
Cops and Robbers
The ICFP 2005 Programming Contest

Robby Findler & Friends
PLT, Brown, Chicago, NEU
TTI-Chicago, URI, Utah

1

Programming Contests

3 day sprint hacks
vs

Good programmming skills

One day in 2001, Jacob Matthews and I
were talking about programming
contests, and I was complaining how
they purported to be measures of how
good a programmer was, but that they
were just hack-fests -- I would never
hire a serial contest winner. The code
such people produce is write once,
read never.

So Jacob suggested a great idea: why
not have two stages to a contest? The
contestants begin as usual with the
contest, but then we make them modify
their code and test the modified code?
This would, he argued, select for
people who can write maintainable
code, a true programming skill.

So, there I was. Put up or shut up. I'm
not so good with shutting up, so here
we are today.

2

Timeline

orig spec

3 days

break

14 days

twist

1 day

After much debate about how long the
interval should be and how long the
two phases should be, we settled on a
two week interval with a standard three
day icfp contest before and one day
afterwards, to implement the twist.

Of course, we were afraid that only
people who spent the entire two weeks
working on their code would have a
chance to win, but we counted on two
things to counteract that.

First, we decided the judges' prize would
be given to the team that
demonstrated the best re-use of their
submission. And I publicly committeed
myself to reading their code, rather
than trying to automate this via diff.

Second, we just tried to be sneaky
enough in our twist design so that
producing the world's best submission
for the first round would only give a
small advantage over competent
submissions in the first round.

3

Desiderata, i

Twist:
• Easy to get a working solution
• Hard to get a good solution
• Implementing twist gives a clear advantage

Beyond those goals, we had a few other
ideas in mind about how we wanted
the competition to go.

First off, it should be easy to implement
the twist if your code was structured
well, but it should be hard to take
advantage of it. And hopefully, it should
be impossible to take avantage of the
twist if your code is structured poorly --
just bringing your bots up to spec
would take the entire 24 hours.

And yet, succeeding at implementing the
twist should give a clear advantage.

4

Desiderata, ii

Search
Too many puzzles succumb to brute
force techniques and we wanted to
make sure that ours would not.
Instead, we wanted people to have to
be able to synthesize something out of
the rules of the contest and commit to
some kind of a strategy up front.

5

Desiderata, iii

vs

I love board games and everyone who
was interested in helping with the
contest like them too, so it was
decided early on that the contestants
would implement players for some
game.

For games where search is impractical
or infeasible for some reason, what
often happens is that the best strategy
often depends on the strategies that
your opponents play. In gaming circles,
you sometimes hear this called the
"meta-game".

To take an extreme example, assuming
somehow no one knew ahead of time
that all three strategies in
rock-paper-scissors (ie, rock, paper,
and scissors) were equally strong, and
somehow people tended to gravitate
towards rock -- you should definitely
play paper. Some would even say that
rock paper scissors truly has a vibrant
meta-game. I encourage you to check
out the World RPS society.

tic-tac-toe, however, has just a single
viable game-time strategy -- block the
opponent from getting three in a row
while trying to do so yourself. There
are no real strategy decisions to be
made ahead of time.

So, tic-tac-toe-like games have an
uninteresting meta-game, but games
like rock-paper-scissors have an
intersting one. We wanted our game to
be in the rock-paper-scissors category.

We really didn't want the game to
degenerate into who could produce the
a move from the one strategy the
quickest. Instead, we hoped that we
could come up with a game where
players would think about the rules and
commit to particular strategies and, if
you knew (or thought you knew) what
your opponents were bringing, you
could take advantage of that in your
own strategy.

6

The game

7

The game

Cops and Robbers
• 6 players, one robber & 5 cops
• Each player a separate program
• Cops must catch robber while protecting banks
• Robber must evade cops while robbing banks

Each match in the game consists of six
players: one robber and five cops. The
cops must work together to be able to
catch the robber. Each player is a
separate program and will have to
coordinate with other players in the
game, in an at least partially
cooperative way.

If the cops catch the robber, they are
rewarded with the money still left in the
banks. If the robber evades the cops
for enough turns, it is rewarded with
the money it stole from the bank.

8

Welcome to Hyde Park
The gray lines and circles are the
streets and intersections in Hyde Park,
my neighborhood (in Chicago).

The grey lines are offset from the
centers of the circles to indicate
directionality of the streets. Imagine
you are driving on the right-hand side
of the road; if you have an edge on
your side the street goes in your
direction and if not, it doesn't.

The blue circles & square are the
locations of the cops and the red circle
is the location of the robber.

The squared cop is the main quad of the
University of Chicago. The cop in the
top right is at my favorite restaurant in
the neighborhood.

The yellow nodes are banks (The
bottom-right one is not a bank in real
life -- that's where TTI-Chicago is
located).

The blue node -- in the center; a cop is
standing on it -- is the cop
headquarters and the red node is
where the robber starts.

9

Initial locations
Initially, the cops are all at the cop
headquarters and the robber is at the
park, marked by the red dot.

Gameplay is turn-based.

10

Robber moves
First, the robber moves.

11

Cops move
The cops communicate with each other
to figure out a plan and then move
simultaneously.

This pattern of moves repeats until the
cops catch the robber, or 100 such
pairs of moves occur, which ever
comes first.

Sometimes the cops can skip over
nodes, as you can see from the
top-most and bottom-most cop here.
Those cops are in cars and they have
extra edges that let them skip ahead.
But (unlike real life) cops in cars have
to follow one way streets, but the foot
cops and the robber do not.

