–189.

[38] Ralf Hinze, Johan Jeuring, and Andres Löh. 2006. Typed Contracts for Functional Programming. In Functional and

Logic Programming (FLOPS ’06). 208–225.

[39] Matthias Keil and Peter Thiemann. 2015. Blame Assignment for Higher-Order Contracts with Intersection and Union.

In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015). 375–386.

doi:10.1145/2784731.2784737

[40] Shiyi Kong, Minyan Lu, Luyi Li, and Lihua Gao. 2020. Runtime Monitoring of Software Execution Trace: Method and

Tools. IEEE Access 8 (2020), 114020–114036. doi:10.1109/ACCESS.2020.3003087

[41] Insup Lee, Sampath Kannan, Moonjoo Kim, Oleg Sokolsky, and Mahesh Viswanathan. 1999. Runtime Assurance

Based On Formal Specifications. In In Proceedings of the International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA).

[42] Martin Leucker and Christian Schallhart. 2009. A Brief Account of Runtime Verification. The Journal of Logic and

Algebraic Programming 78, 5 (2009), 293–303. doi:10.1016/j.jlap.2008.08.004 The 1st Workshop on Formal Languages

and Analysis of Contract-Oriented Software (FLACOS’07).

[43] Jacob Matthews and Amal Ahmed. 2008. Parametric Polymorphism through Run-Time Sealing or, Theorems for Low,

Low Prices!. In Programming Languages and Systems (ESOP ’08). 16–31.

[44] Jacob Matthews and Robert Bruce Findler. 2007. Operational Semantics for Multi-Language Programs. In Proceedings

of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Nice, France) (POPL

’07). 3–10. doi:10.1145/1190216.1190220

[45] Hernán Melgratti and Luca Padovani. 2017. Chaperone Contracts for Higher-Order Sessions. Proceedings of the ACM

on Programming Languages (PACMPL) 1, ICFP, Article 35 (Aug 2017), 29 pages. doi:10.1145/3110279

[46] Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt, and Stephen Chong. 2016. Extensible Access

Control with Authorization Contracts. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications (Amsterdam, Netherlands) (OOPSLA 2016). 214–233.

doi:10.1145/2983990.2984021

[47] Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. 2014. SHILL: A Secure Shell Scripting Language. In

Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation (Broomfield, CO) (OSDI’14).

183–199.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

https://doi.org/10.1145/2500365.2500603
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/3649842
https://doi.org/10.1145/2676726.2676967
https://doi.org/10.1145/1706299.1706341
https://doi.org/10.1145/3579833
https://doi.org/10.1145/3236766
https://doi.org/10.1145/3360548
https://theses.hal.science/tel-03071720
https://www.theses.fr/2019UNIP7110
https://doi.org/10.1145/2784731.2784737
https://doi.org/10.1109/ACCESS.2020.3003087
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/3110279
https://doi.org/10.1145/2983990.2984021

419:28 Shu-Hung You, Christos Dimoulas, and Robert Bruce Findler

[48] Cameron Moy, Christos Dimoulas, and Matthias Felleisen. 2024. Effectful Software Contracts. Proceedings of the ACM

on Programming Languages (PACMPL) 8, POPL, Article 88 (Jan 2024), 28 pages. doi:10.1145/3632930

[49] Cameron Moy and Matthias Felleisen. 2023. Trace contracts. Journal of Functional Programming 33 (2023), e14.

doi:10.1017/S0956796823000096

[50] Cameron Moy, Ryan Jung, and Matthias Felleisen. 2025. Contract Systems Need Domain-Specific Notations. In 39th

European Conference on Object-Oriented Programming (ECOOP 2025). 42:1–42:24.

[51] Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual type theory. Proceedings of the ACM on Programming

Languages (PACMPL) 3, POPL, Article 15 (Jan. 2019), 31 pages. doi:10.1145/3290328

[52] Daniel Patterson. 2022. Interoperability Through Realizability: Expressing High-Level Abstractions using Low-Level Code.

Ph. D. Dissertation. Northeastern University. https://dbp.io/pubs/2022/dbp-dissertation.pdf

[53] Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT Press.

[54] G.D. Plotkin. 1977. LCF considered as a programming language. Theoretical Computer Science 5, 3 (1977), 223–255.

doi:10.1016/0304-3975(77)90044-5

[55] François Pottier and Vincent Simonet. 2002. Information flow inference for ML. In Proceedings of the 29th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’02). 319–330. doi:10.1145/503272.503302

[56] François Pottier and Vincent Simonet. 2003. Information flow inference for ML. ACM Transactions on Programming

Languages and Systems 25, 1 (Jan. 2003), 117–158. doi:10.1145/596980.596983

[57] J.J.M.M. Rutten. 2000. Universal coalgebra: a theory of systems. Theoretical Computer Science 249, 1 (2000), 3–80.

doi:10.1016/S0304-3975(00)00056-6 Modern Algebra.

