
2/27/08 11:01 AMScrabble on the TeraScale

Page 1 of 8http://www.gtoal.com/wordgames/bwickman/

This is the html version of the file http://cse.unl.edu/~bwickman/scrab-kwak.erased.pdf.
G o o g l e automatically generates html versions of documents as we crawl the web.
To link to or bookmark this page, use the following url: http://www.google.com/search?
q=cache:0JBQstKCkscC:cse.unl.edu/~bwickman/scrab-kwak.erased.pdf

Google is not affiliated with the authors of this page nor responsible for its content.

Page 1

Scrabble on the TeraScale

BRIAN J WICKMAN
University of NebraskaLincoln

1. INTRODUCTION

1.1 Problems
Over the years, Scrabble r has become arguably the world's
most popular word game. Unlike Chess or Go, Scrabble is
a game of imperfect information as there are tiles left unseen
throughout play. Therefore, adding search or strategy using
standard techniques is infeasible.

Several authors in academia have produced programs [1, 2,
4, 5]. There are several limitations to these programs, how-
ever, most notably in their age. Consequently, there is little
to no literature on harnessing the power of supercomputers
for purposes of Scrabble play or research as the advent of
highly available computing resources came at a later date.

There is also a lack of useful statistics for Scrabble players.
James Cherry, author of an on-line Scrabble computer,
simulated 5000 games and presented a body of statistics on
it such as means, modes and standard deviations of winning
game scores, aggregate game scores, highest scoring moves,
number of bingoes per game, number of moves per game,
and others. Statistics invaluable to wordgame programmers
involve probabilities such as how often words are played.
For example, the word QAT is played, on average, in 1 in 5
games using the Official Scrabble Players Dictionary. While
a sample set of 4000 games can provide some clues into typ-
ical gameplay, samples of millions or hundreds of millions
are required to achieve asymptotic results and to pan out
any irregularities in the data.

1.3 Considerations
To liken Scrabble to a science, one needs to define precise
rules of gameplay. First and foremost, a standard lexicon
needs to be defined. In the United States, the Official Scrab-
ble Players Dictionary or OSPD is used, whereas much of
the world uses the Official Scrabble Words or OSW. The
combination of these lists, coined SOWPODS, is used for
World-Championship play. Secondly, tournament Scrab-
ble is played one-on-one. Thirdly, each player has 25 min-
utes to make all his or her moves. The remaining set of rules
differs on style of play. These rules include constructs for
challenging words off the board, exchanging tiles, passing,
and various other aspects important in computer play. It is
assumed the reader knows the basic abovementioned rules.

2. MOVE GENERATION

2.1 Overview
The primary concern of a Scrabble programmer is to have
a fast move generator, especially considering only a fraction
of the total time consumed is not within this routine. Cer-
tain algorithms suffer in speed at the gain of compactness,
while others do just the opposite. There are also complexity
considerations. While a certain move generation algorithm
may look good on paper, actual performance on an archi-
tecture depends heavily on the cache and branch-prediction
mechanisms.

2.2 The Appel-Jacobsen Move Generation

http://cse.unl.edu/~bwickman/scrab-kwak.erased.pdf

2/27/08 11:01 AMScrabble on the TeraScale

Page 2 of 8http://www.gtoal.com/wordgames/bwickman/

1.2 Goal
The goals of the author are focused into one program, Mar-
tin Landau, which is a fully-functional Scrabble program
both aggressively optimized and written for use in super-
computing environments. Its primary purpose thusfar is to
generate sample games and consequently compute relevant
statistics from these data. Results of such computations will
be presented later in the text.

Algorithm
Appel and Jacobsen published a paper in 1988 that provided
the first highly specific description of a Scrabble move gen-
erator. Their first insight was to store the lexicon in a trie
and subsequently shrink it into a minimal graph via a finite
state machine minimization algorithm. The resulting data
structure is referred to as a Directed Acyclic Word Graph
or DAWG. The minimization algorithm achieved nearly a
four-fold reduction in size, allowing Appel and Jacobsen to
fit the entire lexicon in core memory. Translating to today's
machines, we can fit the same data structure almost entirely
within cache.