12

Information

Public information: location of cops
Private robber information: location
Private cop information: smells, evidence

Although everyone knows the locations
of all the cops, not all of the
information on the board is public
knowledge.

The robber's location is private to the
robber (unless the robber is on a bank).
The cops each get their own partial
information about the location of the
robber, in two forms. First, the robber
periodically drops evidence on nodes it
passes. Only the cops that pass those
nodes pick up the evidence. More
interestingly, cops that are near to the
robber can "smell" the robber. Each
turn, each cop learns if it is one, two,
or more steps from the robber. Once
the cops learn their information, they
can choose to pass that on to the
other cops, or not.

13

Smell example
As an example, assume that the square
cop is told that it can smell the robber
within two steps.

Now it can tell that the robber is on one
of the red nodes.

One of the other cops can also smell the
robber at a distance two and the rest of
the cops cannot smell the robber.

Putting together the other cop's reported
2, we can narrow down the possible
locations of the robber to just two.

But, we can also take the no smell
information into account. Since the
middle cannot smell the robber, the
robber is not two away from it, so we
can really narrow down the space to a
single location for the robber.

14

Smell example

Smell 2

As an example, assume that the square
cop is told that it can smell the robber
within two steps.

Now it can tell that the robber is on one
of the red nodes.

One of the other cops can also smell the
robber at a distance two and the rest of
the cops cannot smell the robber.

Putting together the other cop's reported
2, we can narrow down the possible
locations of the robber to just two.

But, we can also take the no smell
information into account. Since the
middle cannot smell the robber, the
robber is not two away from it, so we
can really narrow down the space to a
single location for the robber.

15

Smell example

Smell 2

As an example, assume that the square
cop is told that it can smell the robber
within two steps.

Now it can tell that the robber is on one
of the red nodes.

One of the other cops can also smell the
robber at a distance two and the rest of
the cops cannot smell the robber.

Putting together the other cop's reported
2, we can narrow down the possible
locations of the robber to just two.

But, we can also take the no smell
information into account. Since the
middle cannot smell the robber, the
robber is not two away from it, so we
can really narrow down the space to a
single location for the robber.

16

Smell example

Smell 2

No smell

Smell 2

As an example, assume that the square
cop is told that it can smell the robber
within two steps.

Now it can tell that the robber is on one
of the red nodes.

One of the other cops can also smell the
robber at a distance two and the rest of
the cops cannot smell the robber.

Putting together the other cop's reported
2, we can narrow down the possible
locations of the robber to just two.

But, we can also take the no smell
information into account. Since the
middle cannot smell the robber, the
robber is not two away from it, so we
can really narrow down the space to a
single location for the robber.

17

Smell example

Smell 2

No smell

Smell 2

As an example, assume that the square
cop is told that it can smell the robber
within two steps.

Now it can tell that the robber is on one
of the red nodes.

One of the other cops can also smell the
robber at a distance two and the rest of
the cops cannot smell the robber.

Putting together the other cop's reported
2, we can narrow down the possible
locations of the robber to just two.

But, we can also take the no smell
information into account. Since the
middle cannot smell the robber, the
robber is not two away from it, so we
can really narrow down the space to a
single location for the robber.

18

Smell example

Smell 2

No smell

Smell 2

As an example, assume that the square
cop is told that it can smell the robber
within two steps.

Now it can tell that the robber is on one
of the red nodes.

One of the other cops can also smell the
robber at a distance two and the rest of
the cops cannot smell the robber.

Putting together the other cop's reported
2, we can narrow down the possible
locations of the robber to just two.

But, we can also take the no smell
information into account. Since the
middle cannot smell the robber, the
robber is not two away from it, so we
can really narrow down the space to a
single location for the robber.

19

Cops turn, detail

Cops turn has several phases
• Cops learn their private information, and

choose what to share
• Cops learn what other cops shared and

formulate group plans
• Cops learn others plans and vote on plans
• Cops learn who won the vote and move

In order to make sure that computer
programs have some hope of
effectively communicating with each
other, we designed a series of steps
that the communication takes.

Each cop learns its own information and
chooses what to share. It does not
share the information it learns directly,
however. Instead it can pass along
assertions saying that a player is or is
not on a location on a particular time,
and they can indicate how sure they
are of this fact.

The cops then learn what the others
shared, and based on that formulate
plans for the entire group of cops.
Then, they receive everyone's plans
and vote on them. The server
computes the winner and reports that,
and then the cops move.

The vote is non-binding, however, so the
cops may move as they wish.

20

Scoring

If the cops catch the robber
• Cops split money in banks, 0 - 6000 pts
• Robber gets nothing
• Cops get three 60 pt bonuses
If the robber evades the cops
• Cops get two 60 pt bonuses
• Robber gets money stolen from banks

Cop goal: be selfless, but not too selfless

The match ends when after 200 different
worlds have passed, or when the cops
catch the robber, whichever comes
first.

The game is scored in one of two
different ways. If the cops win, they
split the remaining cash in the bank. If
the robber wins, it gets all of the
money that it managed to liberate from
the banks.

In either case, the cops receive some
bonuses that serve to separate them
from each other. The cops that
actually land on the robber gets a
bonus for doing so. The cops that
collects the most evidence get a
bonus, and the cop whose plans win
votes the most often gets a bonus.

21

Tournament, i

Pods
• Each group of six plays six times, once each as

robber

The tournament is organized into a
series of pods. Each pod consists of
six entries. Each entry plays as cop 5
times and each one plays as robber
once.