[58] Taro Sekiyama and Atsushi Igarashi. 2017. Stateful Manifest Contracts. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (POPL 2017). 530–544. doi:10.1145/3009837.3009875

[59] Jeremy Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the Design Space of Higher-Order Casts. In Programming

Languages and Systems (ESOP ’09). 17–31. doi:10.1007/978-3-642-00590-9_2

[60] Jeremy Siek, Peter Thiemann, and Philip Wadler. 2015. Blame and coercion: together again for the first time. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’15).

425–435. doi:10.1145/2737924.2737968

[61] Jeremy Siek, Peter Thiemann, and Philip Wadler. 2021. Blame and coercion: Together again for the first time. Journal

of Functional Programming 31 (2021), e20. doi:10.1017/S0956796821000101

[62] Jeremy G. Siek and Tianyu Chen. 2021. Parameterized cast calculi and reusable meta-theory for gradually typed

lambda calculi. Journal of Functional Programming 31 (2021), e30. doi:10.1017/S0956796821000241

[63] Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional languages. In Scheme and Functional Programming

2006. 12 pages. doi:10.1145/1163566.1163568 University of Chicago Technical Report TR-2006-06 http://scheme2006.cs.

uchicago.edu/13-siek.pdf.

[64] Jeremy G. Siek and Walid Taha. 2007. Gradual Typing for Objects. In ECOOP 2007 – Object-Oriented Programming.

2–27. doi:10.1007/978-3-540-73589-2_2

[65] Jeremy G. Siek and Sam Tobin-Hochstadt. 2016. The Recursive Union of Some Gradual Types. In A List of Successes That

Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday. 388–410. doi:10.1007/978-

3-319-30936-1_21

[66] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual

Typing. In 1st Summit on Advances in Programming Languages (SNAPL 2015) (Leibniz International Proceedings in

Informatics (LIPIcs), Vol. 32). 274–293. doi:10.4230/LIPIcs.SNAPL.2015.274

[67] Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and without Blame. In Proceedings of the 37th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid, Spain) (POPL ’10). 365–376.

doi:10.1145/1706299.1706342

[68] T. Stephen Strickland, Christos Dimoulas, Asumu Takikawa, and Matthias Felleisen. 2013. Contracts for First-

Class Classes. ACM Transactions on Programming Languages and Systems 35, 3, Article 11 (Nov 2013), 58 pages.

doi:10.1145/2518189

[69] Cameron Swords. 2019. A Unified Characterization of Runtime Verification Systems as Patterns of Communication. Ph. D.

Dissertation. Indiana University. http://cswords.com/paper/cswords.thesis.pdf

[70] Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. 2015. Expressing Contract Monitors as Patterns of Commu-

nication. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming (ICFP 2015).

387–399. doi:10.1145/2784731.2784742

[71] Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. 2018. An extended account of contract monitoring strategies

as patterns of communication. Journal of Functional Programming 28 (2018), e4. doi:10.1017/S0956796818000047

[72] Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce Findler, Sam Tobin-Hochstadt, and Matthias

Felleisen. 2015. Towards Practical Gradual Typing. In European Conference on Object-Oriented Programming (ECOOP).

doi:10.4230/LIPIcs.ECOOP.2015.4

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

https://doi.org/10.1145/3632930
https://doi.org/10.1017/S0956796823000096
https://doi.org/10.1145/3290328
https://dbp.io/pubs/2022/dbp-dissertation.pdf
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1145/503272.503302
https://doi.org/10.1145/596980.596983
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1145/3009837.3009875
https://doi.org/10.1007/978-3-642-00590-9_2
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1017/S0956796821000101
https://doi.org/10.1017/S0956796821000241
https://doi.org/10.1145/1163566.1163568
http://scheme2006.cs.uchicago.edu/13-siek.pdf
http://scheme2006.cs.uchicago.edu/13-siek.pdf
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.1007/978-3-319-30936-1_21
https://doi.org/10.1007/978-3-319-30936-1_21
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/2518189
http://cswords.com/paper/cswords.thesis.pdf
https://doi.org/10.1145/2784731.2784742
https://doi.org/10.1017/S0956796818000047
https://doi.org/10.4230/LIPIcs.ECOOP.2015.4