The first step in the algorithm involves two precomputation
steps. First, it finds the squares directly contiguous to laid
tiles on the board. These squares are called anchor squares
and are those on which we start placing tiles. The second
precomputation step computes cross sets for each possible

Page 2

h 0 h 1 h 2 h 3 h 4

v 0 B O I N G v 1

h 5 h 6 h 7 h 8 h 9

h 0 = {A, O}

h 1 = {B, D, G, H, I, J, K, L, M, N, O, P, S, T, W, Y, Z}

h 2 = {A, B, D, G, H, L, M, O, P, Q, S, T, X}

h 3 = {A, E, I, O, U}

h 4 = {A, U}

h 5 = {A, E, I, O, Y }

h 6 = {B, D, E, F, H, I, M, N, O, P, R, S, U, W, X, Y }

h 7 = {D, F, N, O, S, T }

h 8 = {A, E, O, U, Y }

h 9 = {I, O, U}

v 0 = { }

v 1 = {S}

Figure 1: Cross Sets for BOING using SOWPODS

size of the lexicon data structure, this nondeterminism can
be eliminated completely.

2.3 The Gordon Move Generation Algorithm
Steve Gordon's move generation algorithm is very similar
to the Appel and Jacobsen algorithm. It uses the same
minimal data structure but with a slightly different lexi-
con. For each word, it stores all its possible linear trans-
positions, separating wrapped letters with a delimiter. For
example, APPEAR would be stored as six separate words:
APPEAR*, PPEAR*A, PEAR*PA, EAR*PPA, AR*EPPA,
and R*AEPPA. While this will incur a tenfold increase in
the uncompressed size of the lexicon, the finite state min-
imization routine is able to to reduce the trie to 15% of
its original size. A DAWG with the above transpositions is
playfully called a DAGGAD.

To generate moves, it again starts at an anchor square but
starts placing tiles to the right. If the tiles APPEAR are
on the board, it will take the path APPEAR in the
DAGGAD. The exit nodes from R are *AEIS. By taking *,
it returns back to the anchor square and from then on places
tiles backwards from right-to-left. For example, APPE
AR*ER, a valid path in the DAGGAD, would append
the prefix RE onto APPEAR to form REAPPEAR.

2/27/08 11:01 AMScrabble on the TeraScale

Page 3 of 8http://www.gtoal.com/wordgames/bwickman/

anchor square. If one is placing tiles on the board from left-
to-right, he or she wants to lay tiles that also form valid
vertical words. The cross sets on the board with the word
BOING using SOWPODS are illustrated in Figure 1.

If the player had the rack AAEPPRS, he or she could bingo
by placing, left-to-right starting at h 0 , APPEARS. This is
valid because A h 0 , P h 1 , P h 2 , E h 3 , and A
h 4 . Similarly, we could place, top-to-bottom starting at v 1 ,
SARAPE because S v 1 . v 0 is empty because BOING
has no single-letter prefixes. Any tile may be placed on a
square without a cross set so long as it is attached to a word
intersecting an anchor square.

Once the above precomputation steps have occurred, Appel
and Jacobsen's algorithm now considers the board one row
at a time. By having the cross sets, this consideration is ren-
dered entirely one-dimensional. Similarly, it transposes the
board so that columns are considered in the same manner
as rows.

From the position of each anchor square, it generates all
possible left prefixes that can be formed from tiles on the
rack, taking cross sets and paths in the graph into consider-
ation. With the rack AAEPPRS, it may generate PRE, RE
or PAE, but not PAER because, starting from the root of
the DAWG, there is no path PAER.

For each of these prefixes, the algorithm tries placing the
remaining tiles to the right, again considering cross sets and
paths in the graph into consideration. Any time the last
tile placed is a terminal node in the graph and the square
directly right of the tile is blank, a legal move has been
generated.

There is one big problem, however. The algorithm unneces-
sarily computes potentially hundreds or thousands of unus-
able prefixes. At the cost of an order of magnitude in the

the prefix RE onto APPEAR to form REAPPEAR.