Once problem we worried about early on
was how to distinguish one genius
from five idiots. If some incredibly good
cop can come up with wonderful plans
and even somehow gets them voted
in, but no one follows the plans, and
instead just wanders around randomly,
the one good cop ends up chasing the
robber around, but never catching the
robber. So, everyone in the pod gets
essentially the same scores and the
genius doesn't stand out.

So, we built our own cop and robber and
played each contestant against those.

22

Judge cop config 1
The judges cops are not very smart.
They go to this configuration here
which protects all but one bank.

23

Judge cop config 1
As soon as the robber steps on a bank,
they move to the banks that they
protect (ie, all but the one the robber is
on here)

24

Judge cop config 2
and then they move to this configuration
which, just like the other configuration
protects all but one bank.

So, if your robber can sucessfully move
between the unprotected banks, it will
rob these cops blind.

25

Judge robber
The robber is slightly smarter than the
cops. It makes a tour of the banks in
alphabetical order.

As it goes from between the banks, it
avoids stepping next to a cop. If all
moves would leave it next to a cop, it
just doesn't move.

So, to catch this robber, the cops need
to be able to coordinate and hem it in,
but it is not too difficult to hem it in,
because it goes directly between banks
and so reveals its location fairly often.

26

Judge robber
The robber is slightly smarter than the
cops. It makes a tour of the banks in
alphabetical order.

As it goes from between the banks, it
avoids stepping next to a cop. If all
moves would leave it next to a cop, it
just doesn't move.

So, to catch this robber, the cops need
to be able to coordinate and hem it in,
but it is not too difficult to hem it in,
because it goes directly between banks
and so reveals its location fairly often.

27

Judge robber
The robber is slightly smarter than the
cops. It makes a tour of the banks in
alphabetical order.

As it goes from between the banks, it
avoids stepping next to a cop. If all
moves would leave it next to a cop, it
just doesn't move.

So, to catch this robber, the cops need
to be able to coordinate and hem it in,
but it is not too difficult to hem it in,
because it goes directly between banks
and so reveals its location fairly often.

28

Judge robber
The robber is slightly smarter than the
cops. It makes a tour of the banks in
alphabetical order.

As it goes from between the banks, it
avoids stepping next to a cop. If all
moves would leave it next to a cop, it
just doesn't move.

So, to catch this robber, the cops need
to be able to coordinate and hem it in,
but it is not too difficult to hem it in,
because it goes directly between banks
and so reveals its location fairly often.

29

Judge robber
The robber is slightly smarter than the
cops. It makes a tour of the banks in
alphabetical order.

As it goes from between the banks, it
avoids stepping next to a cop. If all
moves would leave it next to a cop, it
just doesn't move.

So, to catch this robber, the cops need
to be able to coordinate and hem it in,
but it is not too difficult to hem it in,
because it goes directly between banks
and so reveals its location fairly often.

30

Judge robber
The robber is slightly smarter than the
cops. It makes a tour of the banks in
alphabetical order.

As it goes from between the banks, it
avoids stepping next to a cop. If all
moves would leave it next to a cop, it
just doesn't move.

So, to catch this robber, the cops need
to be able to coordinate and hem it in,
but it is not too difficult to hem it in,
because it goes directly between banks
and so reveals its location fairly often.

31

Judge robber
The robber is slightly smarter than the
cops. It makes a tour of the banks in
alphabetical order.

As it goes from between the banks, it
avoids stepping next to a cop. If all
moves would leave it next to a cop, it
just doesn't move.

So, to catch this robber, the cops need
to be able to coordinate and hem it in,
but it is not too difficult to hem it in,
because it goes directly between banks
and so reveals its location fairly often.

32

Judge robber
The robber is slightly smarter than the
cops. It makes a tour of the banks in
alphabetical order.

As it goes from between the banks, it
avoids stepping next to a cop. If all
moves would leave it next to a cop, it
just doesn't move.

So, to catch this robber, the cops need
to be able to coordinate and hem it in,
but it is not too difficult to hem it in,
because it goes directly between banks
and so reveals its location fairly often.

33

Tournament, ii

Regular season
• Play against judges cop & robber
Playoffs
• Original plan: single elimination tournament
• Revised plan: random pod selection, wait for

quiescence

Once we'd eliminated all of the entries
that could not beat that cop and
robber, we thought we would run a
single-elimination tournament but the
tournament ended up being far too
sensitive to the pod groupings (and to
the random number seed, apparently).

So instead, we just pick random subsets
of size six, run a pod, and record the
rank (one thru six) of the entrants. We
keep a running average of the ranks
and keep picking pods until the ranks
settle down.

34

Programming task

Implement a cop & a robber
• Communicate via stdin/stdout
• Follow spec protocol

wor\
wor: 198
rbd: 5434
bv\
bv: 53-and-the-other-lake-park 94
bv: 53-and-woodlawn 96
bv: 55-and-harper 93
bv: 57-and-kimbark 92
bv: 58-culdesac 96
bv: 60-and-blackstone 95
bv/

ev\
ev/
smell: 0
pl\
pl: McGruff2 55-and-woodlawn cop-car
pl: McGruff3 55-and-woodlawn cop-car
pl: McGruff4 55-and-woodlawn cop-foot
pl: McGruff5 55-and-woodlawn cop-foot
pl: NoOpCop 55-and-woodlawn cop-car
pl/
wor/

The programming task is to implement a
cop and a robber. They communicate
via stdin and stdout, according to a set
protocol. In black is an example
messages and other messages look
similar. This message coveys the
private information that a cop receives
at the beginning of the cops turn. In
this case, it is near the end of the
game (world 198) and the robber has
been successful so far, robbing nearly
all of the money in the banks. The
smell line indicates that this cop
cannot smell the robber this turn. The
pl lines show the players that this cop
can detect.

