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Abstract

This paper presents a mathematical framework for recover-
ing color information from multiple photographic sources.
Such sources could include either black and white negatives
or photographic plates. This paper’s main technical contri-
bution is the use of Bayesian analysis to calculate the most
likely color at any sample point, along with an expected
error value. We explore the limits of our approach using
hyperspectral datasets, and show that in some cases, it may
be possible to recover the bulk of the color information in
an image from as few as two black and white sources.

1. Introduction

The modern tradition of photography started in the 1820s.
Before Kodak’s introduction of Kodachrome color reversal
film in 1935, color image reproduction was a laboratory
curiosity, explored by a few pioneers such as Prokudin-
Gorskii [1]. Tens of thousands of black and white plates,
prints, and negatives exist from the hundred year time pe-
riod between the birth of modern photography and the
widespread introduction of color film [15]. Currently, it is
only possible to create color images from early black and
white data sources in those rare occasions when the original
photographer contrived to create a color image by taking
matched exposures using red, green, and blue filters.

In this paper, we explore how variations in spectral sensitiv-
ity between different black and white sources may be used
to infer color information to within a known margin of error.
We assemble a toolkit that scholars can use to recover color
information from black and white photographs in historical
archives.

The paper’s main technical contribution is the use of
Bayesian analysis to calculate the most likely color at any
sample point, along with an expected error value. This anal-
ysis requires some knowledge of the types of light spectra
likely to occur in the scene.

We believe that, for many antique photographs, the intro-
duction of accurate color information will greatly enhance
their visual quality. Color recovery may prove invaluable
in understanding archived materials of historical, cultural,
artistic, or scientific significance.

2. Related Work

Both the computer graphics and photography communi-
ties have long investigated techniques for colorizing black
and white photographs. Previous research in the computer
graphics community proposed adding color to black and
white images by either transferring color from a similar
color image to a black and white image [13, 17] or used
color-by-example methods that required the user to assign
color to regions [7, 14].

Colorizing old black and white photographs can be as sim-
ple as painting colors over the original grey values. While
difficult to do by hand, with the help of the right software
tool, a convincingly colorized version of a black and white
photograph can be created provided that a user selects rea-
sonable colors for each object. Software capable of quickly
colorizing a greyscale image given minimal user interac-
tion has been a topic of recent research interest, pioneered
by Levin et al. [7]. Nie et al. [9] presented a more com-
putationally efficient formulation. Qu et al. [12] presented
a colorization system specialized for the case of coloriz-
ing manga drawings, while Lischinski et al. [8] generalized
the idea to a broader category of interactive image editing
tools. Such colorization techniques naturally complement
the process of color recovery. Provided an appropriately
chosen sparse set of recovered colors, colorization can be
used to create complete color images from any of the black
and white originals (see also Figure 2).

In the field of remote sensing, it is sometimes necessary to
construct color images from multispectral image data. For
example, color images of the Martian landscape were gen-
erated from the 6 channel multispectral image data returned
by the Viking lander [10, 11]. The basis projection algo-
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KODAK Tri−X Pan Film + Wratten 47

KODAK Tri−X Pan Film

(a) Effective sensitivity curves for two B&W sources (b) Initial Colors (c) Corrected Colors (d) Ground Truth

Figure 1: Our mathematical framework allows the recovery of color with known error thresholds from as few as two images.
This example uses a hyperspectral dataset to create two simulated photographs using KODAK Tri-X Pan film with and without
a blue filter (Wratten 47). The first image shows the effective sensitivity curves used for creating the two simulated images
used as source data. The remaining three images show the default recovered colors, the recovered colors with statistical
error correction, and ground truth color values for the dataset.

rithm used to create those color images is nearly identical
to the projection technique that appears in our own methods
section (see Equation (4)). However, in our own framework,
this initial result can be significantly improved using natural
light statistics.