The pseudocode for this algorithm is given in Figure 2 as
a corresponding pair of recursive functions, same as that
described by Gordon.

The author implements this algorithm nearly verbatim in
Martin Landau.

Figure 3 and Figure 4 are reprinted from [3], with the au-
thor's permission, to illustrate the speed-size tradeoffs be-
tween basic implementations of both procedures.

2.4 Atomicity of Move Generation Algorithm
On the average, it takes Martin Landau approximately
0.0025 seconds to generate all possible moves given a random
board and random rack on a single processing element of
the Prairefire supercomputer. For racks with a single blank,
time is increased six-fold. For racks with two blanks, time
is increased an additional four-fold.

Because this number is so small, parallelization of the move
generation algorithm on a system with relatively high-latency
interconnect will actually decrease its speed considerably.

3. MATING SUPERCOMPUTERS AND
SCRABBLE TO IMPROVE STRATEGY

A common misconception of novice Scrabble players re-
sults in them asking why one should implement a Scrab-
ble program for use on supercomputers if existing programs
already pick the highest scoring move at each turn. The pri-
mary problem with that impression is that there are strate-
gic considerations missing. For example, playing AN for 3
might be better than SEXTANT for 93 if your opponent
plays QUIXOTIC through your T for 365. Not only does
the computer need to be aware of its offensive capabilities,
but also it needs to be defensive as well.

Page 3

Gen(pos, word, rack, arc)
// pos = offset from anchor square
{IF a letter L is already on this square

GoOn(pos, L, word, rack, NextArc(arc, L), arc)

DAWG GADDAG Ratio
per move per move (D/G)

CPU time
Expanded 1.344s 0.518s 2.60
Compressed 1.154s 0.489s 2.36

Arcs traversed 26, 134 10, 451 2.50

2/27/08 11:01 AMScrabble on the TeraScale

Page 4 of 8http://www.gtoal.com/wordgames/bwickman/

GoOn(pos, L, word, rack, NextArc(arc, L), arc)
ELSE IF letters remain on the rack

FOR each letter, L, on rack and cross set
GoOn(pos, L, word, rack - L,

NextArc(arc, L), arc)
IF the rack contains a blank

FOR each letter, L, on cross set
GoOn(pos, L, word, rack - BLANK,

NextArc(arc, L), arc)
}

GoOn(pos, L, word, rack, NewArc, OldArc)
{IF pos <= 0 // moving left

{ word = L + word

IF we are on a terminal, no letter directly left
Record play

IF NewArc != EMPTY
{ IF room to the left to place tiles

Gen(pos - 1, word, rack, NewArc)
NewArc = NextArc(NewArc, *) // shift directions
IF NewArc != EMPTY, no letter to the left

Gen(1, word, rack, NewArc)
}

}ELSE IF pos > 0 // moving right

{ word = word + L

IF on a terminal, no letter directly right
Record play

IF NewArc != EMPTY and room to the right
Gen(pos + 1, word, rack, NewArc)

}
}

Figure 2: Pseudocode for the Gordon Move Gener-
ation Algorithm

DAWG GADDAG Ratio (G/D)
States 17, 865 89, 031 4.99
Arcs 49, 341 244, 117 4.95
Expanded

Bytes 1, 860, 656 9, 625, 648 5.17
Bits/char 29.5 152.6

Compressed
Bytes 272, 420 1, 342, 892 4.93
Bits/char 4.3 21.3

Figure 3: Relative sizes of data structures

Anchors used 126.04 76.73 1.64

Figure 4: Average performance of DAWG and DAG-
GAD algorithms playing both sides of 1000 random
games on a VAX4300

3.1 Monte Carlo simulation
Monte Carlo simulations are those which involve stochastic
sampling to give good approximations of difficult to measure
quantities. For example, to compute stochastically, one
would generate N random points within the unit box and
calculate the ratio of how many of these points fell within the
unit circle. Benefits of these methods to parallel computing
are their easy parallelizability and typically linear scalability.