35

Programming task

Robber
State

Machine

⇢ world

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

⇠ move

Cop
State
Machine

These state machines show the order in
which messages are sent and received
for the two bots. They just show the
main loop (there are also initialization
and game over messages that are not
shown) so you can get a sense of the
kind of communication.

The robber is simple: it accepts a world
and produces a move message, ad
infinitum.

The cop machine follows the protocol
discussed earlier: it gets private info,
and then sends back what it wishes to
share. This is then sent to all of the
cops, and then each cop responds
with a plan. The plans are shared and
the cops vote. Finally the cops move,
but with no obligations to follow the
winning plans.

36

BDK

We supplied a BDK (bot development kit, natch)
• We wrote a rules game manager
• We wrote a GUI cop and robber
• We wrote record/replay transcript tools
• We wrote simple bots

Just like the real world, the problem we
supplied this year is complex and has
special cases that interact with each
other in interesting ways, especially
since we picked the map from Hyde
Park! To make the contestants
experience even more like the real
world, we supplied programming tools
to help manage the complexity.

We tried to make our rules manager
have especially good error reporting
when contestants fail to follow the
protocol or violate some other of the
rules (much of the code is error
checking, in fact). Our GUI cop and
GUI robber allow contestants to play
against their own bots and experiment
with various situations. Combined with
the record and replying tools, they can
even build automated test suites from
situations they set up in the GUI. We
also provided them a few simple bots:
a cop and robber that just sit there,
and a cop that always votes its own
plans down, and always follows the
winning plan to help contestants
experiment with their own plan-making
strategies.

37

The twist

We did a little bit of red-herring seeding
in the original version. For example,
during the startup of the bots, we
supplied the entire map in the first
message, rather than just leaving it in
the spec, even though we never
planned to change the map. Judging
from contestant comments, we fooled a
few. :)

38

The twist

Cops can choose to team up with the robber
• A cop offers itself to the robber, robber accepts
⇒ dirty cop

• A dirty cop wins if the robber wins and loses if
the clean cops win

The twist was that cops can now
voluteer themselves to team up with
the robber.

The robber must agree in order for a
cop to become officially dirty.

Once dirty, the cop has thrown its lot
with the robber. It loses if the robber
loses and if the robber wins, it gets a
share of the loot.

Of course, once dirty, a cop wants to lie
to its fellow cops to throw them off of
the trail.

39

Smell lie

Smell 2

As before, imagine that we smell the
robber two away.

But now, the neighboring cop lies and
says that it does not smell the robber.
If we believe it, we now are going to be
sent in the wrong direction.

40

Smell lie

Smell 2

Lie ⊥

As before, imagine that we smell the
robber two away.

But now, the neighboring cop lies and
says that it does not smell the robber.
If we believe it, we now are going to be
sent in the wrong direction.

41

Smell lie

Smell 2

Lie ⊥

As before, imagine that we smell the
robber two away.

But now, the neighboring cop lies and
says that it does not smell the robber.
If we believe it, we now are going to be
sent in the wrong direction.

42

Bad smell lie

Smell 2

Lie 1

But, cops can also lie poorly. For
example, if the cop to the bottom right
says that it smells the robber one away
from itself, we know that it is lying and
we can then infer that it is dirty and
accuse it.

43

Twist gameplay changes

• Robber now communicates with dirty cops
• Clean cops can accuse and take over dirty bots
• Minor change to map (removed degenerate

strategy)

To fully support the notion of dirty cops,
we must allow the robber to
communicate with the dirty cops, just
like the clean cops communicate. In
addition, when a clean cop accuses a
dirty cop, the clean cop is now in
control of the dirty cop and must then
submit multiple moves.

Finally, we did end up changing the
map, but only in a very minor way, to
remove a degenerate strategy.

44

Robber
State

Machine

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

⇠ bribe

⇢ offered

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

Cop
State
Machine

These are the new state machines for
the robber and the cop bots. The
robber state machine is now very
similar to the old cop state machine,
except that it has one extra round-trip
to the server, where it indicates if it
wants to bribe cops and is told which
cops are available.

The new cop state machine looks a bit
more more complex, but only because
it has two state machines combined,
the one for dirty cops and the one for
clean cops.

45

Robber
State

Machine

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

⇠ bribe

⇢ offered

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

Cop
State
Machine

The state machine for clean cops is
identical to the state machine for
original cops. The content of the
messages has changed a little bit, but
the changes are only constant print
outs, if the cop never becomes dirty.

46

Robber
State

Machine

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

⇠ bribe

⇢ offered

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

Cop
State
Machine

The state machine for dirty cops begins
with the same states as the clean
cops, but then veers off for some
communication with the robber. But as
you will notice, the communication
between the dirty cops and the robber
looks much like the communication with
the cops, except that it does not end in
a move.

47

Desiderata revisited

48

Desiderata, i

⇢ world

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

⇠ bribe

⇢ offered

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

⇠ move

⇢ world

⇠ info

⇢ info

⇠ plan

⇢ plans

⇠ vote

⇢ winner

Based on the state machines alone, you
can see that it is easy to implement
the basic structure of a twist cop if you
have a working cop. I would say that it
also should be easy to implement a
naive dirty cop, since the conversation
logic is very similar to the clean cop.