A technique developed by the photographic community
combines several registered black and white images taken
in rapid succession with red, green, and blue filters to cre-
ate a color image. This method dates back to at least the
early 1900s when Sergey Prokudin-Gorskii set out to doc-
ument the Russian Empire using a pioneering camera and
red, blue, and green filters to capture three different images
of the same scene. The slides were then projected through
red, green and blue filters of a device know as a “magic
lantern” which superimposes the images onto a screen, pro-
ducing a color projection [1]. While the projection equip-
ment that Prokudin-Gorskii used to display his photographs
has been lost, it is possible to extract color information from
the surviving glass plates. Recovering color from Prokudin-
Gorskii’s photographs is relatively straightforward, because
we can assume that the red, blue, and green channels in
an output color image are just scaled versions of the red,
blue, and green filtered photographs. In order to create color
images, scholars working with the Library of Congress ad-
justed the weightings of each color channel until the result-
ing image looked sensible. In this work we provide a so-
lution to the general problem of recovering color from an
arbitrary collection of black and white photographs.

3. Methods

3.1. Terminology and Background

3.1.1 Terminology

In this paper, we use the convention of referencing per-
photograph variables with a i subscript. To distinguish be-
tween the different dimensions of a color space, we use a k
subscript.

Given a spectral sensitivity curve, G(λ), we define its
ideal response to incoming light having radiance distribu-
tion V (λ) to be, ∫

G(λ)V (λ)dλ. (1)

Under certain assumptions, equation (1) can be used to
model photoreceptors with spectral sensitivity G(λ). In or-
der for equation (1) to predict the response of a photore-
ceptor, it must be the case that the incoming light does
not change as a function of space or time. The activation
level of a photoreceptor is influenced by the amount of time
that it is exposed to light, thus, for Equation (1) to predict
a photoreceptor’s measurements, we must assume that the
receptor will always be exposed for a fixed length of time,
and that the sensitivity of the photoreceptor does not change
over time. These assumptions are reasonable in the case of
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Figure 2: Application to non-aligned images. Our methods
can operate on data samples taken from non-aligned im-
ages. Color recovery at point samples is possible, provided
that a user selects pixel sets that share a common material
and lighting properties, and the spectral sensitivity curves
of the film and transmission functions of any lens filters are
known. Such point color samples are a natural input for
standard colorization techniques.

a CCD camera with fixed exposure time, but they are overly
restrictive as a model for film photography.

The CIE Colorimetric system defines the RGB and XYZ
colorspaces in terms of ideal response equations [18].
Specifically, if we assume that the light V (λ) passing
through a small patch of our image is constant over time,
and Ck(λ) is the sensitivity curve associated with the k-th
dimension of the CIE RGB color space, then the k-th color
value of that patch should be,∫

Ck(λ)V (λ)dλ. (2)

In a black and white photograph, an integral similar to equa-
tion (1) plays a role in determining brightness at each point.
The film’s spectral sensitivity and the transmittance func-
tions of any applied filters will combine to form an effective
spectral sensitivity, which we denote as Fi. The relation of
the ideal response of the film to the density of the developed

negative is determined by the parameters of the developing
process; see Section 3.3 for further discussion.

3.1.2 The Linear Algebra of Response Functions

Putting aside, for a moment, the question of whether or not
it is possible to find our films’ ideal response values, we
now consider whether given such responses, it is possible
to approximate the color values at any point in the image.

First, note that the set of all response functions forms an
inner product space, with the inner product defined as,

F ·G :=
∫
F (λ)G(λ)dλ.

Define R(V ) to be a linear transformation that maps radi-
ance distributions V to the ideal responses of a set of film
sensitivity functions {Fi},

R(V )i := Fi · V.

It follows that any color response function Ck can be
uniquely decomposed into two components,

Ck = Sk +Dk. (3)

Here Sk is an element of the span of {Fi}, and Dk is an
element of the null space of R [2]. As Sk ∈ span({Fi}),
we can find a set of scalar weights wi such that,

Sk =
∑

i

wiFi.

Therefore, for any radiance distribution V , the scalar prod-
uct Sk · V can be recovered from the set of measured film
response values R(V ), as,

Sk =
∑

i

wiFi → Sk · V =
∑

i

R(V )iwi. (4)

Equation (4) can be used to infer colors from a set
of response measurements R(V ), if we assume that
Ck · V ≈ Sk · V , i.e., if we assume that little color error
will be introduced ifCk is replaced by its projection into the
spanning space of {Fi}. Color interference using projection
into a spanning space is not a novel technique, and non-
trivial examples of the method can be found dating back to
the Viking lander project of the 1970’s [10, 11].