To adapt Monte Carlo methods to Scrabble, we literally
have to do some guessing. Given a particular board and
rack, we may guess with varying degrees of success what our
opponent's rack is. The more tiles on the board, the better
chance of guessing their tiles. Suppose we make 1000 guesses
for what rack our opponent has. Now, take the top ten
moves in consideration (most likely those with the highest
score). For each of these moves, generate the opponent's
highest-scoring response based upon what we guess their
rack to be. This involves calling the move generator 10, 000
times, but this should only take on the order of half a minute
to do.

Now, for each of our ten best moves, we have the average
score of our opponent's response. Using this average, we
may choose which of those ten fares well both offensively
and defensively. Unfortunately, that's half a minute of time
not used efficiently. For example, after observing 50 op-
ponent responses to move 9, what if the average score was
dramatically lower than those of the other moves in consid-
eration? We should try and remove it from the list as quick
as possible so that we can perform more precise guesses for
the remaining moves.

A fairly good heuristic to cull away nonideal moves quickly is
to first compute the above averages in groups of 50 or 100 op-
ponent responses at a time. For each of these, compute not
only the average response score but the standard deviation
as well. Using this standard deviation, compute a confidence
interval (CI) of possible opponent response scores. Take the
best move considered thusfar and consider the lower bound
of its CI. Similarly, for the worst moves considered, calculate
the upper bounds of their CI's. If the CI of a lesser move is
disjoint from the CI of the best move under consideration,
then we may ignore it.

An illustrative example is provided. Suppose the board is
empty and our rack is ABDDRSV. What is the best play?
We first decide to consider the top 22 moves, which are all
possible placements of VAR, BRR, BARD, BRAD, DARB
and DRAB. First we iterate for 100 random opponent racks

2/27/08 11:01 AMScrabble on the TeraScale

Page 5 of 8http://www.gtoal.com/wordgames/bwickman/

Page 4

Average SD Position Word Best-case Action
19.8 29.8 8h DRAB 23.61 Keep
18.7 29.5 8g DARB 22.48 Keep
18.7 32.0 8e BARD 22.80 Keep
18.2 27.8 8f DRAB 21.76 Keep
17.9 27.2 8f BRAD 21.38 Keep
17.6 31.2 8e DARB 21.59 Keep
17.6 28.5 8g BARD 21.25 Keep
17.5 30.2 8h VAR 21.37 Keep
16.9 27.6 8g BRAD 20.43 Keep
16.8 28.3 8f VAR 20.42 Keep
16.8 29.0 8g DRAB 20.51 Keep
16.5 29.4 8h DARB 20.26 Keep
16.3 27.7 8f DARB 19.85 Keep
16.3 27.8 8f BARD 19.86 Keep
16.0 29.6 8h BRAD 19.79 Keep
15.5 29.2 8f BRR 19.24 Keep
15.3 32.1 8e BRAD 19.41 Keep
15.1 31.5 8e DRAB 19.13 Keep
14.4 25.4 8g BRR 17.65 Prune
13.4 30.0 8h BARD 17.24 Prune
12.6 29.1 8h BRR 16.32 Prune

Figure 5: Monte Carlo Simulation After N = 100
Iterations

and obtain the best average, which is move VAR through
square 8g with an average opponent response of 22.7 and
standard deviation of 33.3. The 80% CI states that we are
80% sure the worst this move will do is score 18.44. The
other moves after 100 iterations is presented in the table in
Figure 5 while moves after 200 iterations are presented in
Figure 6.

Note that for the last three moves of Figure 5, the CI upper
bound is lower than the CI lower bound for the best move.
This is why they were pruned. After 200 iterations, the best
move is again VAR 8g with a worst-case value of 22.90.