And, of course, if you can share your
state machine between the cop and
the robber, implementing the new
robber spec is also not difficult.

49

Desiderata, i

Special bonuses for cops that try to become dirty
If robber looks for dirty cops and doesn't find any,
(and there never have been any before) robber
can push clean cops around

We added these special rules to
encourage people to even implement
the twist at all. The hope was that
people who used these special features
would win outright if no one else in
their match implemented the twist.

50

Desiderata, ii

Search

3.6 x 1013 different boards (just counting players
positions)
games can be 100 moves, expect 5000 possible
moves on average
barring clever search space collapses:
• two move lookahead: 122 gigabytes
• three move lookahead: ½ petabyte

These numbers were calculated under
optimistic assumptions. For example,
the search space for the board only
counts boards that have the same
players in different places once.

Typically, you expect to have an even
mixture of car cops and foot cops to be
able to move around the board
effectively, which means that there are,
on average, slightly less than 5,000
moves from a given board, which is
what was used to compute the
numbers you see there. The worst
case, tho, is more than 16,000 moves
which, of course, bumps up those
numbers. And, I'm assuming only 47
bits per board which would probably be
difficult to achieve.

In any case, it seems quite difficult to
use search effectively with this game.

51

Desiderata, iii

vs

• Too many credulous cops ⇒ dirty cops win
• Too many dirty cops ⇒ accusations win
• Too many accusations ⇒ sneaky cops win
• Too many sneaky cops ⇒ robber wins
• Five credulous cops catch the robber

Although we were not able to full explore
the search space, it does seem likely
that there is a rock-paper-scissors-like
element to the game.

If you expect most of the cops to be
clean and credulous, then by becoming
dirty you disrupt their startegies and
win with the robber. If you expect cops
to be dirty and disruptive, than by
detecting and accusing dirty cops, you
can take them all over and win. If you
expect cops to be making a lot of
accusations, you can play stupid for a
little while, get cops to use up their
accusations and then become dirty and
win. If too many cops are acting dirty
without being dirty than you clearly
expect the robber to win and, as you
might guess, five credulous cops can
catch the robber.

So, we hoped that the contestants would
be discussing these issues and that a
meta-game would develop and that the
two week period might give a little bit
of time for this to develop.

52

Warning
53

More work than I had guessed ...

Don't do this before you have a stable job
 > 30k lines of code written
 > 2,400 pages of code read
 > 5.5 months of cpu-time
 > 6 robby-months (full time)

... don't do this before you have a stable
job.

And really, the killer here is that last line.
I don't know if I work more or less
efficiently than you do, but I do know
that a robby month is not just four
weeks of M-F 9-5.

But enough depression.

54

The teams

55

161 teams, 370 contestants
54

Initial submission Twist

Su
bm

iss
io

n
co

un
t

20 minutes per vertical bar
6 hours per green region

There were 161 teams, with the usual
submission time graph. Here you see 6
hours in each of the light green
regions.

Those last few very late teams were
actually ones that we entered
ourselves, since a few teams had
trouble uploading their submissions and
we had to enter them manually.

56

USA 33
Germany 26

France 13
Japan 10

Australia 7
Canada 6
Russia 6

UK 6
Denmark 5

Poland 5
Romania 4

Argentina 3
Austria 3

Belgium 3

India 3
New Zealand 3

Sweden 3
Ukraine 2

Bulgaria 1
Colombia 1

Greece 1
Ireland 1

Italy 1
Netherlands 1

Norway 1
Portugal 1

We had submissions from all over the
world.

We nearly had a submission from each
occupied continent in the world, since a
team from South Africa registered, but
sadly they did not end up submitting
anything to the tournament. Still, pretty
good coverage, no?

57

The results

58

Initial submission
C++

34 100%
OCaml

21 90%
Python

20 95%
Java

19 100%
Haskell

16 100%
C

10 100%
Perl

9 100%
the rest

32 100%

The dots here correspond to teams.
Each team gets its own dot. The color
of the dot indicates which programming
language the team used. We will see a
series of these slides where the dots
will turn grey when the corresponding
team drops out of the tournament,
according to the tournament phases:
the regular season and the playoffs.

The right-hand column shows which
colors match which teams. I cut off
languages with 5 and a fewer entries
and combined them into the last color.
The numbers are the absolute counts
of teams and will remain the same for
each slide. the percentages show the
number remaining at each stage of the
tournament and will change during the
progression.

Already on the first slide there are three
teams that have dropped out here, at
the bottom. those are teams that only
submitted to the twist. I allowed this,
since it didn't make sense to disallow it
-- teams can (and did) submit entries
that were bogus, just to reserve a slot
for the second phase.

The second phase shows all of the
teams that did not fail in the regular
season. You see some half circles
there -- teams were allowed to submit
either one or two sets of players. Half a
circle means that the team submitted
two entries and one has dropped out
by this point.

The third phase shows teams that beat
the judges cops in the regular season
and the fourth is teams that did not fail
in the playoffs.

Next, we can see the same four slides
for the twist: initial submission, those
teams that did not fail in the regular
season, those that beat the judges
cops, and finally those that did not fail
in the twist.

59

No failure in regular season
C++

34 67%
OCaml

21 64%
Python

20 75%
Java

19 73%
Haskell

16 75%
C

10 50%
Perl

9 77%
the rest

32 68%

The dots here correspond to teams.
Each team gets its own dot. The color
of the dot indicates which programming
language the team used. We will see a
series of these slides where the dots
will turn grey when the corresponding
team drops out of the tournament,
according to the tournament phases:
the regular season and the playoffs.