3.2. Bayesian Error Prediction

Color recovery using a spanning space projection has the
potential to be very accurate, provided that a sufficiently



wide range of response functions is available [10, 11]. How-
ever, given a limited set of effective film responses, the ap-
proach will frequently fail. In the following, we introduce
a technique for improving on the results of the spanning
space projection method. We use a large collection of ex-
ample light sources to predict the color information likely
to have been lost as a result of the spanning space projec-
tion. That expected value can then be used to adjust the
initial recovered colors. Additionally, we define a variance
term that can be used to predict the accuracy of the adjusted
color values.

It follows from Equation (3) that the correct color value will
be the sum of the responses of the spanning space and null
space components of the color sensitivity curve,

Ck · V = Sk · V +Dk · V. (5)

Given a limited set of film response curves, it is likely that
Dk · V 6≈ 0. We suggest that this error can be corrected by
finding correspondences between the response of the null
space component and the set of known film response values,
R(V ). Formally, we propose adopting the approximation,

Ck · V ≈ Sk · V + E(Dk · V |R(V ) ).

In order to calculate a posteriori probabilities for Dk · V
given the measured film response values R(V ), we must
assume some knowledge of the light spectra likely to be
present in the scene. In our approach, this prior knowledge
takes the form of a set of known light sources {Vq(λ)}. We
make the assumption that that the true radiance distribution,
V (λ), will be equal to a scaled version of one of the known
light sources. Thus, good error predictions require a large
database of light sources.

Given a list of film responses R(V ), we begin by finding
the scale factor sq that minimizes the apparent difference
between any example light Vq and the correct light V . We
accomplish this by solving the following simple optimiza-
tion problem,

δ2q (s) :=
∑

i

(Ri · sVq −R(V )i)2,

sq := min
s∈[s0,s1]

δ2q (s).

We define an error value associated with the q-th example
light source as δ2q (sq). This error definition is quite similar
to the affinity function definition used in many image seg-
mentation algorithms [16], and the pixel weighting function
used in Levin et al.’s colorization algorithm [7]. The best
approach to modeling error value probabilities would be to
develop a mixture model based on known data; however, as
is often the case in similar image segmentation tasks, the

computational costs associated with such models are sub-
stantial. A more practical approach is to assume a Gaussian
distribution of error. Thus, we define a probability function,
P (Vq |R(V ) ), as follows,

P (Vq |R(V ) ) ∝ uq := exp

(
−δ2q (sq)

2σ2

)
.

Here, we define σ2 as the m-th smallest δ2q (sq) calculated
for our set of known lights.

Given the above, we can now form complete definitions for
the expected error in our recovered colors, as well as the
variance in those error terms. Defining dqk := sqVq · Dk,
we have,

E(Dk · V |R(V ) ) =
∑

q

P (Vq |R(V ) )dqk,

=

∑
q uqdqk∑

q uq
.

Var(Dk · V |R(V ) ) =

∑
q uqd

2
qk∑

q uq
−

(∑
q uqdqk∑

q uq

)2

.

In Section 4 we use hyperspectral datasets to test the ac-
curacy of these error predictions, given a range of differ-
ent possible film response curves and example light sets of
varying quality. Along with the set of known lights, Vq , the
accuracy of our predictions is also influenced by the choice
of values for the minimum and maximum allowed scale fac-
tors, s0 and s1, as well as the index m used to determine
σ2. In our experiments, we found that [s0, s1] = [.8, 1.2]
and m = 5 typically produced good results.

3.3. Calculating Ideal Film Response Values

Unfortunately, the realities of film photography deviate suf-
ficiently from equation (1) that we cannot consider the grey
values in our black and white photographs to be the ideal
response values. However, we can hope to find a function
gi : R → R that will map the grey values in our image, b,
to R(V ).

In order to find such a function we must propose a model
of black and white photography that makes it possible to
approximate ideal response values given the grey values
present in the image, along with some other additional in-
formation that we can hope to uncover. One such model
is,

b = fi(∆tiFi · V ). (6)

Here ∆ti is the exposure time of the photograph, and fi :
R → R is a nonlinear scaling function, determined by the
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Figure 3: Here we show the null space and spanning space projections defined in Equation (3), for the case of the the filter
set used in Figure 1. The spanning space projection, Sk, represents the portion of the response curve that can be easily
recovered from the information present in the photographs, while the the null space projection, Dk, represents parts of the
spectrum that are impossible recover without the use of Bayesian error prediction.