As can be seen, this reduction process can quickly remove
certain plays out of consideration, especially when taking
the global perspective using the Prairiefire supercomputer
to compute these averages. Considering there are 256 pro-
cessing elements, we may dispatch several requests for av-
erages and standard deviations at a time. Given that there
are an average of 16 turns per side in a Scrabble game,
that leaves roughly 94 seconds of time to find the best move

Average SD Position Word Best-case Action
22.2 29.2 8g DARB 24.84 Keep
21.9 28.5 8f DRAB 24.48 Keep
21.8 27.9 8f BRAD 24.33 Keep
21.5 30.4 8h DRAB 24.25 Keep
21.4 30.3 8f VAR 24.14 Keep
21.2 28.7 8g BARD 23.80 Keep
20.9 30.6 8h VAR 23.67 Keep
20.4 28.4 8g BRAD 22.97 Keep
19.9 31.5 8e DARB 22.75 Prune
19.7 30.9 8h BRAD 22.50 Prune
19.5 31.1 8e BARD 22.31 Prune
19.0 28.2 8f DARB 21.55 Prune
19.0 28.7 8g DRAB 21.60 Prune
18.4 29.6 8h DARB 21.08 Prune
17.9 28.0 8f BARD 20.43 Prune
17.0 31.4 8e BRAD 19.84 Prune
16.9 30.5 8e DRAB 19.66 Prune
16.3 28.6 8f BRR 18.89 Prune

Figure 6: Monte Carlo Simulation After N = 200
Iterations

Suppose the opponent plays QAT when the CUMQUAT
bingo would have clearly been a far superior play. We would
hence infer that the opponent does not have some or all of
tiles CUUM.

To successfully compute probabilities of our opponent hold-
ing various tiles, the computer takes the tiles it knows its
opponent had on the previous play, namely the ones that
were just laid or exchanged. Next, the computer "fills in
the gaps" by picking random tiles to fill the rest of the
rack. If the best move on that rack is significantly better
than the move played, a lower probability is assigned for
the guessed tiles. After filling the gaps on the opponent's
rack several thousands of times, the probabilities will con-
verge sufficiently that they can be used for the next round
of Monte Carlo simulations.

Towards the end of the game, before the bag is entirely
empty, inference comes up with highly accurate rack prob-
abilities. In addition, in the scenario when the opponent
plays a large number of tiles such as four or five, the rate
for accurately guessing tiles is surprisingly high, as there are
few combinations of unseen tiles on the rack.

2/27/08 11:01 AMScrabble on the TeraScale

Page 6 of 8http://www.gtoal.com/wordgames/bwickman/

per turn. In that amount of time, Prairiefire can consider
on the order of ten million different boards. However, in
the above example, it only took 4100 to more the halve the
number of considered plays, a feat Prairiefire can accomplish
in approximately 1/25 th of a second.

3.2 Tile Inference
Above, we see that the better our guesses for our oppo-
nent's rack, the better idea we have of their average re-
sponse. Therefore, the better we can guess, the better we
will do. To aide in this pursuit, we make one large assump-
tion, primarily that our opponent is a good player. By
this, we mean that they make very few of what we consider
to be blunders.

3.3 Endgame Solvers
In the endgame, when the bag has become completely empty,
Scrabble is a game of perfect information. Therefore, in
comparitively little time, the computer can decide if it is
possible to win, lose or tie in a given position. This is of
course in great interest to a programmer, as Scrabble pro-
grams are notoriously bad in the endgame.

Supposing the bag has one tile and the opponent has N tiles,
then an endgame solver must do N times as much work,
trying all combinations of length N from a set of N + 1
tiles. If the bag has two tiles, the work is N + 2 choose N
times as much, and so on.

While this is feasible for small numbers of tiles, it quickly

Page 5

Average SD
Turns 26.004 2.716
Bingos 3.185 1.175
Scores

Winning 447.055 43.305
Losing 371.632 38.851
First 415.923 55.749
Second 402.764 55.087

Figure 7: Per-game Averages

becomes unreasonable. However, it is a very important ele-
ment of a competitive Scrabble program.

4. MATING SUPERCOMPUTERS AND
SCRABBLE FOR STATISTICS

There are several uses for precomputed statistics about the
average behavior in Scrabble games. If, after a billion
games, there are some words of length 5 or 6 that have
not yet been played, it's quite likely they're either impos-
sible to play or have such a low probability of occurrence
that a computer should completely ignore their existence.
The computer would hence be able to reduce its vocabulary
strategically to eke out slight performance enhancements,
as move generation is affected by the lexicon size roughly
logarithmically in time.