The right-hand column shows which
colors match which teams. I cut off
languages with 5 and a fewer entries
and combined them into the last color.
The numbers are the absolute counts
of teams and will remain the same for
each slide. the percentages show the
number remaining at each stage of the
tournament and will change during the
progression.

Already on the first slide there are three
teams that have dropped out here, at
the bottom. those are teams that only
submitted to the twist. I allowed this,
since it didn't make sense to disallow it
-- teams can (and did) submit entries
that were bogus, just to reserve a slot
for the second phase.

The second phase shows all of the
teams that did not fail in the regular
season. You see some half circles
there -- teams were allowed to submit
either one or two sets of players. Half a
circle means that the team submitted
two entries and one has dropped out
by this point.

The third phase shows teams that beat
the judges cops in the regular season
and the fourth is teams that did not fail
in the playoffs.

Next, we can see the same four slides
for the twist: initial submission, those
teams that did not fail in the regular
season, those that beat the judges
cops, and finally those that did not fail
in the twist.

60

Beat judges cops in regular season
C++

34 17%
OCaml

21 21%
Python

20 20%
Java

19 23%
Haskell

16 34%
C

10 25%
Perl

9 0%
the rest

32 10%

The dots here correspond to teams.
Each team gets its own dot. The color
of the dot indicates which programming
language the team used. We will see a
series of these slides where the dots
will turn grey when the corresponding
team drops out of the tournament,
according to the tournament phases:
the regular season and the playoffs.

The right-hand column shows which
colors match which teams. I cut off
languages with 5 and a fewer entries
and combined them into the last color.
The numbers are the absolute counts
of teams and will remain the same for
each slide. the percentages show the
number remaining at each stage of the
tournament and will change during the
progression.

Already on the first slide there are three
teams that have dropped out here, at
the bottom. those are teams that only
submitted to the twist. I allowed this,
since it didn't make sense to disallow it
-- teams can (and did) submit entries
that were bogus, just to reserve a slot
for the second phase.

The second phase shows all of the
teams that did not fail in the regular
season. You see some half circles
there -- teams were allowed to submit
either one or two sets of players. Half a
circle means that the team submitted
two entries and one has dropped out
by this point.

The third phase shows teams that beat
the judges cops in the regular season
and the fourth is teams that did not fail
in the playoffs.

Next, we can see the same four slides
for the twist: initial submission, those
teams that did not fail in the regular
season, those that beat the judges
cops, and finally those that did not fail
in the twist.

61

No failure in playoffs
C++

34 1%
OCaml

21 14%
Python

20 5%
Java

19 18%
Haskell

16 21%
C

10 15%
Perl

9 0%
the rest

32 7%

The dots here correspond to teams.
Each team gets its own dot. The color
of the dot indicates which programming
language the team used. We will see a
series of these slides where the dots
will turn grey when the corresponding
team drops out of the tournament,
according to the tournament phases:
the regular season and the playoffs.

The right-hand column shows which
colors match which teams. I cut off
languages with 5 and a fewer entries
and combined them into the last color.
The numbers are the absolute counts
of teams and will remain the same for
each slide. the percentages show the
number remaining at each stage of the
tournament and will change during the
progression.

Already on the first slide there are three
teams that have dropped out here, at
the bottom. those are teams that only
submitted to the twist. I allowed this,
since it didn't make sense to disallow it
-- teams can (and did) submit entries
that were bogus, just to reserve a slot
for the second phase.

The second phase shows all of the
teams that did not fail in the regular
season. You see some half circles
there -- teams were allowed to submit
either one or two sets of players. Half a
circle means that the team submitted
two entries and one has dropped out
by this point.

The third phase shows teams that beat
the judges cops in the regular season
and the fourth is teams that did not fail
in the playoffs.

Next, we can see the same four slides
for the twist: initial submission, those
teams that did not fail in the regular
season, those that beat the judges
cops, and finally those that did not fail
in the twist.

62

Twist: initial submission
C++

34 41%
OCaml

21 61%
Python

20 60%
Java

19 47%
Haskell

16 75%
C

10 50%
Perl

9 44%
the rest

32 53%

The dots here correspond to teams.
Each team gets its own dot. The color
of the dot indicates which programming
language the team used. We will see a
series of these slides where the dots
will turn grey when the corresponding
team drops out of the tournament,
according to the tournament phases:
the regular season and the playoffs.

The right-hand column shows which
colors match which teams. I cut off
languages with 5 and a fewer entries
and combined them into the last color.
The numbers are the absolute counts
of teams and will remain the same for
each slide. the percentages show the
number remaining at each stage of the
tournament and will change during the
progression.

Already on the first slide there are three
teams that have dropped out here, at
the bottom. those are teams that only
submitted to the twist. I allowed this,
since it didn't make sense to disallow it
-- teams can (and did) submit entries
that were bogus, just to reserve a slot
for the second phase.

The second phase shows all of the
teams that did not fail in the regular
season. You see some half circles
there -- teams were allowed to submit
either one or two sets of players. Half a
circle means that the team submitted
two entries and one has dropped out
by this point.

The third phase shows teams that beat
the judges cops in the regular season
and the fourth is teams that did not fail
in the playoffs.

Next, we can see the same four slides
for the twist: initial submission, those
teams that did not fail in the regular
season, those that beat the judges
cops, and finally those that did not fail
in the twist.