Figure 4: Hyperspectral Test Results: Here we show the color recovered images from the two simulated photographs of the
Tri-X Pan and Blue Filter test case. Row one: initial recovered colors, recovered colors with Bayesian error correction, cor-
rect color values. Row two: Initial color error, predicted error, actual error in the final recovered colors. Twenty additional
results are shown in the supplemental materials.

saturation function of the film, and the details of the devel-
opment process used to create the photographic print [5].

To find fi, we can either assume that the film saturation
function given by the manufacturer will be a good match
for fi, or we can take several photographs of the same scene
using known exposure times, develop the film in a way that
conforms to our assumptions about the film development
process used in our input black and white image, and fit a
curve to the resulting data points.

Provided that fi is known, it is possible to calculate ∆ti,

given at least one point in the image with known incoming
light V (λ). Such an exposure time inference is similar to
techniques used by Land [6]. For example, given a number
of photographs of a building taken under daylight, if we can
identify a point in the image that contains a diffuse object
painted with a white paint having known reflectance func-
tionH(λ), and assume a standard daylight illuminant L(λ),
then we can predict that V (λ) = H(λ)L(λ).



4. Evaluation using Hyperspectral Images

The mathematics of color recovery impose few bounds on
the amount of error that could occur due to the unrecover-
able portion of color sensitivity curve, Dk(λ). While we
can attempt to model this error statistically, it is ultimately
the light present in the scene, taken together with the span
of the films’ effective response curves, that determines the
extent to which color recovery is possible.

In order to access the practical limits of our color recov-
ery process, we have investigated the effectiveness of our
algorithm in a series of controlled test cases. We use Fos-
ter et al.’s hyperspectral datasets [4] to simulate the result
of taking several photographs of the same scene using dif-
ferent film/filter combinations. Each hyperspectral dataset
is effectively an “image” that stores thirty or more values
per pixel. Each value in the dataset records the narrow band
response from a 10nm section of the visible spectrum. By
applying a discretized spectral sensitivity curve to this data,
we are able to calculate both ideal color values and ideal
film response values.

These test cases allow us to analyze the color error that re-
sults from unavoidable sources of color information loss,
i.e., the unrecoverable Dk(λ) curve, independently of any
measurement errors that occur in the course of constructing
ideal response values from an input photograph set. Thus,
the hyperspectral test results can be considered an “upper
bound” on the quality of the color information that can
be recovered using real photographs. However, it must be
noted that Foster et al.’s hyperspectral datasets do not record
information in the IR and UV spectrums of light, though
some black and white films are sensitive in those wave-
lengths. Thus, our simulations miss errors that might be
introduced due to electromagnetic radiation in those spec-
trums.

For each hyperspectral scene, we construct a set of ideal
film response values R(V ), assuming a collection of pho-
tographs taken with varying combinations of films and fil-
ters. The effective response curves used are defined using
the published spectral sensitivity curves of Kodak and Fuji-
film black and white films, along with the published trans-
mittance values of Kodak Wratten filters. The film/filter
combinations which we test range from the virtually impos-
sible case of recovering color from a single photograph, to
the relatively easy case of recovering color given 5 different
photographs, taken with a range of photographic filters.

Foster et al.’s hyperspectral datasets include a range of
scenes featuring natural and man-made objects, viewed un-
der daylight illuminant conditions. In order to perform
the statistical error correction of Section 3.2, we use radi-
ance values taken from two hyperspectral datasets, Scenes 2

(green foliage) and 7 (sunlit building) from Foster et al. [4].
As the high resolution data can greatly increase the com-
putational cost of finding the expected error at each point,
we downsample in image space by a factor of 9. To avoid
the case of impossibly good example lights, neither of the
datasets used to provide example light sets are used to gen-
erate test problems. Our tests are thus run using responses
derived from Scenes 3 (English garden), 4 (flower), 6 (city
scape) and 8 (barn door). Example recovered images from
these trials are shown in Figures 1 and 4, and the complete
set of recovered images and associated error values are in-
cluded in our supplementary materials.