To test the robustness of Martin Landau, the author gen-

Word Score
QuE(A)ZIER 365

CO(E)NZYME 356
QuEAZI(E)R 356
WH(E)EZIER 347
FRE(N)ZiLY 338
WHEEZ(I)Er 338
FRENZ(I)ED 329
F(r)OUZIER 320

MAGAZI(N)E 320
OBLIQU(E)D 320

Figure 8: Top 10 Highest Scoring Moves

Winning Losing Combined
826 568 1219
813 566 1203
799 564 1193
773 564 1186
772 563 1179
770 561 1178
766 561 1164
763 559 1159
762 555 1157
761 552 1155

Figure 9: Top 10 Highest Scores

2/27/08 11:01 AMScrabble on the TeraScale

Page 7 of 8http://www.gtoal.com/wordgames/bwickman/

erated and subsequently analyzed ten million games with
it. On 200 processors of the Prairiefire supercomputer, this
computation took under 90 minutes. The million games gen-
erated used the OSPD which, in its electronic incarnation,
is composed of approximately 167, 000 words.

There were 17 unplayed 6 letter words, 7 unplayed 7's, and
14 unplayed 8's. All words 5 or less letters were played at
least 32 times. Unplayed 6's included BUBBLE, KIOSKS,
MOMMAS, PAZAZZ, TSKTSK, and others. While it is
possible that these can be played, it is unlikely. To play
PAZAZZ, it is required a player simultaneously have AAPZ
and two blanks on his or her rack. Being as there are 2
blanks in a bag and only one Z, this is an unlikely occurrence.
In addition, it is most likely that, with two blanks, there is a
better move existing on the board. There were less unplayed
7's because of bingo bonuses, in which a player receives 50
extra points for playing all seven tiles. The unplayed 7's were
GIGGING, KEBBUCK, KINKIN, MAMMOCK, PIPPINS,
POPPLES and ZYZZYVA.

While the list of statistics can continue on forever, the reader
is able to get an idea of what the author seeks. Even this
short list of statistics has allowed us to make inferences upon
playing characteristics. With more data, fast and strong
heuristics can be developed to improve game-play.

5. CONCLUSIONS
The subject of computer Scrabble involves very fundamen-
tal aspects of Computer Science and is an exercise of great
utility for a student learning the subject. Throughout the

Length of Word Times Played
2 21120989
3 57258750
4 53288338
5 46856258
6 21866465
7 19798965
8 16743661
9 916656

10 145538
11 33036
12 6532
13 987
14 80

Figure 10: Word-Length Histogram

Word Occurrences
QAT 1962165

XI 727552
QAID 634685

OX 552025
JO 531085
EX 499612

QUA 465100
AX 455195
IF 446699
AI 440012

Figure 11: Top 10 Played Words

Page 6

course of the semester, the author has assembled a Scrab-
ble program coined Martin Landau, which consists of
5200 lines of highly optimized and reused C ++ code, meet-
ing most of the goals originally sought. Several discoveries
have been made, such as new efficient methods for Scrab-
ble lexicon storage, quick computation of rack management
heuristics, and new methods for inference heuristics.

In the end, while some may consider Scrabble a game for
rickety old housewives, the author, as well as many others,

2/27/08 11:01 AMScrabble on the TeraScale

Page 8 of 8http://www.gtoal.com/wordgames/bwickman/

will consider it the most innovative game of its time.

6. REFERENCES
[1] A. W. Appel and G. J. Jacobson. The world's fastest

Scrabble program. Commun. ACM, 31(5):572578, May
1988.

[2] J. Cosma and D. Jackson. Introducing monty plays
scrabble. Scrabble Players News (June 1983), pages
710, June 1983.

[3] S. Gordon. A faster scrabble move generation
algorithm. Software Practice and Experience,
24:219232, Feb. 1994.

[4] S. C. Shapiro. A scrabble crossword game playing
program. Proceedings of the Sixth IJCAI, pages
797799, 1979.

[5] P. Turcan. A competitive scrabble program. SIGArt
Newsletter, 80:104109, Apr. 1982.