63

Twist: no failure in regular season
C++

34 27%
OCaml

21 52%
Python

20 40%
Java

19 31%
Haskell

16 71%
C

10 50%
Perl

9 33%
the rest

32 37%

The dots here correspond to teams.
Each team gets its own dot. The color
of the dot indicates which programming
language the team used. We will see a
series of these slides where the dots
will turn grey when the corresponding
team drops out of the tournament,
according to the tournament phases:
the regular season and the playoffs.

The right-hand column shows which
colors match which teams. I cut off
languages with 5 and a fewer entries
and combined them into the last color.
The numbers are the absolute counts
of teams and will remain the same for
each slide. the percentages show the
number remaining at each stage of the
tournament and will change during the
progression.

Already on the first slide there are three
teams that have dropped out here, at
the bottom. those are teams that only
submitted to the twist. I allowed this,
since it didn't make sense to disallow it
-- teams can (and did) submit entries
that were bogus, just to reserve a slot
for the second phase.

The second phase shows all of the
teams that did not fail in the regular
season. You see some half circles
there -- teams were allowed to submit
either one or two sets of players. Half a
circle means that the team submitted
two entries and one has dropped out
by this point.

The third phase shows teams that beat
the judges cops in the regular season
and the fourth is teams that did not fail
in the playoffs.

Next, we can see the same four slides
for the twist: initial submission, those
teams that did not fail in the regular
season, those that beat the judges
cops, and finally those that did not fail
in the twist.

64

Twist: beat judges cops in regular season
C++

34 5%
OCaml

21 11%
Python

20 10%
Java

19 2%
Haskell

16 28%
C

10 35%
Perl

9 0%
the rest

32 3%

The dots here correspond to teams.
Each team gets its own dot. The color
of the dot indicates which programming
language the team used. We will see a
series of these slides where the dots
will turn grey when the corresponding
team drops out of the tournament,
according to the tournament phases:
the regular season and the playoffs.

The right-hand column shows which
colors match which teams. I cut off
languages with 5 and a fewer entries
and combined them into the last color.
The numbers are the absolute counts
of teams and will remain the same for
each slide. the percentages show the
number remaining at each stage of the
tournament and will change during the
progression.

Already on the first slide there are three
teams that have dropped out here, at
the bottom. those are teams that only
submitted to the twist. I allowed this,
since it didn't make sense to disallow it
-- teams can (and did) submit entries
that were bogus, just to reserve a slot
for the second phase.

The second phase shows all of the
teams that did not fail in the regular
season. You see some half circles
there -- teams were allowed to submit
either one or two sets of players. Half a
circle means that the team submitted
two entries and one has dropped out
by this point.

The third phase shows teams that beat
the judges cops in the regular season
and the fourth is teams that did not fail
in the playoffs.

Next, we can see the same four slides
for the twist: initial submission, those
teams that did not fail in the regular
season, those that beat the judges
cops, and finally those that did not fail
in the twist.

65

Twist: no failure in playoffs
C++

34 1%
OCaml

21 2%
Python

20 2%
Java

19 2%
Haskell

16 15%
C

10 5%
Perl

9 0%
the rest

32 3%

The dots here correspond to teams.
Each team gets its own dot. The color
of the dot indicates which programming
language the team used. We will see a
series of these slides where the dots
will turn grey when the corresponding
team drops out of the tournament,
according to the tournament phases:
the regular season and the playoffs.

The right-hand column shows which
colors match which teams. I cut off
languages with 5 and a fewer entries
and combined them into the last color.
The numbers are the absolute counts
of teams and will remain the same for
each slide. the percentages show the
number remaining at each stage of the
tournament and will change during the
progression.

Already on the first slide there are three
teams that have dropped out here, at
the bottom. those are teams that only
submitted to the twist. I allowed this,
since it didn't make sense to disallow it
-- teams can (and did) submit entries
that were bogus, just to reserve a slot
for the second phase.

The second phase shows all of the
teams that did not fail in the regular
season. You see some half circles
there -- teams were allowed to submit
either one or two sets of players. Half a
circle means that the team submitted
two entries and one has dropped out
by this point.

The third phase shows teams that beat
the judges cops in the regular season
and the fourth is teams that did not fail
in the playoffs.

Next, we can see the same four slides
for the twist: initial submission, those
teams that did not fail in the regular
season, those that beat the judges
cops, and finally those that did not fail
in the twist.

66

Twist: initial submission
C++

34 41%
OCaml

21 61%
Python

20 60%
Java

19 47%
Haskell

16 75%
C

10 50%
Perl

9 44%
the rest

32 53%

The main trend you see here is that
there is quickly lots of grey and,
perhaps as we expect, many teams
submitted buggy code.

The slide I think really stands out is the
twist initial submission (repeated here).
There were nearly half of the teams
that did not even submit something to
the twist. I had feared this would
happen, but teams knew that the twist
is where the contest would be decided
and, as we have seen, assuming you
have working pre-twist entries it is not
difficult to get working twist entries.

This slide should really speak to us as
PL researchers and educators. I think it
is fair to assume that most of the
people who did not submit a solution
wanted to submit something. And
yet, they were unable.

I would go further and say that the
problem here is the 3-day hack fest
mentality that permeates programming
culture. I certainly see this in the
students I teach, and I certainly
imagine, based on what I see in the
software I use that this is not unique to
just my students :).