Contract System Metatheories à la Carte 419:29

[73] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual

Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’16). 456–468. doi:10.1145/2837614.2837630

[74] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Grad-

ual Typing for First-Class Classes. In Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications (Tucson, Arizona, USA) (OOPSLA ’12). 793–810. doi:10.1145/2384616.2384674

[75] Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-Hochstadt. 2013. Constraining Delimited Control with

Contracts. In Programming Languages and Systems (ESOP ’13), Matthias Felleisen and Philippa Gardner (Eds.). 229–248.

doi:10.1007/978-3-642-37036-6_14

[76] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage migration: from scripts to programs. In Dynamic

Languages Symposium (DLS ’06). 964–974. doi:10.1145/1176617.1176755

[77] Jesse A. Tov and Riccardo Pucella. 2010. Stateful Contracts for Affine Types. In Programming Languages and Systems

(ESOP ’10). 550–569. doi:10.1007/978-3-642-11957-6_29

[78] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-World Soundness

and Collaborative Blame for Gradual Type Systems. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles

of Programming Languages (Paris, France) (POPL 2017). 762–774. doi:10.1145/3009837.3009849

[79] Philip Wadler. 2015. A Complement to Blame. In 1st Summit on Advances in Programming Languages (SNAPL 2015)

(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 32). 309–320. doi:10.4230/LIPIcs.SNAPL.2015.309

[80] Philip Wadler and Robert Bruce Findler. 2009. Well-Typed Programs Can’t Be Blamed. In Programming Languages and

Systems (ESOP ’09). 1–16. doi:10.1007/978-3-642-00590-9_1

[81] Lucas Waye, Stephen Chong, and Christos Dimoulas. 2017. Whip: Higher-Order Contracts for Modern Services.

Proceedings of the ACM on Programming Languages (PACMPL) 1, ICFP, Article 36 (Aug 2017), 28 pages. doi:10.1145/

3110280

[82] Jack Williams, J. Garrett Morris, and Philip Wadler. 2018. The Root Cause of Blame: Contracts for Intersection and

Union Types. Proceedings of the ACM on Programming Languages (PACMPL) 2, OOPSLA, Article 134 (Oct 2018),

29 pages. doi:10.1145/3276504

[83] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. 2009. Static Contract Checking for Haskell. In Proceedings of the

36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Savannah, GA, USA) (POPL

’09). 41–52. doi:10.1145/1480881.1480889

[84] Shu-Hung You. 2025. Contract System Metatheories à la Carte: Supplementary Material. https://github.com/shhyou/

monitor-calculus/tree/oopsla25-formalization. Retrieved on Aug 19, 2025.

Received 2025-03-24; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 419. Publication date: October 2025.

https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/2384616.2384674
https://doi.org/10.1007/978-3-642-37036-6_14
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1007/978-3-642-11957-6_29
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.4230/LIPIcs.SNAPL.2015.309
https://doi.org/10.1007/978-3-642-00590-9_1
https://doi.org/10.1145/3110280
https://doi.org/10.1145/3110280
https://doi.org/10.1145/3276504
https://doi.org/10.1145/1480881.1480889
https://github.com/shhyou/monitor-calculus/tree/oopsla25-formalization
https://github.com/shhyou/monitor-calculus/tree/oopsla25-formalization

	Abstract
	1 Introduction
	1.1 The Challenge of Reuse and Our Approach
	1.2 An Overview of the Monitor Calculus
	1.3 Roadmap

	2 The Monitor Calculus
	2.1 Syntax and Operational Semantics
	2.2 Tracking Errors with Blame Objects

	3 Proofs For Monitor Calculus Instances Via Transition Systems
	3.1 Annotation Languages and Instances
	3.2 Induced Transition Systems
	3.3 Using Homomorphisms from Induced Transition Systems, a First Proof
	3.4 Using the Annotations of a Monitor Calculus Instance, a Second Proof
	3.5 Transition Systems Enable Proof Reuse

	4 Simplifying Proofs about Monitor Calculus Instances via Invariants
	4.1 Abstracting out Properties of Monitor Calculus Instances as Invariants
	4.2 The Satisfaction Relation
	4.3 Systematic Construction of Invariant-Satisfying Transition Systems

	5 Complete Monitoring
	5.1 The Single-Owner Policy
	5.2 Ownership Consistency

	6 Space-Efficient Contracts
	6.1 Space Efficiency
	6.2 Asymptotic Time Complexity
	6.3 Equivalence of Space-Efficient Contracts and Finder-Felleisen Contracts

	7 Related Work
	8 Conclusion
	References