Overall, the results of the hyperspectral tests are quite
promising. They suggest that roughly correct color recov-
ery may be possible given as few as two photographs. Pre-
dictably, a collection of photographs representing a wider
range of spectral sensitivity curves greatly improves the
quality of the recovered colors.

4.1. Error Prediction Accuracy

The error prediction step can only be expected to provide
accurate results insomuch as the set of example radiance
distributions includes rough matches for the radiance dis-
tributions that exist inside a given scene. We would expect
few similarities between the reflectance functions of met-
als and those of plants, and thus, using a set of example
light sources drawn entirely from images of plants is likely
to lead to incorrect results in the case of photographs con-
taining metal objects. A similar failure case is shown in
Figure 5.

Interestingly, even rough matches between the content of
the example light set and the source photograph often ap-
pear sufficient to allow the Bayesian error correction to sig-
nificantly improve the accuracy of the recovered colors. For
example, the materials present in the barn door dataset are
only roughly similar to those in the sunlit building dataset.
Yet, as show in Figure 4, the error correction is accurate
enough to frequently introduce the reds and oranges miss-
ing from the initial recovered colors. (That said, there are
also several visible failure cases, which attest to the limits
of the approach.)

For many of the test cases, the variance term,
Var(V ·Dk |R(V ) ), is demonstrated to be a fairly
accurate prediction of the true error in the recovered colors.
The accuracy of the error predicted by the variance term
appears to be a function of the dataset that the tests are run
on, rather than the particular filters used. This suggests that
the quality of the error predictions is determined primarily
by the degree to which the example dataset can provide
good matches for the light in the scene.



Figure 5: Error Correction Failure Case: Here we show another set of hyperspectral test results, once again using the same
Tri-X Pan and Blue Filter test case, and the same simulated ideal response functions as Figure 4. However, for this example,
we have reduced the set of example light sources, using only hyperspectral data from Foster et al.’s “green foliage” dataset.
From left to right: initial recovered colors, recovered colors with Bayesian error correction, correct color values. As these
results demonstrate, given sufficiently poor example light sources, the error correction step can increase color errors.

5. Discussion and Conclusions

Viewed at a high level, the problem of finding ideal response
values provides us with an opportunity to incorporate any
information that we have on the content of the image into
the color recovery process. This information does not need
to be as specific as the known response functions and light-
ing conditions proposed in the previous subsection. For ex-
ample, if we know that some of the pixels in the images are
skin illuminated by daylight, that restricts the possible ob-
served radiance, V (λ), and thus the possible response val-
ues R(V ) for those points in the image. Developing algo-
rithms that can effectively make use of such partial informa-
tion has the potential to greatly improve the effectiveness of
color recovery algorithms, and such techniques could also
be useful in other computational photography applications.
There is also considerable potential to incorporate existing
computational photography techniques into the color recov-
ery process, for example, it may be possible to combine ex-
isting color constancy algorithms with our present work in
order to recover colors from photographs of the same scene
taken under differing illumination conditions [3].

Prior to the 1920’s, most photography made use of or-
thochromatic films, which had negligible red responses.
This would seem to put a hard limit on the time period be-
fore which color recovery could be possible – as response
information for the red and orange portions of the spectrum
will always be missing in photographs taken before the in-
troduction of panchromatic films. One of the most interest-
ing results of our research is that, as the hyperspectral test
cases suggest, it may still be possible to recover accurate
color information from such photographs, by making use of
Bayesian error prediction.

For the vast majority of antique black and white pho-
tographs, neither exposure times, nor any filter informa-

tion have been recorded. Moreover, professional black
and white photographers regularly use a range of darkroom
techniques that would render the inference of ideal response
values for points in their prints exceedingly difficult. Film
negatives or photographic plates are more attractive data
sources, as all the unknowns associated with printmaking
are eliminated. Furthermore, photographers make use of
numerous conventions that recommend exposure times, fil-
ter use, and development processes in particular situations.
Thus, there is potential to develop tools for guessing the
likely photographic variables associated with a given col-
lection of antique negatives.
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