But the truth is that we, the PL research
community, have an opportunity and,
dare I say, an obligation to help with
this problem. We know something
about how to structure programs to get
good re-use and, in particular, to help
make the structure of programs match
the structure of the problems they
solve.

We should be teaching that to our
students (early!), we should be
develping that knowledge and we are
to some extent, but we are failing to
bring this knowledge out to the world
effectively.

67

Performance in stages

pre-twist twist
100%

75%

50%

25%

0%

C++ OCaml Python Java Haskell C Perl

As I studied these numbers, there were
two other things I saw, and I think they
show up particularly well here. These
graph summarize the previous slides.
From left to right, we see the initial
submissions, then failures, losing, and
more failures. and top to bottom are
percentages of remaining teams,
colored by programming languages.

The clear fact that stands out here is
that Haskell is the language of choice
for the programming contest. Haskell
stands out a little bit in the first round,
but it clearly stands out in the twist.
So, kudos to the Haskell community for
both producing a language that lets
people build re-usable code and
instilling this as a value in their
community!

One other interesting fact here -- look at
how C behaves in the twist (you can
also see that a little bit in the
pre-twist). Its curve is not really the
same as the other keys. It stays higher
longer and then suddenly drops. What
this means is that there are more
failures late. Although there were only
5 C teams in the twist so it it seems
hard to generalize, but this matches
my experience with C -- bugs are
generally harder to find and so come
out late.

68

Desiderata, i (one last time)

Twist playoffs
• 13 entries participating (3 disqualified late)
• 349 randomly selected pods
• Average pod place determines overall winner
Of the 12564 times a player played,
• 2640 tried to use the twist,
• 9924 didn't

Lets return to the first desiderata, in
particular the hope that taking
advantage of the twist actually had an
impact on performance in the second
round.

By the time we got to the final playoffs,
there were only 13 entries left. We ran
350 pods, randomly selected, but lost
one logfile. And recall, the winner was
decided by the average place in the
pod.

Overall, there were few people who
used the twist. And by using the twist I
don't mean a clever use at all -- I
merely scanned the output logs for the
robber message that indicates it is
looking for dirty cops and for the cop
message that indicates the cop is
willing to become dirty or make an
accustion.

69

1st 1.99

2nd 2.53
3rd 2.61
4th 2.8
5th 2.97
6th 3.19
7th 3.23

8th & 9th 3.62
10th 3.71

11th 4.09

overall

bribe 2.91

all robbers 3.91

no twist 4.54

just robbers

turncoat 2.92

no twist 3.33
all cops 3.41

accuse &
turncoat

3.58

accuse 4.1

just cops

These scales show the average pod
placements for teams for the teams,
running from top to bottom. The left
column shows the placements for the
teams from one thru 11 (the last two
teams are much lower than those
shown here).

The second column shows the average
pod placements for different robbers. In
green, you see the average pod
placement for all of the robbers. Below
it, you see the average place for
robbers that did not exhibit twist
behavior, ie, did not attempt to bribe
any cops. Above it, you see the
average place for robbers that did
implement the twist. Clearly, attempting
to bribe cops was a big win for the
robber, so our desiderata was achieved
for robbers.

There is more interesting things
happening here in the cops. As we
might have guessed, becoming a dirty
cop is a good idea, on average. What
is surprising is that making accusations
appears to be a bad idea. But, this has
to do with the way the judge's bots
behaved in the regular season. In the
regular season, two of the judge cops
became dirty, one right in the beginning
of the game and one in the middle.
These dirty cops then immediately
went and hid in a culdesac.

So, in order to pass the regular season,
you had to either make accusations
and gain control of those cops, become
dirty, or be able to catch the robber
very quickly. In the tournament,
however, it was much harder to detect
dirty cops, so players that had that
strategy did not fare as well as those
with the other two strategies.

70

The winners

71

Board game

How good a liar are you? How far can you trust
your buddies?

After the contest finished, I was sitting
around chatting with some of the
organizers and we decided that the
game really works better as a board
game than a computer game. All of the
coordination works much better and
trying to figure who is lying can really
be a lot of fun.

So, Matthew Flatt designed a full size
board and Hsing-Huei Huang actually
built them and made cards with
pictures of the organizers actual noses
in order to have private smell
information while playing and we've put
it all together into a box along with a
people-friendly set of rules as extra
prizes for the winners that made it to
Estonia.

Without further ado ...

72

Judges' Prize

The judges' prize goes to Dylan Hackers

!e Dylan Hackers are
an extremely cool

bunch of re-hackers.
Andreas Bogk and Hannes Mehnert are here to
accept the award on behalf of Dylan Hackers

73

Third Prize

The third prize goes to Combat-Tanteidan

Haskell " not too #abby.

Sadly, Takayuki Muranushi and Hideyuki
Tanaka could not make it

74

Second Prize

The second prize goes to Dylan Hackers

Dylan ! a fine programming
tool for many a"lications.

Andreas Bogk and Hannes Mehnert are here to
accept the prize on behalf of Dylan Hackers

75

First Prize

The first prize goes to KiebererAndXiaoTou

Haskell " also #
programming tool of choice for

$sc%minating hackers.
Wolfgang Thaller is here to accept the prize
on behalf of the KiebererAndXiaoTou

76

Thanks

The contestants
Eli Barzilay, Matthias Blume, Jay McCarthy,
Maurice Codik, Matthias Felleisen, Matthew Flatt,
Jacob Matthews, Scott Owens, David Press,
Mike Rainey, John Reppy, John Riehl, Jono
Spiro, Dave Tucker, Adam Wick, and 黃馨慧

77

